spacer
spacer

PDBsum entry 1spu

Go to PDB code: 
protein metals Protein-protein interface(s) links
Oxidoreductase PDB id
1spu

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
718 a.a. *
Metals
_CA ×4
_CU ×2
Waters ×1064
* Residue conservation analysis
PDB id:
1spu
Name: Oxidoreductase
Title: Structure of oxidoreductase
Structure: Copper amine oxidase. Chain: a, b. Ec: 1.4.3.6
Source: Escherichia coli. Organism_taxid: 562. Cellular_location: periplasm
Biol. unit: Homo-Dimer (from PDB file)
Resolution:
2.00Å     R-factor:   0.206    
Authors: C.M.Wilmot,S.E.V.Phillips
Key ref:
C.M.Wilmot et al. (1997). Catalytic mechanism of the quinoenzyme amine oxidase from Escherichia coli: exploring the reductive half-reaction. Biochemistry, 36, 1608-1620. PubMed id: 9048544 DOI: 10.1021/bi962205j
Date:
13-Nov-96     Release date:   12-Mar-97    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P46883  (AMO_ECOLI) -  Primary amine oxidase from Escherichia coli (strain K12)
Seq:
Struc:
 
Seq:
Struc:
757 a.a.
718 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 Enzyme reactions 
   Enzyme class: E.C.1.4.3.21  - primary-amine oxidase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: a primary methyl amine + O2 + H2O = an aldehyde + H2O2 + NH4+
primary methyl amine
+ O2
+ H2O
= aldehyde
+ H2O2
+ NH4(+)
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1021/bi962205j Biochemistry 36:1608-1620 (1997)
PubMed id: 9048544  
 
 
Catalytic mechanism of the quinoenzyme amine oxidase from Escherichia coli: exploring the reductive half-reaction.
C.M.Wilmot, J.M.Murray, G.Alton, M.R.Parsons, M.A.Convery, V.Blakeley, A.S.Corner, M.M.Palcic, P.F.Knowles, M.J.McPherson, S.E.Phillips.
 
  ABSTRACT  
 
The crystal structure of the complex between the copper amine oxidase from Escherichia coli (ECAO) and a covalently bound inhibitor, 2-hydrazinopyridine, has been determined to a resolution of 2.0 A. The inhibitor covalently binds at the 5 position of the quinone ring of the cofactor, 2,4,5-trihydroxyphenylalaninequinone (TPQ). The inhibitor complex is analogous to the substrate Schiff base formed during the reaction with natural monoamine substrate. A proton is abstracted from a methylene group adjacent to the amine group by a catalytic base during the reaction. The inhibitor, however, has a nitrogen at this position, preventing proton abstraction and trapping the enzyme in a covalent complex. The electron density shows this nitrogen is hydrogen bonded to the side chain of Asp383, a totally conserved residue, identifying it as the probable catalytic base. The positioning of Asp383 is such that the pro-S proton of a substrate would be abstracted, consistent with the stereospecificity of the enzyme determined by 1H NMR spectroscopy. Site-directed mutagenesis and in vivo suppression have been used to substitute Asp383 for 12 other residues. The resulting proteins either lack or, in the case of glutamic acid, have very low enzyme activity consistent with an essential catalytic role for Asp383. The O4 position on the quinone ring is involved in a short hydrogen bond with the hydroxyl of conserved residue Tyr369. The distance between the oxygens is less than 2.5 A, consistent with a shared proton, and suggesting ionization at the O4 position of the quinone ring. The Tyr369 residue appears to play an important role in stabilizing the position of the quinone/inhibitor complex. The O2 position on the quinone ring is hydrogen bonded to the apical water ligand of the copper. The basal water ligand, which lies 2.0 A from the copper in the native structure, is at a distance of 3.0 A in the complex. In the native structure, the active site is completely buried, with no obvious route for entry of substrate. In the complex, the tip of the pyridine ring of the bound inhibitor is on the surface of the protein at the edge of the interface between domains 3 and 4, suggesting this as the entry point for the amine substrate.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
  21294844 M.L.Di Paolo, M.Lunelli, M.Fuxreiter, A.Rigo, I.Simon, and M.Scarpa (2011).
Active site residue involvement in monoamine or diamine oxidation catalysed by pea seedling amine oxidase.
  FEBS J, 278, 1232-1243.  
20155950 C.M.Chang, V.J.Klema, B.J.Johnson, M.Mure, J.P.Klinman, and C.M.Wilmot (2010).
Kinetic and structural analysis of substrate specificity in two copper amine oxidases from Hansenula polymorpha.
  Biochemistry, 49, 2540-2550.
PDB code: 3loy
19764817 A.P.McGrath, K.M.Hilmer, C.A.Collyer, E.M.Shepard, B.O.Elmore, D.E.Brown, D.M.Dooley, and J.M.Guss (2009).
Structure and inhibition of human diamine oxidase.
  Biochemistry, 48, 9810-9822.
PDB codes: 3hi7 3hig 3hii
19588076 S.Kaitaniemi, H.Elovaara, K.Grön, H.Kidron, J.Liukkonen, T.Salminen, M.Salmi, S.Jalkanen, and K.Elima (2009).
The unique substrate specificity of human AOC2, a semicarbazide-sensitive amine oxidase.
  Cell Mol Life Sci, 66, 2743-2757.  
  18607080 D.B.Langley, D.M.Trambaiolo, A.P.Duff, D.M.Dooley, H.C.Freeman, and J.M.Guss (2008).
Complexes of the copper-containing amine oxidase from Arthrobacter globiformis with the inhibitors benzylhydrazine and tranylcypromine.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 64, 577-583.
PDB codes: 1w4n 1w5z
  19052360 P.Pirrat, M.A.Smith, A.R.Pearson, M.J.McPherson, and S.E.Phillips (2008).
Structure of a xenon derivative of Escherichia coli copper amine oxidase: confirmation of the proposed oxygen-entry pathway.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 64, 1105-1109.
PDB code: 2w0q
17409383 B.J.Johnson, J.Cohen, R.W.Welford, A.R.Pearson, K.Schulten, J.P.Klinman, and C.M.Wilmot (2007).
Exploring molecular oxygen pathways in Hansenula polymorpha copper-containing amine oxidase.
  J Biol Chem, 282, 17767-17776.
PDB codes: 2oov 2oqe
17406963 P.Knowles, C.Kurtis, J.Murray, C.Saysell, W.Tambyrajah, C.Wilmot, M.McPherson, S.Phillips, D.Dooley, D.Brown, M.Rogers, and M.Mure (2007).
Hydrazine and amphetamine binding to amine oxidases: old drugs with new prospects.
  J Neural Transm, 114, 743-746.  
16929109 A.P.Duff, A.E.Cohen, P.J.Ellis, K.Hilmer, D.B.Langley, D.M.Dooley, H.C.Freeman, and J.M.Guss (2006).
The 1.23 Angstrom structure of Pichia pastoris lysyl oxidase reveals a lysine-lysine cross-link.
  Acta Crystallogr D Biol Crystallogr, 62, 1073-1084.
PDB code: 1w7c
  17077478 D.B.Langley, A.P.Duff, H.C.Freeman, and J.M.Guss (2006).
The copper-containing amine oxidase from Arthrobacter globiformis: refinement at 1.55 and 2.20 A resolution in two crystal forms.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 62, 1052-1057.
PDB codes: 1w6c 1w6g
16924556 E.M.Shepard, and D.M.Dooley (2006).
Intramolecular electron transfer rate between active-site copper and TPQ in Arthrobacter globiformis amine oxidase.
  J Biol Inorg Chem, 11, 1039-1048.  
16947396 F.Marttila-Ichihara, D.J.Smith, C.Stolen, G.G.Yegutkin, K.Elima, N.Mercier, R.Kiviranta, M.Pihlavisto, S.Alaranta, U.Pentikäinen, O.Pentikäinen, F.Fülöp, S.Jalkanen, and M.Salmi (2006).
Vascular amine oxidases are needed for leukocyte extravasation into inflamed joints in vivo.
  Arthritis Rheum, 54, 2852-2862.  
16239734 E.Jakobsson, J.Nilsson, D.Ogg, and G.J.Kleywegt (2005).
Structure of human semicarbazide-sensitive amine oxidase/vascular adhesion protein-1.
  Acta Crystallogr D Biol Crystallogr, 61, 1550-1562.
PDB codes: 2c10 2c11
16082728 S.M.Maula, T.Salminen, S.Kaitaniemi, Y.Nymalm, D.J.Smith, and S.Jalkanen (2005).
Carbohydrates located on the top of the "cap" contribute to the adhesive and enzymatic functions of vascular adhesion protein-1.
  Eur J Immunol, 35, 2718-2727.  
15259025 G.G.Yegutkin, T.Salminen, K.Koskinen, C.Kurtis, M.J.McPherson, S.Jalkanen, and M.Salmi (2004).
A peptide inhibitor of vascular adhesion protein-1 (VAP-1) blocks leukocyte-endothelium interactions under shear stress.
  Eur J Immunol, 34, 2276-2285.  
14686927 P.Pietrangeli, S.Nocera, R.Federico, B.Mondovì, and L.Morpurgo (2004).
Inactivation of copper-containing amine oxidases by turnover products.
  Eur J Biochem, 271, 146-152.  
14690425 A.P.Duff, A.E.Cohen, P.J.Ellis, J.A.Kuchar, D.B.Langley, E.M.Shepard, D.M.Dooley, H.C.Freeman, and J.M.Guss (2003).
The crystal structure of Pichia pastoris lysyl oxidase.
  Biochemistry, 42, 15148-15157.
PDB code: 1n9e
12926004 R.Prabhakar, and P.E.Siegbahn (2003).
A comparison of the mechanism for the reductive half-reaction between pea seedling and other copper amine oxidases (CAOs).
  J Comput Chem, 24, 1599-1609.  
12153561 E.M.Shepard, J.Smith, B.O.Elmore, J.A.Kuchar, L.M.Sayre, and D.M.Dooley (2002).
Towards the development of selective amine oxidase inhibitors. Mechanism-based inhibition of six copper containing amine oxidases.
  Eur J Biochem, 269, 3645-3658.  
12134140 M.Kim, T.Okajima, S.Kishishita, M.Yoshimura, A.Kawamori, K.Tanizawa, and H.Yamaguchi (2002).
X-ray snapshots of quinone cofactor biogenesis in bacterial copper amine oxidase.
  Nat Struct Biol, 9, 591-596.
PDB codes: 1ivu 1ivv 1ivw 1ivx
11258907 B.Schwartz, A.K.Olgin, and J.P.Klinman (2001).
The role of copper in topa quinone biogenesis and catalysis, as probed by azide inhibition of a copper amine oxidase from yeast.
  Biochemistry, 40, 2954-2963.  
11752422 J.P.Klinman (2001).
How many ways to craft a cofactor?
  Proc Natl Acad Sci U S A, 98, 14766-14768.  
11698675 L.Xie, and W.A.van der Donk (2001).
Homemade cofactors: self-processing in galactose oxidase.
  Proc Natl Acad Sci U S A, 98, 12863-12865.  
11717396 S.Datta, Y.Mori, K.Takagi, K.Kawaguchi, Z.W.Chen, T.Okajima, S.Kuroda, T.Ikeda, K.Kano, K.Tanizawa, and F.S.Mathews (2001).
Structure of a quinohemoprotein amine dehydrogenase with an uncommon redox cofactor and highly unusual crosslinking.
  Proc Natl Acad Sci U S A, 98, 14268-14273.
PDB code: 1jju
11114510 H.Erlandsen, E.E.Abola, and R.C.Stevens (2000).
Combining structural genomics and enzymology: completing the picture in metabolic pathways and enzyme active sites.
  Curr Opin Struct Biol, 10, 719-730.  
10903941 N.M.Okeley, and W.A.van der Donk (2000).
Novel cofactors via post-translational modifications of enzyme active sites.
  Chem Biol, 7, R159-R171.  
10933787 Z.Chen, B.Schwartz, N.K.Williams, R.Li, J.P.Klinman, and F.S.Mathews (2000).
Crystal structure at 2.5 A resolution of zinc-substituted copper amine oxidase of Hansenula polymorpha expressed in Escherichia coli.
  Biochemistry, 39, 9709-9717.
PDB code: 1ekm
10576737 C.M.Wilmot, J.Hajdu, M.J.McPherson, P.F.Knowles, and S.E.Phillips (1999).
Visualization of dioxygen bound to copper during enzyme catalysis.
  Science, 286, 1724-1728.
PDB codes: 1d6u 1d6y 1d6z
10387067 J.M.Murray, C.G.Saysell, C.M.Wilmot, W.S.Tambyrajah, J.Jaeger, P.F.Knowles, S.E.Phillips, and M.J.McPherson (1999).
The active site base controls cofactor reactivity in Escherichia coli amine oxidase: x-ray crystallographic studies with mutational variants.
  Biochemistry, 38, 8217-8227.
PDB codes: 1dyu 1qaf 1qak 1qal
10387066 J.Plastino, E.L.Green, J.Sanders-Loehr, and J.P.Klinman (1999).
An unexpected role for the active site base in cofactor orientation and flexibility in the copper amine oxidase from Hansenula polymorpha.
  Biochemistry, 38, 8204-8216.  
10226045 M.A.McGuirl, and D.M.Dooley (1999).
Copper-containing oxidases.
  Curr Opin Chem Biol, 3, 138-144.  
10571999 S.Hirota, T.Iwamoto, K.Tanizawa, O.Adachi, and O.Yamauchi (1999).
Spectroscopic characterization of carbon monoxide complexes generated for copper/topa quinone-containing amine oxidases.
  Biochemistry, 38, 14256-14263.  
9538013 A.Holt, G.Alton, C.H.Scaman, G.R.Loppnow, A.Szpacenko, I.Svendsen, and M.M.Palcic (1998).
Identification of the quinone cofactor in mammalian semicarbazide-sensitive amine oxidase.
  Biochemistry, 37, 4946-4957.  
9843426 B.Schwartz, E.L.Green, J.Sanders-Loehr, and J.P.Klinman (1998).
Relationship between conserved consensus site residues and the productive conformation for the TPQ cofactor in a copper-containing amine oxidase from yeast.
  Biochemistry, 37, 16591-16600.  
9811486 R.Cortesi, P.Ascenzi, M.Colasanti, T.Persichini, G.Venturini, M.Bolognesi, A.Pesce, C.Nastruzzi, and E.Menegatti (1998).
Cross-enzyme inhibition by gabexate mesylate: formulation and reactivity study.
  J Pharm Sci, 87, 1335-1340.  
9551552 R.Li, J.P.Klinman, and F.S.Mathews (1998).
Copper amine oxidase from Hansenula polymorpha: the crystal structure determined at 2.4 A resolution reveals the active conformation.
  Structure, 6, 293-307.  
9760229 R.Matsuzaki, and K.Tanizawa (1998).
Exploring a channel to the active site of copper/topaquinone-containing phenylethylamine oxidase by chemical modification and site-specific mutagenesis.
  Biochemistry, 37, 13947-13957.  
9681017 S.G.Møller, and M.J.McPherson (1998).
Developmental expression and biochemical analysis of the Arabidopsis atao1 gene encoding an H2O2-generating diamine oxidase.
  Plant J, 13, 781-791.  
9298968 N.Nakamura, P.Moënne-Loccoz, K.Tanizawa, M.Mure, S.Suzuki, J.P.Klinman, and J.Sanders-Loehr (1997).
Topaquinone-dependent amine oxidases: identification of reaction intermediates by Raman spectroscopy.
  Biochemistry, 36, 11479-11486.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer