spacer
spacer

PDBsum entry 1spi

Go to PDB code: 
protein Protein-protein interface(s) links
Hydrolase (phosphoric monoester) PDB id
1spi

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
333 a.a. *
* Residue conservation analysis
PDB id:
1spi
Name: Hydrolase (phosphoric monoester)
Title: Crystal structure of spinach chloroplast fructose-1,6-bisphosphatase at 2.8 angstroms resolution
Structure: Fructose 1,6-bisphosphatase. Chain: a, b, c, d. Engineered: yes
Source: Spinacia oleracea. Spinach. Organism_taxid: 3562
Biol. unit: Tetramer (from PQS)
Resolution:
2.80Å     R-factor:   0.203    
Authors: V.Villeret,S.Huang,Y.Zhang,Y.Xue,W.N.Lipscomb
Key ref:
V.Villeret et al. (1995). Crystal structure of spinach chloroplast fructose-1,6-bisphosphatase at 2.8 A resolution. Biochemistry, 34, 4299-4306. PubMed id: 7703243 DOI: 10.1021/bi00013a019
Date:
14-Dec-94     Release date:   27-Feb-95    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P22418  (F16P1_SPIOL) -  Fructose-1,6-bisphosphatase, chloroplastic from Spinacia oleracea
Seq:
Struc:
415 a.a.
333 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 3 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class: E.C.3.1.3.11  - fructose-bisphosphatase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

      Pathway:
Pentose Phosphate Pathway (later stages)
      Reaction: beta-D-fructose 1,6-bisphosphate + H2O = beta-D-fructose 6-phosphate + phosphate
beta-D-fructose 1,6-bisphosphate
+ H2O
= beta-D-fructose 6-phosphate
+ phosphate
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1021/bi00013a019 Biochemistry 34:4299-4306 (1995)
PubMed id: 7703243  
 
 
Crystal structure of spinach chloroplast fructose-1,6-bisphosphatase at 2.8 A resolution.
V.Villeret, S.Huang, Y.Zhang, Y.Xue, W.N.Lipscomb.
 
  ABSTRACT  
 
The three-dimensional structure of the spinach chloroplast fructose-1,6-bisphosphatase (Fru-1,6-Pase) has been solved by the molecular replacement method at 2.8 A resolution and refined to a crystallographic R factor of 0.203. The enzyme is composed of four monomers and displays pseudo D2 symmetry. Comparison with the allosteric Fru-1,6-Pase from pig kidney shows orientationally displaced dimers within the quaternary structure of the chloroplast enzyme. When the C1C2 dimers of the two enzymes are superimposed, the C3C4 dimer of the chloroplast enzyme is rotated 20 degrees and 5 degrees relative to the C3C4 dimer of the R and T forms of the pig kidney enzyme, respectively. This new quaternary structure, designated as S, may be described as a super-T form and is outside of the pathway of the allosteric transition which occurs in the pig kidney enzyme, which shows a 15 degrees rotation between T and R forms. Chloroplast Fru-1,6-Pase, unlike the pig kidney enzyme, is insensitive to allosteric transformation by AMP. Structural changes in the AMP binding site involving mainly helices H1, H2, and H3 and the loop between H1 and H2 at the dimer interface interfere with binding of the phosphate of AMP. Finally, the location of cysteines residues provides a basis for a preliminary discussion of the activation of the enzyme by reduction of cysteines via the ferredoxin-thioredoxin f system; this process is complementary to activation by pH changes, Mg2+ or Ca2+, Fru-1,6-P2, and possibly Fru-2,6-P2.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
19902380 K.Chibani, J.Couturier, B.Selles, J.P.Jacquot, and N.Rouhier (2010).
The chloroplastic thiol reducing systems: dual functions in the regulation of carbohydrate metabolism and regeneration of antioxidant enzymes, emphasis on the poplar redoxin equipment.
  Photosynth Res, 104, 75-99.  
19325167 A.J.Serrato, J.de Dios Barajas-López, A.Chueca, and M.Sahrawy (2009).
Changing sugar partitioning in FBPase-manipulated plants.
  J Exp Bot, 60, 2923-2931.  
19073594 G.Brown, A.Singer, V.V.Lunin, M.Proudfoot, T.Skarina, R.Flick, S.Kochinyan, R.Sanishvili, A.Joachimiak, A.M.Edwards, A.Savchenko, and A.F.Yakunin (2009).
Structural and biochemical characterization of the type II fructose-1,6-bisphosphatase GlpX from Escherichia coli.
  J Biol Chem, 284, 3784-3792.
PDB codes: 1ni9 3big 3bih 3d1r
18377232 P.Schürmann, and B.B.Buchanan (2008).
The ferredoxin/thioredoxin system of oxygenic photosynthesis.
  Antioxid Redox Signal, 10, 1235-1274.  
17419729 K.A.Stieglitz, M.F.Roberts, W.Li, and B.Stec (2007).
Crystal structure of the tetrameric inositol 1-phosphate phosphatase (TM1415) from the hyperthermophile, Thermotoga maritima.
  FEBS J, 274, 2461-2469.
PDB codes: 2p3n 2p3v
17431629 S.D.Lemaire, L.Michelet, M.Zaffagnini, V.Massot, and E.Issakidis-Bourguet (2007).
Thioredoxins in chloroplasts.
  Curr Genet, 51, 343-365.  
17029235 G.Gopalan, Z.He, K.P.Battaile, S.Luan, and K.Swaminathan (2006).
Structural comparison of oxidized and reduced FKBP13 from Arabidopsis thaliana.
  Proteins, 65, 789-795.  
16670087 J.K.Hines, H.J.Fromm, and R.B.Honzatko (2006).
Novel allosteric activation site in Escherichia coli fructose-1,6-bisphosphatase.
  J Biol Chem, 281, 18386-18393.
PDB code: 2gq1
15862094 B.B.Buchanan, and Y.Balmer (2005).
Redox regulation: a broadening horizon.
  Annu Rev Plant Biol, 56, 187-220.  
  15352380 R.Cazalis, A.Chueca, M.Sahrawy, and J.López-Gorgé (2004).
Construction of chimeric cytosolic fructose-1,6-bisphosphatases by insertion of a chloroplastic redox regulatory cluster.
  J Physiol Biochem, 60, 7.  
15653432 T.Brodegger, A.Stockmann, J.Oberstrass, W.Nellen, and H.Follmann (2004).
Novel thioredoxin targets in Dictyostelium discoideum identified by two-hybrid analysis: interactions of thioredoxin with elongation factor 1alpha and yeast alcohol dehydrogenase.
  Biol Chem, 385, 1185-1192.  
12649434 K.A.Stieglitz, B.A.Seaton, J.F.Head, B.Stec, and M.F.Roberts (2003).
Unexpected similarity in regulation between an archaeal inositol monophosphatase/fructose bisphosphatase and chloroplast fructose bisphosphatase.
  Protein Sci, 12, 760-767.  
12626118 P.Schürmann (2003).
Redox signaling in the chloroplast: the ferredoxin/thioredoxin system.
  Antioxid Redox Signal, 5, 69-78.  
12029059 C.H.Verhees, J.Akerboom, E.Schiltz, W.M.de Vos, and J.van der Oost (2002).
Molecular and biochemical characterization of a distinct type of fructose-1,6-bisphosphatase from Pyrococcus furiosus.
  J Bacteriol, 184, 3401-3405.  
  12485920 J.P.Jacquot, N.Rouhier, and E.Gelhaye (2002).
Redox control by dithiol-disulfide exchange in plants: I. The chloroplastic systems.
  Ann N Y Acad Sci, 973, 508-519.  
11223530 Y.Nakamura, T.Tada, K.Wada, T.Kinoshita, M.Tamoi, S.Shigeoka, and K.Nishimura (2001).
Purification, crystallization and preliminary X-ray diffraction analysis of the fructose-1,6-/sedoheptulose-1,7-bisphosphatase of Synechococcus PCC 7942.
  Acta Crystallogr D Biol Crystallogr, 57, 454-456.  
10987362 F.W.Zhang, F.K.Zhao, and G.J.Xu (2000).
Molecular cloning, expression and purification of muscle fructose-1,6-bisphosphatase from Zaocys dhumnades: the role of the N-terminal sequence in AMP activation at alkaline pH.
  Biol Chem, 381, 561-566.  
10716987 J.M.Nocek, K.Huang, and B.M.Hoffman (2000).
Extension of transverse relaxation-optimized spectroscopy techniques to allosteric proteins: CO- and paramagnetic fluoromet-hemoglobin [beta (15N-valine)].
  Proc Natl Acad Sci U S A, 97, 2538-2543.  
15012197 P.Schurmann, and J.P.Jacquot (2000).
PLANT THIOREDOXIN SYSTEMS REVISITED.
  Annu Rev Plant Physiol Plant Mol Biol, 51, 371-400.  
10089399 C.M.Weeks, A.W.Roszak, M.Erman, R.Kaiser, H.Jörnvall, and D.Ghosh (1999).
Structure of rabbit liver fructose 1,6-bisphosphatase at 2.3 A resolution.
  Acta Crystallogr D Biol Crystallogr, 55, 93.
PDB code: 1bk4
10322547 E.Ruelland, and M.Miginiac-Maslow (1999).
Regulation of chloroplast enzyme activities by thioredoxins: activation or relief from inhibition?
  Trends Plant Sci, 4, 136-141.  
10581254 M.Chiadmi, A.Navaza, M.Miginiac-Maslow, J.P.Jacquot, and J.Cherfils (1999).
Redox signalling in the chloroplast: structure of oxidized pea fructose-1,6-bisphosphate phosphatase.
  EMBO J, 18, 6809-6815.
PDB codes: 1d9q 1dbz 1dcu
9632687 S.Mora-García, R.Rodríguez-Suárez, and R.A.Wolosiuk (1998).
Role of electrostatic interactions on the affinity of thioredoxin for target proteins. Recognition of chloroplast fructose-1, 6-bisphosphatase by mutant Escherichia coli thioredoxins.
  J Biol Chem, 273, 16273-16280.  
9342248 Y.Chen, J.W.Wu, G.J.Xu, C.L.Tsou, and Z.X.Wang (1997).
Inactivation kinetics of the reduced spinach chloroplast fructose-1,6-bisphosphatase by subtilisin.
  Eur J Biochem, 248, 925-929.  
8994883 A.Mattevi, M.Rizzi, and M.Bolognesi (1996).
New structures of allosteric proteins revealing remarkable conformational changes.
  Curr Opin Struct Biol, 6, 824-829.  
  8844845 B.Stec, R.Abraham, E.Giroux, and E.R.Kantrowitz (1996).
Crystal structures of the active site mutant (Arg-243-->Ala) in the T and R allosteric states of pig kidney fructose-1,6-bisphosphatase expressed in Escherichia coli.
  Protein Sci, 5, 1541-1553.
PDB codes: 1rdx 1rdy 1rdz
8913694 M.von Itzstein, and P.Colman (1996).
Design and synthesis of carbohydrate-based inhibitors of protein-carbohydrate interactions.
  Curr Opin Struct Biol, 6, 703-709.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer