spacer
spacer

PDBsum entry 1snr

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
Oxidoreductase PDB id
1snr

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
336 a.a. *
Ligands
ACT ×8
_NO ×3
TRS
Metals
CU1 ×3
_CU ×3
Waters ×1099
* Residue conservation analysis
PDB id:
1snr
Name: Oxidoreductase
Title: Nitric oxide bound to cu nitrite reductase
Structure: Copper-containing nitrite reductase. Chain: a, b, c. Synonym: cu-nir. Engineered: yes
Source: Alcaligenes faecalis. Organism_taxid: 511. Gene: nirk, nir. Expressed in: escherichia coli. Expression_system_taxid: 562.
Biol. unit: Trimer (from PQS)
Resolution:
1.31Å     R-factor:   0.125     R-free:   0.141
Authors: E.I.Tocheva,F.I.Rosell,A.G.Mauk,M.E.Murphy
Key ref:
E.I.Tocheva et al. (2004). Side-on copper-nitrosyl coordination by nitrite reductase. Science, 304, 867-870. PubMed id: 15131305 DOI: 10.1126/science.1095109
Date:
11-Mar-04     Release date:   22-Jun-04    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P38501  (NIR_ALCFA) -  Copper-containing nitrite reductase from Alcaligenes faecalis
Seq:
Struc:
376 a.a.
337 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.1.7.2.1  - nitrite reductase (NO-forming).
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: nitric oxide + Fe(III)-[cytochrome c] + H2O = Fe(II)-[cytochrome c] + nitrite + 2 H+
nitric oxide
+ Fe(III)-[cytochrome c]
+ H2O
Bound ligand (Het Group name = NO)
corresponds exactly
= Fe(II)-[cytochrome c]
+ nitrite
+ 2 × H(+)
      Cofactor: Cu cation or Fe cation; FAD
Cu cation
or Fe cation
FAD
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1126/science.1095109 Science 304:867-870 (2004)
PubMed id: 15131305  
 
 
Side-on copper-nitrosyl coordination by nitrite reductase.
E.I.Tocheva, F.I.Rosell, A.G.Mauk, M.E.Murphy.
 
  ABSTRACT  
 
A copper-nitrosyl intermediate forms during the catalytic cycle of nitrite reductase, the enzyme that mediates the committed step in bacterial denitrification. The crystal structure of a type 2 copper-nitrosyl complex of nitrite reductase reveals an unprecedented side-on binding mode in which the nitrogen and oxygen atoms are nearly equidistant from the copper cofactor. Comparison of this structure with a refined nitrite-bound crystal structure explains how coordination can change between copper-oxygen and copper-nitrogen during catalysis. The side-on copper-nitrosyl in nitrite reductase expands the possibilities for nitric oxide interactions in copper proteins such as superoxide dismutase and prions.
 
  Selected figure(s)  
 
Figure 1.
Fig. 1. Stereo views of the type 2 Cu sites with (A) bound nitrite and (B) nitric oxide. In each panel, the electron density represented in gray is a 2F[o] - F[c] map contoured at 0.55 e^-/Å3 (1.2 for each structure). Omit difference maps of the nitrite and nitric oxide ligands are colored in green and contoured at 0.6 e^-/Å3 (5.1 for NO[2]^- and 4.6 for NO). Carbons (orange), oxygens (red), nitrogens (blue), type 2 Cu (brown), and waters (cyan) are colored as indicated. (C) Overview of the essential features of the active sites of NiR bound with nitrite (left) and with nitric oxide (right). Metal-ligand bonds (solid), as well as H bonds and other electrostatic interactions (dashed), are shown as gray lines of the type indicated.
Figure 3.
Fig. 3. Revised mechanism of Cu-containing nitrite reductase.
 
  The above figures are reprinted by permission from the AAAs: Science (2004, 304, 867-870) copyright 2004.  
  Figures were selected by the author.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20424749 C.S.Chen, and W.Y.Yeh (2010).
Coordination of NO(2)(-) ligand to Cu(I) ion in an O,O-bidentate fashion that evolves NO gas upon protonation: a model reaction relevant to the denitrification process.
  Chem Commun (Camb), 46, 3098-3100.  
20449468 G.K.Lahiri, and W.Kaim (2010).
Electronic structure alternatives in nitrosylruthenium complexes.
  Dalton Trans, 39, 4471-4478.  
20083495 I.S.MacPherson, F.I.Rosell, M.Scofield, A.G.Mauk, and M.E.Murphy (2010).
Directed evolution of copper nitrite reductase to a chromogenic reductant.
  Protein Eng Des Sel, 23, 137-145.
PDB codes: 3h4f 3h4h 3h56
19082101 A.K.Boes, P.S.Wheatley, B.Xiao, I.L.Megson, and R.E.Morris (2008).
Simultaneous and cooperative gas storage and gas production using bifunctional zeolites.
  Chem Commun (Camb), (), 6146-6148.  
18523487 S.Guo, J.Boyd, R.Sammynaiken, and M.C.Loewen (2008).
Identification and characterization of a unique cysteine residue proximal to the catalytic site of Arabidopsis thaliana carotenoid cleavage enzyme 1.
  Biochem Cell Biol, 86, 262-270.  
17508082 G.Periyasamy, M.Sundararajan, I.H.Hillier, N.A.Burton, and J.J.McDouall (2007).
The binding of nitric oxide at the Cu(i) site of copper nitrite reductase and of inorganic models: DFT calculations of the energetics and EPR parameters of side-on and end-on structures.
  Phys Chem Chem Phys, 9, 2498-2506.  
17503096 K.Paraskevopoulos, M.A.Hough, R.G.Sawers, R.R.Eady, and S.S.Hasnain (2007).
The structure of the Met144Leu mutant of copper nitrite reductase from Alcaligenes xylosoxidans provides the first glimpse of a protein-protein complex with azurin II.
  J Biol Inorg Chem, 12, 789-796.
PDB code: 2jfc
17186474 S.A.De Marothy, M.R.Blomberg, and P.E.Siegbahn (2007).
Elucidating the mechanism for the reduction of nitrite by copper nitrite reductase--a contribution from quantum chemical studies.
  J Comput Chem, 28, 528-539.  
17997553 T.Hayashi, I.J.Lin, Y.Chen, J.A.Fee, and P.Moënne-Loccoz (2007).
Fourier transform infrared characterization of a CuB-nitrosyl complex in cytochrome ba3 from Thermus thermophilus: relevance to NO reductase activity in heme-copper terminal oxidases.
  J Am Chem Soc, 129, 14952-14958.  
16389611 M.Kujime, and H.Fujii (2006).
Spectroscopic characterization of reaction intermediates in a model for copper nitrite reductase.
  Angew Chem Int Ed Engl, 45, 1089-1092.  
16447049 W.B.Tolman (2006).
Using synthetic chemistry to understand copper protein active sites: a personal perspective.
  J Biol Inorg Chem, 11, 261-271.  
16131751 F.Jacobson, H.Guo, K.Olesen, M.Okvist, R.Neutze, and L.Sjölin (2005).
Structures of the oxidized and reduced forms of nitrite reductase from Rhodobacter sphaeroides 2.4.3 at high pH: changes in the interactions of the type 2 copper.
  Acta Crystallogr D Biol Crystallogr, 61, 1190-1198.
PDB codes: 1zv2 2a3t
16408064 M.T.Gladwin, A.N.Schechter, D.B.Kim-Shapiro, R.P.Patel, N.Hogg, S.Shiva, R.O.Cannon, M.Kelm, D.A.Wink, M.G.Espey, E.H.Oldfield, R.M.Pluta, B.A.Freeman, J.R.Lancaster, M.Feelisch, and J.O.Lundberg (2005).
The emerging biology of the nitrite anion.
  Nat Chem Biol, 1, 308-314.  
16093314 S.V.Antonyuk, R.W.Strange, G.Sawers, R.R.Eady, and S.S.Hasnain (2005).
Atomic resolution structures of resting-state, substrate- and product-complexed Cu-nitrite reductase provide insight into catalytic mechanism.
  Proc Natl Acad Sci U S A, 102, 12041-12046.
PDB codes: 2bw4 2bw5 2bwd 2bwi
16220181 V.M.Iluc, A.J.Miller, and G.L.Hillhouse (2005).
Synthesis and characterization of side-bound aryldiazo and end-bound nitrosyl complexes of nickel.
  Chem Commun (Camb), (), 5091-5093.  
16041407 Z.Huang, S.Shiva, D.B.Kim-Shapiro, R.P.Patel, L.A.Ringwood, C.E.Irby, K.T.Huang, C.Ho, N.Hogg, A.N.Schechter, and M.T.Gladwin (2005).
Enzymatic function of hemoglobin as a nitrite reductase that produces NO under allosteric control.
  J Clin Invest, 115, 2099-2107.  
15551861 O.Einsle, and P.M.Kroneck (2004).
Structural basis of denitrification.
  Biol Chem, 385, 875-883.  
15583395 Y.Xie, T.Inoue, N.Seike, H.Matsumura, K.Kanbayashi, K.Itoh, K.Kataoka, K.Yamaguchi, S.Suzuki, and Y.Kai (2004).
Crystallization and preliminary X-ray crystallographic studies of dissimilatory nitrite reductase isolated from Hyphomicrobium denitrificans A3151.
  Acta Crystallogr D Biol Crystallogr, 60, 2383-2386.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer