spacer
spacer

PDBsum entry 1rg0

Go to PDB code: 
protein Protein-protein interface(s) links
Cell adhesion PDB id
1rg0

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
126 a.a. *
Waters ×89
* Residue conservation analysis
PDB id:
1rg0
Name: Cell adhesion
Title: Monoclinic crystal form of the truncated k122-4 pilin from pseudomonas aeruginosa
Structure: Fimbrial protein. Chain: a, b. Synonym: pilin, strain k122-4. Engineered: yes
Source: Pseudomonas aeruginosa. Organism_taxid: 287. Strain: k122-4. Gene: pila, fima. Expressed in: escherichia coli. Expression_system_taxid: 562.
Resolution:
1.80Å     R-factor:   0.237     R-free:   0.254
Authors: G.F.Audette,R.T.Irvin,B.Hazes
Key ref:
G.F.Audette et al. (2004). Crystallographic analysis of the Pseudomonas aeruginosa strain K122-4 monomeric pilin reveals a conserved receptor-binding architecture. Biochemistry, 43, 11427-11435. PubMed id: 15350129 DOI: 10.1021/bi048957s
Date:
10-Nov-03     Release date:   07-Sep-04    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P17838  (FMP1_PSEAI) -  Fimbrial protein from Pseudomonas aeruginosa
Seq:
Struc:
157 a.a.
126 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 5 residue positions (black crosses)

 

 
DOI no: 10.1021/bi048957s Biochemistry 43:11427-11435 (2004)
PubMed id: 15350129  
 
 
Crystallographic analysis of the Pseudomonas aeruginosa strain K122-4 monomeric pilin reveals a conserved receptor-binding architecture.
G.F.Audette, R.T.Irvin, B.Hazes.
 
  ABSTRACT  
 
Adherence of pathogens to host cells is critical for the initiation of infection and is thus an attractive target for anti-infective therapeutics and vaccines. In the opportunistic human pathogen Pseudomonas aeruginosa, host-cell adherence is achieved predominantly by type IV pili. Analysis of several clinical strains of P. aeruginosa reveals poor sequence conservation between pilin genes, including the residues in the receptor-binding site. Interestingly, the receptor-binding sites appear to retain a conserved surface epitope because all Pseudomonas type IV pili recognize the same receptor on the host cell and cross-reactive antibodies specific for the receptor-binding site exist. Here, we present the crystallographic analysis of two crystal forms of truncated pilin from P. aeruginosa strain K122-4 (DeltaK122-4) at 1.54 and 1.8 A resolution, respectively. The DeltaK122-4 structure is compared to other crystallographically determined type IV pilin structures and an NMR structure of DeltaK122-4 pilin. A comparison with the structure of the highly divergent P. aeruginosa strain K (DeltaPAK) pilin indicates that the receptor-binding loop in both pilins forms a shallow depression with a surface that is formed by main-chain atoms. Conservation of this putative binding site is independent of the sequence as long as the main-chain conformation is conserved and could therefore explain the shared receptor specificity and antibody cross reactivity of highly divergent Pseudomonas type IV pilins.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
20807222 C.Hackbarth, and R.S.Hodges (2010).
Synthetic peptide vaccine development: designing dual epitopes into a single pilin peptide immunogen generates antibody cross-reactivity between two strains of Pseudomonas aeruginosa.
  Chem Biol Drug Des, 76, 293-304.  
20397205 W.R.Hesse, K.J.Freedman, D.K.Yi, C.W.Ahn, and M.Kim (2010).
Bacterial nanofluidic structures for medicine and engineering.
  Small, 6, 895-909.  
19626704 A.M.Balakrishna, A.M.Saxena, H.Y.Mok, and K.Swaminathan (2009).
Structural basis of typhoid: Salmonella typhi type IVb pilin (PilS) and cystic fibrosis transmembrane conductance regulator interaction.
  Proteins, 77, 253-261.
PDB codes: 3fhu 3fhv
19717595 H.Harvey, M.Habash, F.Aidoo, and L.L.Burrows (2009).
Single-residue changes in the C-terminal disulfide-bonded loop of the Pseudomonas aeruginosa type IV pilin influence pilus assembly and twitching motility.
  J Bacteriol, 191, 6513-6524.  
19556347 S.Chattopadhyay, R.N.Paranjpye, D.E.Dykhuizen, E.V.Sokurenko, and M.S.Strom (2009).
Comparative evolutionary analysis of the major structural subunit of Vibrio vulnificus type IV pili.
  Mol Biol Evol, 26, 2185-2196.  
18184591 J.Li, M.S.Lim, S.Li, M.Brock, M.E.Pique, V.L.Woods, and L.Craig (2008).
Vibrio cholerae toxin-coregulated pilus structure analyzed by hydrogen/deuterium exchange mass spectrometry.
  Structure, 16, 137-148.  
18022192 M.E.Yanez, K.V.Korotkov, J.Abendroth, and W.G.Hol (2008).
The crystal structure of a binary complex of two pseudopilins: EpsI and EpsJ from the type 2 secretion system of Vibrio vulnificus.
  J Mol Biol, 375, 471-486.
PDB code: 2ret
18241884 M.E.Yanez, K.V.Korotkov, J.Abendroth, and W.G.Hol (2008).
Structure of the minor pseudopilin EpsH from the Type 2 secretion system of Vibrio cholerae.
  J Mol Biol, 377, 91.
PDB code: 2qv8
18776014 M.L.Asikyan, J.V.Kus, and L.L.Burrows (2008).
Novel proteins that modulate type IV pilus retraction dynamics in Pseudomonas aeruginosa.
  J Bacteriol, 190, 7022-7034.  
17562775 J.K.Hansen, K.P.Demick, J.M.Mansfield, and K.T.Forest (2007).
Conserved regions from Neisseria gonorrhoeae pilin are immunosilent and not immunosuppressive.
  Infect Immun, 75, 4138-4147.  
17022032 R.J.Pieters (2007).
Intervention with bacterial adhesion by multivalent carbohydrates.
  Med Res Rev, 27, 796-816.  
  17012803 A.M.Balakrishna, Y.Y.Tan, H.Y.Mok, A.M.Saxena, and K.Swaminathan (2006).
Crystallization and preliminary X-ray diffraction analysis of Salmonella typhi PilS.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 62, 1024-1026.  
16430686 C.L.Giltner, E.J.van Schaik, G.F.Audette, D.Kao, R.S.Hodges, D.J.Hassett, and R.T.Irvin (2006).
The Pseudomonas aeruginosa type IV pilin receptor binding domain functions as an adhesin for both biotic and abiotic surfaces.
  Mol Microbiol, 59, 1083-1096.  
16949362 L.Craig, N.Volkmann, A.S.Arvai, M.E.Pique, M.Yeager, E.H.Egelman, and J.A.Tainer (2006).
Type IV pilus structure by cryo-electron microscopy and crystallography: implications for pilus assembly and functions.
  Mol Cell, 23, 651-662.
PDB codes: 2hi2 2hil
16140523 A.Imberty, E.P.Mitchell, and M.Wimmerová (2005).
Structural basis of high-affinity glycan recognition by bacterial and fungal lectins.
  Curr Opin Struct Biol, 15, 525-534.  
15687210 E.J.van Schaik, C.L.Giltner, G.F.Audette, D.W.Keizer, D.L.Bautista, C.M.Slupsky, B.D.Sykes, and R.T.Irvin (2005).
DNA binding: a novel function of Pseudomonas aeruginosa type IV pili.
  J Bacteriol, 187, 1455-1464.  
16018741 E.Sedlak-Weinstein, A.W.Cripps, J.M.Kyd, and A.R.Foxwell (2005).
Pseudomonas aeruginosa: the potential to immunise against infection.
  Expert Opin Biol Ther, 5, 967-982.  
16239575 J.C.Hsieh, D.M.Tham, W.Feng, F.Huang, S.Embaie, K.Liu, D.Dean, R.Hertle, D.J.Fitzgerald, and R.J.Mrsny (2005).
Intranasal immunization strategy to impede pilin-mediated binding of Pseudomonas aeruginosa to airway epithelial cells.
  Infect Immun, 73, 7705-7717.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer