spacer
spacer

PDBsum entry 1qk2

Go to PDB code: 
protein ligands links
Hydrolase PDB id
1qk2

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
363 a.a. *
Ligands
MGL-SGC-GLC-GLC ×2
NAG ×4
MAN ×14
Waters ×545
* Residue conservation analysis
PDB id:
1qk2
Name: Hydrolase
Title: Wild type cel6a with a non-hydrolysable cellotetraose
Structure: Cellobiohydrolase cel6a (formerly called cbh ii). Chain: a, b. Fragment: catalytic domain, residues 85-447. Synonym: cel6a. Engineered: yes
Source: Trichoderma reesei. Organism_taxid: 51453. Gene: cbh2. Expressed in: trichoderma reesei. Expression_system_taxid: 51453
Resolution:
2.00Å     R-factor:   0.189     R-free:   0.222
Authors: J.-Y.Zou,T.A.Jones
Key ref:
J.Zou et al. (1999). Crystallographic evidence for substrate ring distortion and protein conformational changes during catalysis in cellobiohydrolase Ce16A from trichoderma reesei. Structure, 7, 1035-1045. PubMed id: 10508787 DOI: 10.1016/S0969-2126(99)80171-3
Date:
09-Jul-99     Release date:   18-Sep-99    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P07987  (GUX2_HYPJE) -  Exoglucanase 2 from Hypocrea jecorina
Seq:
Struc:
471 a.a.
363 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.3.2.1.91  - cellulose 1,4-beta-cellobiosidase (non-reducing end).
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Hydrolysis of 1,4-beta-D-glucosidic linkages in cellulose and cellotetraose, releasing cellobiose from the non-reducing ends of the chains.

 

 
DOI no: 10.1016/S0969-2126(99)80171-3 Structure 7:1035-1045 (1999)
PubMed id: 10508787  
 
 
Crystallographic evidence for substrate ring distortion and protein conformational changes during catalysis in cellobiohydrolase Ce16A from trichoderma reesei.
J.Zou, G.J.Kleywegt, J.Ståhlberg, H.Driguez, W.Nerinckx, M.Claeyssens, A.Koivula, T.T.Teeri, T.A.Jones.
 
  ABSTRACT  
 
BACKGROUND: Cel6A is one of the two cellobiohydrolases produced by Trichoderma reesei. The catalytic core has a structure that is a variation of the classic TIM barrel. The active site is located inside a tunnel, the roof of which is formed mainly by a pair of loops. RESULTS: We describe three new ligand complexes. One is the structure of the wild-type enzyme in complex with a nonhydrolysable cello-oligosaccharide, methyl 4-S-beta-cellobiosyl-4-thio-beta-cellobioside (Glc)(2)-S-(Glc)(2), which differs from a cellotetraose in the nature of the central glycosidic linkage where a sulphur atom replaces an oxygen atom. The second structure is a mutant, Y169F, in complex with the same ligand, and the third is the wild-type enzyme in complex with m-iodobenzyl beta-D-glucopyranosyl-beta(1,4)-D-xylopyranoside (IBXG). CONCLUSIONS: The (Glc)(2)-S-(Glc)(2) ligand binds in the -2 to +2 sites in both the wild-type and mutant enzymes. The glucosyl unit in the -1 site is distorted from the usual chair conformation in both structures. The IBXG ligand binds in the -2 to +1 sites, with the xylosyl unit in the -1 site where it adopts the energetically favourable chair conformation. The -1 site glucosyl of the (Glc)(2)-S-(Glc)(2) ligand is unable to take on this conformation because of steric clashes with the protein. The crystallographic results show that one of the tunnel-forming loops in Cel6A is sensitive to modifications at the active site, and is able to take on a number of different conformations. One of the conformational changes disrupts a set of interactions at the active site that we propose is an integral part of the reaction mechanism.
 
  Selected figure(s)  
 
Figure 2.
Figure 2. Close-up view of the -2 to +2 binding sites in the WT-(Glc)[2]-S-(Glc)[2] structure. Only residues interacting with the ligand are included, except for Arg353 (to illustrate the interaction of Asp401-Arg353). Colours in the cartoon are ramped from red at the N terminus to blue at the C terminus. Sidechain atoms are coloured golden for carbon, blue for nitrogen and red for oxygen. In the ligand, carbons are golden, oxygens are magenta and the linking sulphur is green. Water molecules that make hydrogen bonds with ligand or protein atoms are drawn as small yellow spheres.
 
  The above figure is reprinted by permission from Cell Press: Structure (1999, 7, 1035-1045) copyright 1999.  
  Figure was selected by the author.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
19060394 H.Toda, N.Nagahata, Y.Amano, K.Nozaki, T.Kanda, M.Okazaki, and M.Shimosaka (2008).
Gene cloning of cellobiohydrolase II from the white rot fungus Irpex lacteus MC-2 and its expression in Pichia pastoris.
  Biosci Biotechnol Biochem, 72, 3142-3147.  
18323617 Y.D.Lobsanov, T.Yoshida, T.Desmet, W.Nerinckx, P.Yip, M.Claeyssens, A.Herscovics, and P.L.Howell (2008).
Modulation of activity by Arg407: structure of a fungal alpha-1,2-mannosidase in complex with a substrate analogue.
  Acta Crystallogr D Biol Crystallogr, 64, 227-236.
PDB codes: 2ri8 2ri9
17724729 B.Mertz, A.D.Hill, C.Mulakala, and P.J.Reilly (2007).
Automated docking to explore subsite binding by glycoside hydrolase family 6 cellobiohydrolases and endoglucanases.
  Biopolymers, 87, 249-260.  
16510973 A.Dickmanns, M.Ballschmiter, W.Liebl, and R.Ficner (2006).
Structure of the novel alpha-amylase AmyC from Thermotoga maritima.
  Acta Crystallogr D Biol Crystallogr, 62, 262-270.
PDB code: 2b5d
16732604 B.Yang, D.M.Willies, and C.E.Wyman (2006).
Changes in the enzymatic hydrolysis rate of Avicel cellulose with conversion.
  Biotechnol Bioeng, 94, 1122-1128.  
16420473 S.J.Horn, A.Sørbotten, B.Synstad, P.Sikorski, M.Sørlie, K.M.Vårum, and V.G.Eijsink (2006).
Endo/exo mechanism and processivity of family 18 chitinases produced by Serratia marcescens.
  FEBS J, 273, 491-503.  
16260784 X.Biarnés, J.Nieto, A.Planas, and C.Rovira (2006).
Substrate distortion in the Michaelis complex of Bacillus 1,3-1,4-beta-glucanase. Insight from first principles molecular dynamics simulations.
  J Biol Chem, 281, 1432-1441.  
16086389 B.Mertz, R.S.Kuczenski, R.T.Larsen, A.D.Hill, and P.J.Reilly (2005).
Phylogenetic analysis of family 6 glycoside hydrolases.
  Biopolymers, 79, 197-206.  
15853815 J.Jänis, J.Hakanpää, N.Hakulinen, F.M.Ibatullin, A.Hoxha, P.J.Derrick, J.Rouvinen, and P.Vainiotalo (2005).
Determination of thioxylo-oligosaccharide binding to family 11 xylanases using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry and X-ray crystallography.
  FEBS J, 272, 2317-2333.
PDB code: 1xnk
14660638 J.K.McCarthy, A.Uzelac, D.F.Davis, and D.E.Eveleigh (2004).
Improved catalytic efficiency and active site modification of 1,4-beta-D-glucan glucohydrolase A from Thermotoga neapolitana by directed evolution.
  J Biol Chem, 279, 11495-11502.  
14660599 K.S.Bak-Jensen, G.André, T.E.Gottschalk, G.Paës, V.Tran, and B.Svensson (2004).
Tyrosine 105 and threonine 212 at outermost substrate binding subsites -6 and +4 control substrate specificity, oligosaccharide cleavage patterns, and multiple binding modes of barley alpha-amylase 1.
  J Biol Chem, 279, 10093-10102.  
14597633 M.Hrmova, R.De Gori, B.J.Smith, A.Vasella, J.N.Varghese, and G.B.Fincher (2004).
Three-dimensional structure of the barley beta-D-glucan glucohydrolase in complex with a transition state mimic.
  J Biol Chem, 279, 4970-4980.
PDB code: 1lq2
12595701 A.Varrot, and G.J.Davies (2003).
Direct experimental observation of the hydrogen-bonding network of a glycosidase along its reaction coordinate revealed by atomic resolution analyses of endoglucanase Cel5A.
  Acta Crystallogr D Biol Crystallogr, 59, 447-452.
PDB codes: 1h11 1h2j 1hf6
12966571 H.Jung, D.B.Wilson, and L.P.Walker (2003).
Binding and reversibility of Thermobifida fusca Cel5A, Cel6B, and Cel48A and their respective catalytic domains to bacterial microcrystalline cellulose.
  Biotechnol Bioeng, 84, 151-159.  
12702721 Y.Tatara, B.R.Lee, T.Yoshida, K.Takahashi, and E.Ichishima (2003).
Identification of catalytic residues of Ca2+-independent 1,2-alpha-D-mannosidase from Aspergillus saitoi by site-directed mutagenesis.
  J Biol Chem, 278, 25289-25294.  
12454501 A.Varrot, T.P.Frandsen, H.Driguez, and G.J.Davies (2002).
Structure of the Humicola insolens cellobiohydrolase Cel6A D416A mutant in complex with a non-hydrolysable substrate analogue, methyl cellobiosyl-4-thio-beta-cellobioside, at 1.9 A.
  Acta Crystallogr D Biol Crystallogr, 58, 2201-2204.
PDB code: 1gz1
11679762 A.Varrot, M.Schülein, S.Fruchard, H.Driguez, and G.J.Davies (2001).
Atomic resolution structure of endoglucanase Cel5A in complex with methyl 4,4II,4III,4IV-tetrathio-alpha-cellopentoside highlights the alternative binding modes targeted by substrate mimics.
  Acta Crystallogr D Biol Crystallogr, 57, 1739-1742.
PDB code: 1h5v
11135204 C.Boisset, C.Pétrequin, H.Chanzy, B.Henrissat, and M.Schülein (2001).
Optimized mixtures of recombinant Humicola insolens cellulases for the biodegradation of crystalline cellulose.
  Biotechnol Bioeng, 72, 339-345.  
11481469 D.M.van Aalten, D.Komander, B.Synstad, S.Gåseidnes, M.G.Peter, and V.G.Eijsink (2001).
Structural insights into the catalytic mechanism of a family 18 exo-chitinase.
  Proc Natl Acad Sci U S A, 98, 8979-8984.
PDB codes: 1e6n 1e6p 1e6r 1e6z
11828460 S.Fort, A.Varrot, M.Schülein, S.Cottaz, H.Driguez, and G.J.Davies (2001).
Mixed-linkage cellooligosaccharides: a new class of glycoside hydrolase inhibitors.
  Chembiochem, 2, 319-325.
PDB code: 1e5j
11514661 W.A.Breyer, and B.W.Matthews (2001).
A structural basis for processivity.
  Protein Sci, 10, 1699-1711.  
10742225 C.Boisset, C.Fraschini, M.Schülein, B.Henrissat, and H.Chanzy (2000).
Imaging the enzymatic digestion of bacterial cellulose ribbons reveals the endo character of the cellobiohydrolase Cel6A from Humicola insolens and its mode of synergy with cellobiohydrolase Cel7A.
  Appl Environ Microbiol, 66, 1444-1452.  
10951219 S.Cottaz, B.Brasme, and H.Driguez (2000).
A fluorescence-quenched chitopentaose for the study of endo-chitinases and chitobiosidases.
  Eur J Biochem, 267, 5593-5600.  
10824094 S.Zhang, D.C.Irwin, and D.B.Wilson (2000).
Site-directed mutation of noncatalytic residues of Thermobifida fusca exocellulase Cel6B.
  Eur J Biochem, 267, 3101-3115.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer