spacer
spacer

PDBsum entry 1qdb

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
Oxidoreductase PDB id
1qdb

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
473 a.a. *
Ligands
SO4 ×9
HEC ×15
Metals
_CA ×3
Waters ×1485
* Residue conservation analysis
PDB id:
1qdb
Name: Oxidoreductase
Title: CytochromE C nitrite reductase
Structure: CytochromE C nitrite reductase. Chain: a, b, c
Source: Sulfurospirillum deleyianum. Organism_taxid: 65553. Cellular_location: periplasm
Biol. unit: Dimer (from PDB file)
Resolution:
1.90Å     R-factor:   0.184     R-free:   0.220
Authors: O.Einsle,A.Messerschmidt,P.Stach,R.Huber,P.M.H.Kroneck
Key ref:
O.Einsle et al. (1999). Structure of cytochrome c nitrite reductase. Nature, 400, 476-480. PubMed id: 10440380 DOI: 10.1038/22802
Date:
19-May-99     Release date:   18-Aug-99    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
Q9Z4P4  (NRFA_SULDE) -  Cytochrome c-552 from Sulfurospirillum deleyianum
Seq:
Struc:
514 a.a.
473 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.1.7.2.2  - nitrite reductase (cytochrome; ammonia-forming).
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: 6 Fe(III)-[cytochrome c] + NH4+ + 2 H2O = 6 Fe(II)-[cytochrome c] + nitrite + 8 H+
6 × Fe(III)-[cytochrome c]
+ NH4(+)
+ 2 × H2O
= 6 × Fe(II)-[cytochrome c]
+ nitrite
+ 8 × H(+)
      Cofactor: Ca(2+); Heme
Ca(2+)
Heme
Bound ligand (Het Group name = HEC) matches with 95.45% similarity
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    Added reference    
 
 
DOI no: 10.1038/22802 Nature 400:476-480 (1999)
PubMed id: 10440380  
 
 
Structure of cytochrome c nitrite reductase.
O.Einsle, A.Messerschmidt, P.Stach, G.P.Bourenkov, H.D.Bartunik, R.Huber, P.M.Kroneck.
 
  ABSTRACT  
 
The enzyme cytochrome c nitrite reductase catalyses the six-electron reduction of nitrite to ammonia as one of the key steps in the biological nitrogen cycle, where it participates in the anaerobic energy metabolism of dissimilatory nitrate ammonification. Here we report on the crystal structure of this enzyme from the microorganism Sulfurospirillum deleyianum, which we solved by multiwavelength anomalous dispersion methods. We propose a reaction scheme for the transformation of nitrite based on structural and spectroscopic information. Cytochrome c nitrite reductase is a functional dimer, with 10 close-packed haem groups of type c and an unusual lysine-coordinated high-spin haem at the active site. By comparing the haem arrangement of this nitrite reductase with that of other multihaem cytochromes, we have been able to identify a family of proteins in which the orientation of haem groups is conserved whereas structure and function are not.
 
  Selected figure(s)  
 
Figure 1.
Figure 1: The nitrite reductase dimer. A front view with the dimer axis orientated vertically, the five haems in each monomer (white), the Ca^2+ ions (grey) and Lys 133 which coordinates the active-site iron atom (yellow). In the right monomer, the protein chain is coloured blue from the amino-terminal end to red at the carboxy-terminal end, in the left monomer according to secondary structure. The dimer interface is dominated by three long -helices per monomer. All haems in the dimer are covalently attached to the protein and their iron atoms are arranged almost in a plane parallel to the plane of the paper.
Figure 2.
Figure 2: Haem arrangement. The overall orientation corresponds to Fig. 1, with the active site located at haem 1 and the line indicating the dimer interface. Haems in the left monomer are numbered according to their attachment to the protein chain. In the right monomer, the Fe–Fe distances (å) between the haems are given. Haems 5 interact across the dimer interface with a distance closer than haems 2 and 3 within each monomer.
 
  The above figures are reprinted by permission from Macmillan Publishers Ltd: Nature (1999, 400, 476-480) copyright 1999.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21265785 C.Lockwood, J.N.Butt, T.A.Clarke, and D.J.Richardson (2011).
Molecular interactions between multihaem cytochromes: probing the protein-protein interactions between pentahaem cytochromes of a nitrite reductase complex.
  Biochem Soc Trans, 39, 263-268.  
21125303 D.Bykov, and F.Neese (2011).
Substrate binding and activation in the active site of cytochrome c nitrite reductase: a density functional study.
  J Biol Inorg Chem, 16, 417-430.  
21359406 I.Bertini, G.Cavallaro, and A.Rosato (2011).
Principles and patterns in the interaction between mono-heme cytochrome c and its partners in electron transfer processes.
  Metallomics, 3, 354-362.  
20944237 A.A.Trofimov, K.M.Polyakov, K.M.Boyko, T.V.Tikhonova, T.N.Safonova, A.V.Tikhonov, A.N.Popov, and V.O.Popov (2010).
Structures of complexes of octahaem cytochrome c nitrite reductase from Thioalkalivibrio nitratireducens with sulfite and cyanide.
  Acta Crystallogr D Biol Crystallogr, 66, 1043-1047.
PDB codes: 3fo3 3mmo
20689707 C.M.Silveira, S.Besson, I.Moura, J.J.Moura, and M.G.Almeida (2010).
Measuring the cytochrome C nitrite reductase activity-practical considerations on the enzyme assays.
  Bioinorg Chem Appl, (), 0.  
20629638 G.L.Kemp, T.A.Clarke, S.J.Marritt, C.Lockwood, S.R.Poock, A.M.Hemmings, D.J.Richardson, M.R.Cheesman, and J.N.Butt (2010).
Kinetic and thermodynamic resolution of the interactions between sulfite and the pentahaem cytochrome NrfA from Escherichia coli.
  Biochem J, 431, 73-80.
PDB code: 3l1t
20810662 J.C.Grigg, J.Cheung, D.E.Heinrichs, and M.E.Murphy (2010).
Specificity of Staphyloferrin B recognition by the SirA receptor from Staphylococcus aureus.
  J Biol Chem, 285, 34579-34588.  
20084531 S.Sharma, G.Cavallaro, and A.Rosato (2010).
A systematic investigation of multiheme c-type cytochromes in prokaryotes.
  J Biol Inorg Chem, 15, 559-571.  
17803240 D.Han, K.Kim, J.Oh, J.Park, and Y.Kim (2008).
TPR domain of NrfG mediates complex formation between heme lyase and formate-dependent nitrite reductase in Escherichia coli O157:H7.
  Proteins, 70, 900-914.
PDB code: 2e2e
18703849 D.Heitmann, and O.Einsle (2008).
Pseudo-merohedral twinning in crystals of the dihaem c-type cytochrome DHC2 from Geobacter sulfurreducens.
  Acta Crystallogr D Biol Crystallogr, 64, 993-999.  
18505274 H.J.Kim, A.Zatsman, A.K.Upadhyay, M.Whittaker, D.Bergmann, M.P.Hendrich, and A.B.Hooper (2008).
Membrane tetraheme cytochrome c(m552) of the ammonia-oxidizing nitrosomonas europaea: a ubiquinone reductase.
  Biochemistry, 47, 6539-6551.  
18719950 I.Moura, S.R.Pauleta, and J.J.Moura (2008).
Enzymatic activity mastered by altering metal coordination spheres.
  J Biol Inorg Chem, 13, 1185-1195.  
18553112 J.Kostera, M.D.Youngblut, J.M.Slosarczyk, and A.A.Pacheco (2008).
Kinetic and product distribution analysis of NO* reductase activity in Nitrosomonas europaea hydroxylamine oxidoreductase.
  J Biol Inorg Chem, 13, 1073-1083.  
19030605 S.E.Bowman, and K.L.Bren (2008).
The chemistry and biochemistry of heme c: functional bases for covalent attachment.
  Nat Prod Rep, 25, 1118-1130.  
18298372 T.V.Tikhonova, E.S.Slutskaya, A.A.Filimonenkov, K.M.Boyko, S.Y.Kleimenov, P.V.Konarev, K.M.Polyakov, D.I.Svergun, A.A.Trofimov, V.G.Khomenkov, R.A.Zvyagilskaya, and V.O.Popov (2008).
Isolation and oligomeric composition of cytochrome c nitrite reductase from the haloalkaliphilic bacterium Thioalkalivibrio nitratireducens.
  Biochemistry (Mosc), 73, 164-170.  
17298364 B.Kartal, M.M.Kuypers, G.Lavik, J.Schalk, H.J.Op den Camp, M.S.Jetten, and M.Strous (2007).
Anammox bacteria disguised as denitrifiers: nitrate reduction to dinitrogen gas via nitrite and ammonium.
  Environ Microbiol, 9, 635-642.  
17501927 R.S.Hartshorne, M.Kern, B.Meyer, T.A.Clarke, M.Karas, D.J.Richardson, and J.Simon (2007).
A dedicated haem lyase is required for the maturation of a novel bacterial cytochrome c with unconventional covalent haem binding.
  Mol Microbiol, 64, 1049-1060.  
16569009 A.K.Upadhyay, A.B.Hooper, and M.P.Hendrich (2006).
NO reductase activity of the tetraheme cytochrome C554 of Nitrosomonas europaea.
  J Am Chem Soc, 128, 4330-4337.  
16783544 L.Marboutin, A.Boussac, and C.Berthomieu (2006).
Redox infrared markers of the heme and axial ligands in microperoxidase: Bases for the analysis of c-type cytochromes.
  J Biol Inorg Chem, 11, 811-823.  
17139260 M.L.Rodrigues, T.F.Oliveira, I.A.Pereira, and M.Archer (2006).
X-ray structure of the membrane-bound cytochrome c quinol dehydrogenase NrfH reveals novel haem coordination.
  EMBO J, 25, 5951-5960.
PDB code: 2j7a
  16754983 M.L.Rodrigues, T.Oliveira, P.M.Matias, I.C.Martins, F.M.Valente, I.A.Pereira, and M.Archer (2006).
Crystallization and preliminary structure determination of the membrane-bound complex cytochrome c nitrite reductase from Desulfovibrio vulgaris Hildenborough.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 62, 565-568.  
16433558 T.Teschner, L.Yatsunyk, V.Schünemann, H.Paulsen, H.Winkler, C.Hu, W.R.Scheidt, F.A.Walker, and A.X.Trautwein (2006).
Models of the membrane-bound cytochromes: mössbauer spectra of crystalline low-spin ferriheme complexes having axial ligand plane dihedral angles ranging from 0 degree to 90 degrees.
  J Am Chem Soc, 128, 1379-1389.  
16234915 C.G.Mowat, and S.K.Chapman (2005).
Multi-heme cytochromes--new structures, new chemistry.
  Dalton Trans, (), 3381-3389.  
16151127 D.J.Bergmann, A.B.Hooper, and M.G.Klotz (2005).
Structure and sequence conservation of hao cluster genes of autotrophic ammonia-oxidizing bacteria: evidence for their evolutionary history.
  Appl Environ Microbiol, 71, 5371-5382.  
16155964 S.Kura, S.Kuwata, and T.Ikariya (2005).
N-Methylhydroxylamido(1-)- and nitrosomethaneruthenium complexes derived from nitrosyl complexes: reversible N-protonation of an N-coordinated nitrosoalkane.
  Angew Chem Int Ed Engl, 44, 6406-6409.  
15047692 A.Crow, R.M.Acheson, N.E.Le Brun, and A.Oubrie (2004).
Structural basis of Redox-coupled protein substrate selection by the cytochrome c biosynthesis protein ResA.
  J Biol Chem, 279, 23654-23660.
PDB codes: 1st9 1su9
15551861 O.Einsle, and P.M.Kroneck (2004).
Structural basis of denitrification.
  Biol Chem, 385, 875-883.  
15322098 P.Cabello, C.Pino, M.F.Olmo-Mira, F.Castillo, M.D.Roldán, and C.Moreno-Vivián (2004).
Hydroxylamine assimilation by Rhodobacter capsulatus E1F1. requirement of the hcp gene (hybrid cluster protein) located in the nitrate assimilation nas gene region for hydroxylamine reduction.
  J Biol Chem, 279, 45485-45494.  
15280383 T.A.Clarke, V.Dennison, H.E.Seward, B.Burlat, J.A.Cole, A.M.Hemmings, and D.J.Richardson (2004).
Purification and spectropotentiometric characterization of Escherichia coli NrfB, a decaheme homodimer that transfers electrons to the decaheme periplasmic nitrite reductase complex.
  J Biol Chem, 279, 41333-41339.  
12618432 C.A.Cunha, S.Macieira, J.M.Dias, G.Almeida, L.L.Goncalves, C.Costa, J.Lampreia, R.Huber, J.J.Moura, I.Moura, and M.J.Romão (2003).
Cytochrome c nitrite reductase from Desulfovibrio desulfuricans ATCC 27774. The relevance of the two calcium sites in the structure of the catalytic subunit (NrfA).
  J Biol Chem, 278, 17455-17465.
PDB code: 1oah
12657783 D.Aragão, C.Frazão, L.Sieker, G.M.Sheldrick, J.LeGall, and M.A.Carrondo (2003).
Structure of dimeric cytochrome c3 from Desulfovibrio gigas at 1.2 A resolution.
  Acta Crystallogr D Biol Crystallogr, 59, 644-653.
PDB code: 1gyo
12709052 D.J.Bergmann, and A.B.Hooper (2003).
Cytochrome P460 of Nitrosomonas europaea. Formation of the heme-lysine cross-link in a heterologous host and mutagenic conversion to a non-cross-linked cytochrome c'.
  Eur J Biochem, 270, 1935-1941.  
12823193 E.A.Greene, C.Hubert, M.Nemati, G.E.Jenneman, and G.Voordouw (2003).
Nitrite reductase activity of sulphate-reducing bacteria prevents their inhibition by nitrate-reducing, sulphide-oxidizing bacteria.
  Environ Microbiol, 5, 607-617.  
12594933 J.W.Allen, O.Daltrop, J.M.Stevens, and S.J.Ferguson (2003).
C-type cytochromes: diverse structures and biogenesis systems pose evolutionary problems.
  Philos Trans R Soc Lond B Biol Sci, 358, 255-266.  
14511372 M.G.Almeida, S.Macieira, L.L.Gonçalves, R.Huber, C.A.Cunha, M.J.Romão, C.Costa, J.Lampreia, J.J.Moura, and I.Moura (2003).
The isolation and characterization of cytochrome c nitrite reductase subunits (NrfA and NrfH) from Desulfovibrio desulfuricans ATCC 27774. Re-evaluation of the spectroscopic data and redox properties.
  Eur J Biochem, 270, 3904-3915.  
11939777 A.Brigé, D.Leys, T.E.Meyer, M.A.Cusanovich, and J.J.Van Beeumen (2002).
The 1.25 A resolution structure of the diheme NapB subunit of soluble nitrate reductase reveals a novel cytochrome c fold with a stacked heme arrangement.
  Biochemistry, 41, 4827-4836.
PDB code: 1jni
12080059 D.Leys, T.E.Meyer, A.S.Tsapin, K.H.Nealson, M.A.Cusanovich, and J.J.Van Beeumen (2002).
Crystal structures at atomic resolution reveal the novel concept of "electron-harvesting" as a role for the small tetraheme cytochrome c.
  J Biol Chem, 277, 35703-35711.
PDB codes: 1m1p 1m1q 1m1r
11970951 H.C.Angove, J.A.Cole, D.J.Richardson, and J.N.Butt (2002).
Protein film voltammetry reveals distinctive fingerprints of nitrite and hydroxylamine reduction by a cytochrome C nitrite reductase.
  J Biol Chem, 277, 23374-23381.  
12165429 J.Simon (2002).
Enzymology and bioenergetics of respiratory nitrite ammonification.
  FEMS Microbiol Rev, 26, 285-309.  
12048216 J.W.Allen, E.J.Tomlinson, L.Hong, and S.J.Ferguson (2002).
The Escherichia coli cytochrome c maturation (Ccm) system does not detectably attach heme to single cysteine variants of an apocytochrome c.
  J Biol Chem, 277, 33559-33563.  
12060734 O.Daltrop, J.W.Allen, A.C.Willis, and S.J.Ferguson (2002).
In vitro formation of a c-type cytochrome.
  Proc Natl Acad Sci U S A, 99, 7872-7876.  
11807271 O.Einsle, P.Stach, A.Messerschmidt, O.Klimmek, J.Simon, A.Kröger, and P.M.Kroneck (2002).
Crystallization and preliminary X-ray analysis of the membrane-bound cytochrome c nitrite reductase complex (NrfHA) from Wolinella succinogenes.
  Acta Crystallogr D Biol Crystallogr, 58, 341-342.  
11929530 R.Pisa, T.Stein, R.Eichler, R.Gross, and J.Simon (2002).
The nrfI gene is essential for the attachment of the active site haem group of Wolinella succinogenes cytochrome c nitrite reductase.
  Mol Microbiol, 43, 763-770.  
11960983 S.R.Poock, E.R.Leach, J.W.Moir, J.A.Cole, and D.J.Richardson (2002).
Respiratory detoxification of nitric oxide by the cytochrome c nitrite reductase of Escherichia coli.
  J Biol Chem, 277, 23664-23669.  
11863430 V.A.Bamford, H.C.Angove, H.E.Seward, A.J.Thomson, J.A.Cole, J.N.Butt, A.M.Hemmings, and D.J.Richardson (2002).
Structure and spectroscopy of the periplasmic cytochrome c nitrite reductase from Escherichia coli.
  Biochemistry, 41, 2921-2931.
PDB code: 1gu6
11282344 I.Moura, and J.J.Moura (2001).
Structural aspects of denitrifying enzymes.
  Curr Opin Chem Biol, 5, 168-175.  
11358521 O.Einsle, S.Foerster, K.Mann, G.Fritz, A.Messerschmidt, and P.M.Kroneck (2001).
Spectroscopic investigation and determination of reactivity and structure of the tetraheme cytochrome c3 from Desulfovibrio desulfuricans Essex 6.
  Eur J Biochem, 268, 3028-3035.
PDB code: 1i77
10975456 A.W.Munro, P.Taylor, and M.D.Walkinshaw (2000).
Structures of redox enzymes.
  Curr Opin Biotechnol, 11, 369-376.  
11077158 H.Bothe, G.Jost, M.Schloter, B.B.Ward, and K.Witzel (2000).
Molecular analysis of ammonia oxidation and denitrification in natural environments.
  FEMS Microbiol Rev, 24, 673-690.  
10672190 J.Simon, R.Gross, O.Einsle, P.M.Kroneck, A.Kröger, and O.Klimmek (2000).
A NapC/NirT-type cytochrome c (NrfH) is the mediator between the quinone pool and the cytochrome c nitrite reductase of Wolinella succinogenes.
  Mol Microbiol, 35, 686-696.  
10647174 P.D.Barker, and S.J.Ferguson (1999).
Still a puzzle: why is haem covalently attached in c-type cytochromes?
  Structure, 7, R281-R290.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer