spacer
spacer

PDBsum entry 1q2b

Go to PDB code: 
protein ligands metals links
Hydrolase PDB id
1q2b

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
434 a.a. *
Ligands
NAG
Metals
_CO ×2
Waters ×357
* Residue conservation analysis
PDB id:
1q2b
Name: Hydrolase
Title: Cellobiohydrolase cel7a with disulphide bridge added across exo-loop by mutations d241c and d249c
Structure: Exocellobiohydrolase i. Chain: a. Fragment: catalytic domain 1-434. Synonym: exoglucanase i. Cbhi. 1,4-beta-cellobiohydrolase. Cellulose 1,4-beta-cellobiosidase. Engineered: yes. Mutation: yes
Source: Hypocrea jecorina. Organism_taxid: 51453. Strain: qm9414. Variant: vtt-d-93201. Gene: cbh1. Expressed in: hypocrea jecorina. Expression_system_taxid: 51453.
Resolution:
1.60Å     R-factor:   0.207     R-free:   0.223
Authors: J.Stahlberg,M.Harris,T.A.Jones
Key ref:
I.von Ossowski et al. (2003). Engineering the exo-loop of Trichoderma reesei cellobiohydrolase, Cel7A. A comparison with Phanerochaete chrysosporium Cel7D. J Mol Biol, 333, 817-829. PubMed id: 14568538 DOI: 10.1016/S0022-2836(03)00881-7
Date:
24-Jul-03     Release date:   25-Nov-03    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P62694  (GUX1_HYPJE) -  Exoglucanase 1 from Hypocrea jecorina
Seq:
Struc:
513 a.a.
434 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 4 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class: E.C.3.2.1.91  - cellulose 1,4-beta-cellobiosidase (non-reducing end).
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Hydrolysis of 1,4-beta-D-glucosidic linkages in cellulose and cellotetraose, releasing cellobiose from the non-reducing ends of the chains.

 

 
DOI no: 10.1016/S0022-2836(03)00881-7 J Mol Biol 333:817-829 (2003)
PubMed id: 14568538  
 
 
Engineering the exo-loop of Trichoderma reesei cellobiohydrolase, Cel7A. A comparison with Phanerochaete chrysosporium Cel7D.
I.von Ossowski, J.Ståhlberg, A.Koivula, K.Piens, D.Becker, H.Boer, R.Harle, M.Harris, C.Divne, S.Mahdi, Y.Zhao, H.Driguez, M.Claeyssens, M.L.Sinnott, T.T.Teeri.
 
  ABSTRACT  
 
The exo-loop of Trichoderma reesei cellobiohydrolase Cel7A forms the roof of the active site tunnel at the catalytic centre. Mutants were designed to study the role of this loop in crystalline cellulose degradation. A hydrogen bond to substrate made by a tyrosine at the tip of the loop was removed by the Y247F mutation. The mobility of the loop was reduced by introducing a new disulphide bridge in the mutant D241C/D249C. The tip of the loop was deleted in mutant Delta(G245-Y252). No major structural disturbances were observed in the mutant enzymes, nor was the thermostability of the enzyme affected by the mutations.The Y247F mutation caused a slight k(cat) reduction on 4-nitrophenyl lactoside, but only a small effect on cellulose hydrolysis. Deletion of the tip of the loop increased both k(cat) and K(M) and gave reduced product inhibition. Increased activity was observed on amorphous cellulose, while only half the original activity remained on crystalline cellulose. Stabilisation of the exo-loop by the disulphide bridge enhanced the activity on both amorphous and crystalline cellulose. The ratio Glc(2)/(Glc(3)+Glc(1)) released from cellulose, which is indicative of processive action, was highest with Tr Cel7A wild-type enzyme and smallest with the deletion mutant on both substrates. Based on these data it seems that the exo-loop of Tr Cel7A has evolved to facilitate processive crystalline cellulose degradation, which does not require significant conformational changes of this loop.
 
  Selected figure(s)  
 
Figure 3.
Figure 3. Comparison of the structure of the exo-loop in the D241C/D249C disulphide mutant (pink) and in the complex of Cel7A E217Q (wheat) with cellohexaose and cellobiose (PDB entry 7CEL), together with a model of a cellulose chain from PDB entry 8CEL.[4.] Hydrogen bonds in the 7CEL structure are indicated with small white spheres.
Figure 4.
Figure 4. Comparison of (a) temperature factors in the exo-loop region, and (b) C^a-distances between the structures of the D241C/D249C disulphide mutant and the unliganded Cel7A wild-type (APO) or the E217Q-cellohexaose complex (7CEL),[4.] respectively.
 
  The above figures are reprinted by permission from Elsevier: J Mol Biol (2003, 333, 817-829) copyright 2003.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20843785 S.Gruber, G.Vaaje-Kolstad, F.Matarese, R.López-Mondéjar, C.P.Kubicek, and V.Seidl-Seiboth (2011).
Analysis of subgroup C of fungal chitinases containing chitin-binding and LysM modules in the mycoparasite Trichoderma atroviride.
  Glycobiology, 21, 122-133.  
20506147 J.Jalak, and P.Väljamäe (2010).
Mechanism of initial rapid rate retardation in cellobiohydrolase catalyzed cellulose hydrolysis.
  Biotechnol Bioeng, 106, 871-883.  
20506540 S.E.Levine, J.M.Fox, H.W.Blanch, and D.S.Clark (2010).
A mechanistic model of the enzymatic hydrolysis of cellulose.
  Biotechnol Bioeng, 107, 37-51.  
19951999 S.P.Voutilainen, P.G.Murray, M.G.Tuohy, and A.Koivula (2010).
Expression of Talaromyces emersonii cellobiohydrolase Cel7A in Saccharomyces cerevisiae and rational mutagenesis to improve its thermostability and activity.
  Protein Eng Des Sel, 23, 69-79.  
19830421 X.Z.Zhang, Z.Zhang, Z.Zhu, N.Sathitsuksanoh, Y.Yang, and Y.H.Zhang (2010).
The noncellulosomal family 48 cellobiohydrolase from Clostridium phytofermentans ISDg: heterologous expression, characterization, and processivity.
  Appl Microbiol Biotechnol, 86, 525-533.  
19189377 B.Mertz, X.Gu, and P.J.Reilly (2009).
Analysis of functional divergence within two structurally related glycoside hydrolase families.
  Biopolymers, 91, 478-495.  
19189967 D.Schwarzer, K.Stummeyer, T.Haselhorst, F.Freiberger, B.Rode, M.Grove, T.Scheper, M.von Itzstein, M.Mühlenhoff, and R.Gerardy-Schahn (2009).
Proteolytic release of the intramolecular chaperone domain confers processivity to endosialidase F.
  J Biol Chem, 284, 9465-9474.  
19348025 G.Vaaje-Kolstad, A.C.Bunaes, G.Mathiesen, and V.G.Eijsink (2009).
The chitinolytic system of Lactococcus lactis ssp. lactis comprises a nonprocessive chitinase and a chitin-binding protein that promotes the degradation of alpha- and beta-chitin.
  FEBS J, 276, 2402-2415.  
19148633 S.P.Voutilainen, H.Boer, M.Alapuranen, J.Jänis, J.Vehmaanperä, and A.Koivula (2009).
Improving the thermostability and activity of Melanocarpus albomyces cellobiohydrolase Cel7B.
  Appl Microbiol Biotechnol, 83, 261-272.  
19734341 T.V.Vuong, and D.B.Wilson (2009).
Processivity, synergism, and substrate specificity of Thermobifida fusca Cel6B.
  Appl Environ Microbiol, 75, 6655-6661.  
19060394 H.Toda, N.Nagahata, Y.Amano, K.Nozaki, T.Kanda, M.Okazaki, and M.Shimosaka (2008).
Gene cloning of cellobiohydrolase II from the white rot fungus Irpex lacteus MC-2 and its expression in Pichia pastoris.
  Biosci Biotechnol Biochem, 72, 3142-3147.  
18512263 S.P.Voutilainen, T.Puranen, M.Siika-Aho, A.Lappalainen, M.Alapuranen, J.Kallio, S.Hooman, L.Viikari, J.Vehmaanperä, and A.Koivula (2008).
Cloning, expression, and characterization of novel thermostable family 7 cellobiohydrolases.
  Biotechnol Bioeng, 101, 515-528.  
18499583 T.Parkkinen, A.Koivula, J.Vehmaanperä, and J.Rouvinen (2008).
Crystal structures of Melanocarpus albomyces cellobiohydrolase Cel7B in complex with cello-oligomers show high flexibility in the substrate binding.
  Protein Sci, 17, 1383-1394.
PDB codes: 2rfw 2rfy 2rfz 2rg0
18367275 V.G.Eijsink, G.Vaaje-Kolstad, K.M.Vårum, and S.J.Horn (2008).
Towards new enzymes for biofuels: lessons from chitinase research.
  Trends Biotechnol, 26, 228-235.  
16886073 A.Fagerström, M.Nilsson, U.Berg, and R.Isaksson (2006).
New propranolol analogues: binding and chiral discrimination by cellobiohydrolase Cel7A.
  Org Biomol Chem, 4, 3067-3076.  
16420473 S.J.Horn, A.Sørbotten, B.Synstad, P.Sikorski, M.Sørlie, K.M.Vårum, and V.G.Eijsink (2006).
Endo/exo mechanism and processivity of family 18 chitinases produced by Serratia marcescens.
  FEBS J, 273, 491-503.  
17116887 S.J.Horn, P.Sikorski, J.B.Cederkvist, G.Vaaje-Kolstad, M.Sørlie, B.Synstad, G.Vriend, K.M.Vårum, and V.G.Eijsink (2006).
Costs and benefits of processivity in enzymatic degradation of recalcitrant polysaccharides.
  Proc Natl Acad Sci U S A, 103, 18089-18094.  
15654891 A.Sørbotten, S.J.Horn, V.G.Eijsink, and K.M.Vårum (2005).
Degradation of chitosans with chitinase B from Serratia marcescens. Production of chito-oligosaccharides and insight into enzyme processivity.
  FEBS J, 272, 538-549.  
16001418 C.Mulakala, and P.J.Reilly (2005).
Hypocrea jecorina (Trichoderma reesei) Cel7A as a molecular machine: A docking study.
  Proteins, 60, 598-605.  
16151143 S.W.Hinz, M.I.Pastink, L.A.van den Broek, J.P.Vincken, and A.G.Voragen (2005).
Bifidobacterium longum endogalactanase liberates galactotriose from type I galactans.
  Appl Environ Microbiol, 71, 5501-5510.  
15819888 W.Ubhayasekera, I.G.Muñoz, A.Vasella, J.Ståhlberg, and S.L.Mowbray (2005).
Structures of Phanerochaete chrysosporium Cel7D in complex with product and inhibitors.
  FEBS J, 272, 1952-1964.
PDB codes: 1z3t 1z3v 1z3w
15560790 A.Grassick, P.G.Murray, R.Thompson, C.M.Collins, L.Byrnes, G.Birrane, T.M.Higgins, and M.G.Tuohy (2004).
Three-dimensional structure of a thermostable native cellobiohydrolase, CBH IB, and molecular characterization of the cel7 gene from the filamentous fungus, Talaromyces emersonii.
  Eur J Biochem, 271, 4495-4506.
PDB code: 1q9h
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer