spacer
spacer

PDBsum entry 1pmt

Go to PDB code: 
protein ligands links
Transferase PDB id
1pmt

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
201 a.a. *
Ligands
GSH
Waters ×52
* Residue conservation analysis
PDB id:
1pmt
Name: Transferase
Title: Glutathione transferase from proteus mirabilis
Structure: Glutathione transferase. Chain: a. Synonym: pmgst, gst b1-1. Engineered: yes. Other_details: disulfide link between the cys 10 and the thiol moiety of glutathione
Source: Proteus mirabilis. Organism_taxid: 584. Cellular_location: periplasm. Expressed in: escherichia coli. Expression_system_taxid: 562.
Biol. unit: Homo-Dimer (from PDB file)
Resolution:
2.50Å     R-factor:   0.202     R-free:   0.301
Authors: J.Rossjohn,G.Polekhina,S.C.Feil,N.Allocati,M.Masulli,C.Diilio, M.W.Parker
Key ref:
J.Rossjohn et al. (1998). A mixed disulfide bond in bacterial glutathione transferase: functional and evolutionary implications. Structure, 6, 721-734. PubMed id: 9655824 DOI: 10.1016/S0969-2126(98)00074-4
Date:
23-Mar-98     Release date:   20-Apr-99    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P15214  (GST_PROMI) -  Glutathione S-transferase GST-6.0 from Proteus mirabilis
Seq:
Struc:
203 a.a.
201 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.2.5.1.18  - glutathione transferase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: RX + glutathione = an S-substituted glutathione + a halide anion + H+
RX
Bound ligand (Het Group name = GSH)
corresponds exactly
+ glutathione
= S-substituted glutathione
+ halide anion
+ H(+)
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    Added reference    
 
 
DOI no: 10.1016/S0969-2126(98)00074-4 Structure 6:721-734 (1998)
PubMed id: 9655824  
 
 
A mixed disulfide bond in bacterial glutathione transferase: functional and evolutionary implications.
J.Rossjohn, G.Polekhina, S.C.Feil, N.Allocati, M.Masulli, C.De Illio, M.W.Parker.
 
  ABSTRACT  
 
BACKGROUND: Glutathione S-transferases (GSTs) are a multifunctional group of enzymes, widely distributed in aerobic organisms, that have a critical role in the cellular detoxification process. Unlike their mammalian counterparts, bacterial GSTs often catalyze quite specific reactions, suggesting that their roles in bacteria might be different. The GST from Proteus mirabilis (PmGST B1-1) is known to bind certain antibiotics tightly and reduce the antimicrobial activity of beta-lactam drugs. Hence, bacterial GSTs may play a part in bacterial resistance towards antibiotics and are the subject of intense interest. RESULTS: Here we present the structure of a bacterial GST, PmGST B1-1, which has been determined from two different crystal forms. The enzyme adopts the canonical GST fold although it shares less than 20% sequence identity with GSTs from higher organisms. The most surprising aspect of the structure is the observation that the substrate, glutathione, is covalently bound to Cys 10 of the enzyme. In addition, the highly structurally conserved N-terminal domain is found to have an additional beta strand. CONCLUSIONS: The crystal structure of PmGST B1-1 has highlighted the importance of a cysteine residue in the catalytic cycle. Sequence analyses suggest that a number of other GSTs share this property, leading us to propose a new class of GSTs - the beta class. The data suggest that the in vivo role of the beta class GSTs could be as metabolic or redox enzymes rather than conjugating enzymes. Compelling evidence is presented that the theta class of GSTs evolved from an ancestral member of the thioredoxin superfamily.
 
  Selected figure(s)  
 
Figure 6.
Figure 6. Evolution of GSH thiol interactions within the active sites of different GSTs. The active sites of GSTs from three classes are shown: (a) bacterial theta class GST (b) insect theta class GST [13]; and (c) human pi class GST [31]. GSH and residues involved in the interactions are shown in ball-and-stick form. (The figure was produced using MOLSCRIPT [56] and is adapted from Figure 5 of [12] © 1997 American Chemical Society with kind permission of Richard Armstrong.)
 
  The above figure is reprinted by permission from Cell Press: Structure (1998, 6, 721-734) copyright 1998.  
  Figure was selected by the author.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21428697 A.Oakley (2011).
Glutathione transferases: a structural perspective.
  Drug Metab Rev, 43, 138-151.  
21425927 S.M.Belchik, and L.Xun (2011).
S-glutathionyl-(chloro)hydroquinone reductases: a new class of glutathione transferases functioning as oxidoreductases.
  Drug Metab Rev, 43, 307-316.  
19016852 N.Allocati, L.Federici, M.Masulli, and C.Di Ilio (2009).
Glutathione transferases in bacteria.
  FEBS J, 276, 58-75.  
17985355 D.R.Littler, S.J.Harrop, L.J.Brown, G.J.Pankhurst, A.V.Mynott, P.Luciani, R.A.Mandyam, M.Mazzanti, S.Tanda, M.A.Berryman, S.N.Breit, and P.M.Curmi (2008).
Comparison of vertebrate and invertebrate CLIC proteins: the crystal structures of Caenorhabditis elegans EXC-4 and Drosophila melanogaster DmCLIC.
  Proteins, 71, 364-378.
PDB codes: 2yv7 2yv9
18076047 N.Allocati, L.Federici, M.Masulli, B.Favaloro, and C.Di Ilio (2008).
Cysteine 10 is critical for the activity of Ochrobactrum anthropi glutathione transferase and its mutation to alanine causes the preferential binding of glutathione to the H-site.
  Proteins, 71, 16-23.
PDB code: 2pvq
  18259055 W.Garcia, R.F.Travensolo, N.C.Rodrigues, J.R.Muniz, C.S.Caruso, E.G.Lemos, A.P.Araujo, and E.Carrilho (2008).
Crystallization and preliminary X-ray diffraction analysis of a glutathione S-transferase from Xylella fastidiosa.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 64, 85-87.  
16920719 E.I.Tocheva, P.D.Fortin, L.D.Eltis, and M.E.Murphy (2006).
Structures of ternary complexes of BphK, a bacterial glutathione S-transferase that reductively dechlorinates polychlorinated biphenyl metabolites.
  J Biol Chem, 281, 30933-30940.
PDB codes: 2dsa 2gdr
16672236 J.L.Hearne, and R.F.Colman (2006).
Contribution of the mu loop to the structure and function of rat glutathione transferase M1-1.
  Protein Sci, 15, 1277-1289.  
15794756 A.Bresell, R.Weinander, G.Lundqvist, H.Raza, M.Shimoji, T.H.Sun, L.Balk, R.Wiklund, J.Eriksson, C.Jansson, B.Persson, P.J.Jakobsson, and R.Morgenstern (2005).
Bioinformatic and enzymatic characterization of the MAPEG superfamily.
  FEBS J, 272, 1688-1703.  
15735307 A.M.Hansen, Y.Gu, M.Li, M.Andrykovitch, D.S.Waugh, D.J.Jin, and X.Ji (2005).
Structural basis for the function of stringent starvation protein a as a transcription factor.
  J Biol Chem, 280, 17380-17391.
PDB code: 1yy7
16189827 D.J.Schuller, Q.Liu, I.A.Kriksunov, A.M.Campbell, J.Barrett, P.M.Brophy, and Q.Hao (2005).
Crystal structure of a new class of glutathione transferase from the model human hookworm nematode Heligmosomoides polygyrus.
  Proteins, 61, 1024-1031.
PDB code: 1tw9
16195544 J.L.Hearne, and R.F.Colman (2005).
Delineation of xenobiotic substrate sites in rat glutathione S-transferase M1-1.
  Protein Sci, 14, 2526-2536.  
15173170 G.Ricci, P.Turella, F.De Maria, G.Antonini, L.Nardocci, P.G.Board, M.W.Parker, M.G.Carbonelli, G.Federici, and A.M.Caccuri (2004).
Binding and kinetic mechanisms of the Zeta class glutathione transferase.
  J Biol Chem, 279, 33336-33342.  
14676193 U.M.Hegazy, B.Mannervik, and G.Stenberg (2004).
Functional role of the lock and key motif at the subunit interface of glutathione transferase p1-1.
  J Biol Chem, 279, 9586-9596.  
12565703 A.Pennelli, P.Sacchetta, C.Catitti, F.Amicarelli, and C.Di Ilio (2003).
Effects of glutathione on kinetics and structural properties of amphibian BbGSTP1-1.
  Int J Biochem Cell Biol, 35, 415-421.  
12972429 M.G.Jeppesen, P.Ortiz, W.Shepard, T.G.Kinzy, J.Nyborg, and G.R.Andersen (2003).
The crystal structure of the glutathione S-transferase-like domain of elongation factor 1Bgamma from Saccharomyces cerevisiae.
  J Biol Chem, 278, 47190-47198.
PDB code: 1nhy
12151227 A.E.Todd, C.A.Orengo, and J.M.Thornton (2002).
Plasticity of enzyme active sites.
  Trends Biochem Sci, 27, 419-426.  
11889135 A.M.Caccuri, G.Antonini, N.Allocati, C.Di Ilio, F.De Maria, F.Innocenti, M.W.Parker, M.Masulli, M.Lo Bello, P.Turella, G.Federici, and G.Ricci (2002).
GSTB1-1 from Proteus mirabilis: a snapshot of an enzyme in the evolutionary pathway from a redox enzyme to a conjugating enzyme.
  J Biol Chem, 277, 18777-18784.  
12007629 B.Dainelli, D.Paludi, B.Dragani, R.Cocco, D.R.Principe, M.Petrucci, F.Mucilli, A.Faraone, and A.Aceto (2002).
A novel glutathione transferase from Haemophilus influenzae which has high affinity towards antibiotics.
  Int J Biochem Cell Biol, 34, 916-920.  
  11897031 D.P.Dixon, A.Lapthorn, and R.Edwards (2002).
Plant glutathione transferases.
  Genome Biol, 3, REVIEWS3004.  
12077129 D.P.Dixon, B.G.Davis, and R.Edwards (2002).
Functional divergence in the glutathione transferase superfamily in plants. Identification of two classes with putative functions in redox homeostasis in Arabidopsis thaliana.
  J Biol Chem, 277, 30859-30869.  
12192076 J.K.Luo, J.A.Hornby, L.A.Wallace, J.Chen, R.N.Armstrong, and H.W.Dirr (2002).
Impact of domain interchange on conformational stability and equilibrium folding of chimeric class micro glutathione transferases.
  Protein Sci, 11, 2208-2217.  
11375512 A.J.Oakley, K.Jirajaroenrat, T.Harnnoi, A.J.Ketterman, and M.C.Wilce (2001).
Crystallization of two glutathione S-transferases from an unusual gene family.
  Acta Crystallogr D Biol Crystallogr, 57, 870-872.  
11604524 A.J.Oakley, T.Harnnoi, R.Udomsinprasert, K.Jirajaroenrat, A.J.Ketterman, and M.C.Wilce (2001).
The crystal structures of glutathione S-transferases isozymes 1-3 and 1-4 from Anopheles dirus species B.
  Protein Sci, 10, 2176-2185.
PDB codes: 1jlv 1jlw
11327815 G.Polekhina, P.G.Board, A.C.Blackburn, and M.W.Parker (2001).
Crystal structure of maleylacetoacetate isomerase/glutathione transferase zeta reveals the molecular basis for its remarkable catalytic promiscuity.
  Biochemistry, 40, 1567-1576.
PDB code: 1fw1
11342133 L.Bousset, H.Belrhali, J.Janin, R.Melki, and S.Morera (2001).
Structure of the globular region of the prion protein Ure2 from the yeast Saccharomyces cerevisiae.
  Structure, 9, 39-46.
PDB codes: 1g6w 1g6y
11453988 N.E.Labrou, L.V.Mello, and Y.D.Clonis (2001).
The conserved Asn49 of maize glutathione S-transferase I modulates substrate binding, catalysis and intersubunit communication.
  Eur J Biochem, 268, 3950-3957.  
11123923 C.Micaloni, A.P.Mazzetti, M.Nuccetelli, J.Rossjohn, W.J.McKinstry, G.Antonini, A.M.Caccuri, A.J.Oakley, G.Federici, G.Ricci, M.W.Parker, and M.Lo Bello (2000).
Valine 10 may act as a driver for product release from the active site of human glutathione transferase P1-1.
  Biochemistry, 39, 15961-15970.  
9919647 C.A.Dowd, and D.Sheehan (1999).
Variable expression of glutathione S-transferase isoenzymes in the fungus, Mucor circinelloides.
  FEMS Microbiol Lett, 170, 13-17.  
  10548067 J.U.Flanagan, J.Rossjohn, M.W.Parker, P.G.Board, and G.Chelvanayagam (1999).
Mutagenic analysis of conserved arginine residues in and around the novel sulfate binding pocket of the human Theta class glutathione transferase T2-2.
  Protein Sci, 8, 2205-2212.  
9818188 R.N.Armstrong (1998).
Mechanistic imperatives for the evolution of glutathione transferases.
  Curr Opin Chem Biol, 2, 618-623.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer