 |
PDBsum entry 1oye
|
|
|
|
 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
|
|
|
|
|
|
|
Membrane protein
|
PDB id
|
|
|
|
1oye
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
Science
300:976-980
(2003)
|
|
PubMed id:
|
|
|
|
|
| |
|
Structural basis of multiple drug-binding capacity of the AcrB multidrug efflux pump.
|
|
E.W.Yu,
G.McDermott,
H.I.Zgurskaya,
H.Nikaido,
D.E.Koshland.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
Multidrug efflux pumps cause serious problems in cancer chemotherapy and
treatment of bacterial infections. Yet high-resolution structures of ligand
transporter complexes have previously been unavailable. We obtained x-ray
crystallographic structures of the trimeric AcrB pump from Escherichia coli with
four structurally diverse ligands. The structures show that three molecules of
ligands bind simultaneously to the extremely large central cavity of 5000 cubic
angstroms, primarily by hydrophobic, aromatic stacking and van der Waals
interactions. Each ligand uses a slightly different subset of AcrB residues for
binding. The bound ligand molecules often interact with each other, stabilizing
the binding.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 1.
Fig. 1. Structures of the trimeric AcrB transporter with bound
ligands viewed from the side parallel to the membrane. (A) AcrB
with three bound R6G molecules. The figure shows the
transmembrane domain (inner and outer leaflets), the periplasmic
domain, and the location of cavity, vestibule, pore, and funnel
(8). The drugs are bound approximately at the level of the outer
surface of the membrane lipid bilayer. (B) through (D) show the
center of the side view in (A), with bound Et, Dq, and Cip
molecules. This figure and Fig. 2 were prepared with PyMOL (22).
|
 |
Figure 2.
Fig. 2. The binding sites for the four ligands. Amino acid
residues within 6 Å of the bound ligand molecules are
shown. With the exception of (C), the view is approximately from
the top (periplasmic side) of the trimer. Unmarked, primed, and
double-primed residues, respectively, belong to the three
subunits of the AcrB trimer. (A) R6G-binding site. (B)
Et-binding site, including Phe^388 that is slightly farther away
(see text). (C) Dq-binding site. The side view shows the binding
of the two quinolinium moieties within each Dq molecule (as in
Fig. 1). The phenylalanine residues interacting with the bottom
quinolinium moieties are shown even though they are 6.3 Å
away from the ligand. Ile^102 is not shown to avoid cluttering
the figure. (D) Cip-binding site.
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from the AAAs:
Science
(2003,
300,
976-980)
copyright 2003.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
A.Mahamoud,
J.Chevalier,
M.Baitiche,
E.Adam,
and
J.M.Pagès
(2011).
An alkylaminoquinazoline restores antibiotic activity in Gram-negative resistant isolates.
|
| |
Microbiology,
157,
566-571.
|
 |
|
|
|
|
 |
C.C.Su,
F.Long,
and
E.W.Yu
(2011).
The Cus efflux system removes toxic ions via a methionine shuttle.
|
| |
Protein Sci,
20,
6.
|
 |
|
|
|
|
 |
C.C.Su,
F.Long,
M.T.Zimmermann,
K.R.Rajashankar,
R.L.Jernigan,
and
E.W.Yu
(2011).
Crystal structure of the CusBA heavy-metal efflux complex of Escherichia coli.
|
| |
Nature,
470,
558-562.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.M.Bolla,
S.Alibert-Franco,
J.Handzlik,
J.Chevalier,
A.Mahamoud,
G.Boyer,
K.Kieć-Kononowicz,
and
J.M.Pagès
(2011).
Strategies for bypassing the membrane barrier in multidrug resistant Gram-negative bacteria.
|
| |
FEBS Lett,
585,
1682-1690.
|
 |
|
|
|
|
 |
K.M.Peters,
B.E.Brooks,
M.A.Schumacher,
R.A.Skurray,
R.G.Brennan,
and
M.H.Brown
(2011).
A single acidic residue can guide binding site selection but does not govern QacR cationic-drug affinity.
|
| |
PLoS One,
6,
e15974.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
R.Nakashima,
K.Sakurai,
S.Yamasaki,
K.Nishino,
and
A.Yamaguchi
(2011).
Structures of the multidrug exporter AcrB reveal a proximal multisite drug-binding pocket.
|
| |
Nature,
480,
565-569.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
T.K.Janganan,
L.Zhang,
V.N.Bavro,
D.Matak-Vinkovic,
N.P.Barrera,
M.F.Burton,
P.G.Steel,
C.V.Robinson,
M.I.Borges-Walmsley,
and
A.R.Walmsley
(2011).
Opening of the outer membrane protein channel in tripartite efflux pumps is induced by interaction with the membrane fusion partner.
|
| |
J Biol Chem,
286,
5484-5493.
|
 |
|
|
|
|
 |
X.Y.Pei,
P.Hinchliffe,
M.F.Symmons,
E.Koronakis,
R.Benz,
C.Hughes,
and
V.Koronakis
(2011).
Structures of sequential open states in a symmetrical opening transition of the TolC exit duct.
|
| |
Proc Natl Acad Sci U S A,
108,
2112-2117.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
B.Y.Yun,
Y.Xu,
S.Piao,
N.Kim,
J.H.Yoon,
H.S.Cho,
K.Lee,
and
N.C.Ha
(2010).
Periplasmic domain of CusA in an Escherichia coli Cu+/Ag+ transporter has metal binding sites.
|
| |
J Microbiol,
48,
829-835.
|
 |
|
|
|
|
 |
E.Perrin,
M.Fondi,
M.C.Papaleo,
I.Maida,
S.Buroni,
M.R.Pasca,
G.Riccardi,
and
R.Fani
(2010).
Exploring the HME and HAE1 efflux systems in the genus Burkholderia.
|
| |
BMC Evol Biol,
10,
164.
|
 |
|
|
|
|
 |
F.Husain,
and
H.Nikaido
(2010).
Substrate path in the AcrB multidrug efflux pump of Escherichia coli.
|
| |
Mol Microbiol,
78,
320-330.
|
 |
|
|
|
|
 |
F.Long,
C.C.Su,
M.T.Zimmermann,
S.E.Boyken,
K.R.Rajashankar,
R.L.Jernigan,
and
E.W.Yu
(2010).
Crystal structures of the CusA efflux pump suggest methionine-mediated metal transport.
|
| |
Nature,
467,
484-488.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
G.Phan,
H.Benabdelhak,
M.B.Lascombe,
P.Benas,
S.Rety,
M.Picard,
A.Ducruix,
C.Etchebest,
and
I.Broutin
(2010).
Structural and dynamical insights into the opening mechanism of P. aeruginosa OprM channel.
|
| |
Structure,
18,
507-517.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.W.Weeks,
T.Celaya-Kolb,
S.Pecora,
and
R.Misra
(2010).
AcrA suppressor alterations reverse the drug hypersensitivity phenotype of a TolC mutant by inducing TolC aperture opening.
|
| |
Mol Microbiol,
75,
1468-1483.
|
 |
|
|
|
|
 |
K.McLuskey,
A.W.Roszak,
Y.Zhu,
and
N.W.Isaacs
(2010).
Crystal structures of all-alpha type membrane proteins.
|
| |
Eur Biophys J,
39,
723-755.
|
 |
|
|
|
|
 |
T.Mima,
and
H.P.Schweizer
(2010).
The BpeAB-OprB efflux pump of Burkholderia pseudomallei 1026b does not play a role in quorum sensing, virulence factor production, or extrusion of aminoglycosides but is a broad-spectrum drug efflux system.
|
| |
Antimicrob Agents Chemother,
54,
3113-3120.
|
 |
|
|
|
|
 |
Y.Takatsuka,
C.Chen,
and
H.Nikaido
(2010).
Mechanism of recognition of compounds of diverse structures by the multidrug efflux pump AcrB of Escherichia coli.
|
| |
Proc Natl Acad Sci U S A,
107,
6559-6565.
|
 |
|
|
|
|
 |
C.C.Su,
F.Yang,
F.Long,
D.Reyon,
M.D.Routh,
D.W.Kuo,
A.K.Mokhtari,
J.D.Van Ornam,
K.L.Rabe,
J.A.Hoy,
Y.J.Lee,
K.R.Rajashankar,
and
E.W.Yu
(2009).
Crystal structure of the membrane fusion protein CusB from Escherichia coli.
|
| |
J Mol Biol,
393,
342-355.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
H.I.Zgurskaya
(2009).
Multicomponent drug efflux complexes: architecture and mechanism of assembly.
|
| |
Future Microbiol,
4,
919-932.
|
 |
|
|
|
|
 |
H.Nikaido,
and
Y.Takatsuka
(2009).
Mechanisms of RND multidrug efflux pumps.
|
| |
Biochim Biophys Acta,
1794,
769-781.
|
 |
|
|
|
|
 |
H.Nikaido
(2009).
Multidrug resistance in bacteria.
|
| |
Annu Rev Biochem,
78,
119-146.
|
 |
|
|
|
|
 |
H.T.Lin,
V.N.Bavro,
N.P.Barrera,
H.M.Frankish,
S.Velamakanni,
H.W.van Veen,
C.V.Robinson,
M.I.Borges-Walmsley,
and
A.R.Walmsley
(2009).
MacB ABC Transporter Is a Dimer Whose ATPase Activity and Macrolide-binding Capacity Are Regulated by the Membrane Fusion Protein MacA.
|
| |
J Biol Chem,
284,
1145-1154.
|
 |
|
|
|
|
 |
M.F.Symmons,
E.Bokma,
E.Koronakis,
C.Hughes,
and
V.Koronakis
(2009).
The assembled structure of a complete tripartite bacterial multidrug efflux pump.
|
| |
Proc Natl Acad Sci U S A,
106,
7173-7178.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
R.Misra,
and
V.N.Bavro
(2009).
Assembly and transport mechanism of tripartite drug efflux systems.
|
| |
Biochim Biophys Acta,
1794,
817-825.
|
 |
|
|
|
|
 |
S.K.Aoki,
J.S.Webb,
B.A.Braaten,
and
D.A.Low
(2009).
Contact-dependent growth inhibition causes reversible metabolic downregulation in Escherichia coli.
|
| |
J Bacteriol,
191,
1777-1786.
|
 |
|
|
|
|
 |
T.Eicher,
L.Brandstätter,
and
K.M.Pos
(2009).
Structural and functional aspects of the multidrug efflux pump AcrB.
|
| |
Biol Chem,
390,
693-699.
|
 |
|
|
|
|
 |
A.L.Davidson,
E.Dassa,
C.Orelle,
and
J.Chen
(2008).
Structure, function, and evolution of bacterial ATP-binding cassette systems.
|
| |
Microbiol Mol Biol Rev,
72,
317.
|
 |
|
|
|
|
 |
C.J.Tsai,
Z.E.Sauna,
C.Kimchi-Sarfaty,
S.V.Ambudkar,
M.M.Gottesman,
and
R.Nussinov
(2008).
Synonymous mutations and ribosome stalling can lead to altered folding pathways and distinct minima.
|
| |
J Mol Biol,
383,
281-291.
|
 |
|
|
|
|
 |
F.Long,
C.Rouquette-Loughlin,
W.M.Shafer,
and
E.W.Yu
(2008).
Functional cloning and characterization of the multidrug efflux pumps NorM from Neisseria gonorrhoeae and YdhE from Escherichia coli.
|
| |
Antimicrob Agents Chemother,
52,
3052-3060.
|
 |
|
|
|
|
 |
G.F.Ecker,
T.Stockner,
and
P.Chiba
(2008).
Computational models for prediction of interactions with ABC-transporters.
|
| |
Drug Discov Today,
13,
311-317.
|
 |
|
|
|
|
 |
G.Krishnamoorthy,
E.B.Tikhonova,
and
H.I.Zgurskaya
(2008).
Fitting periplasmic membrane fusion proteins to inner membrane transporters: mutations that enable Escherichia coli AcrA to function with Pseudomonas aeruginosa MexB.
|
| |
J Bacteriol,
190,
691-698.
|
 |
|
|
|
|
 |
K.M.Peters,
J.T.Schuman,
R.A.Skurray,
M.H.Brown,
R.G.Brennan,
and
M.A.Schumacher
(2008).
QacR-cation recognition is mediated by a redundancy of residues capable of charge neutralization.
|
| |
Biochemistry,
47,
8122-8129.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
L.Damier-Piolle,
S.Magnet,
S.Brémont,
T.Lambert,
and
P.Courvalin
(2008).
AdeIJK, a Resistance-Nodulation-Cell Division Pump Effluxing Multiple Antibiotics in Acinetobacter baumannii.
|
| |
Antimicrob Agents Chemother,
52,
557-562.
|
 |
|
|
|
|
 |
M.A.Seeger,
C.von Ballmoos,
T.Eicher,
L.Brandstätter,
F.Verrey,
K.Diederichs,
and
K.M.Pos
(2008).
Engineered disulfide bonds support the functional rotation mechanism of multidrug efflux pump AcrB.
|
| |
Nat Struct Mol Biol,
15,
199-205.
|
 |
|
|
|
|
 |
V.M.Korkhov,
and
C.G.Tate
(2008).
Electron crystallography reveals plasticity within the drug binding site of the small multidrug transporter EmrE.
|
| |
J Mol Biol,
377,
1094-1103.
|
 |
|
|
|
|
 |
C.A.Elkins,
and
L.B.Mullis
(2007).
Substrate competition studies using whole-cell accumulation assays with the major tripartite multidrug efflux pumps of Escherichia coli.
|
| |
Antimicrob Agents Chemother,
51,
923-929.
|
 |
|
|
|
|
 |
C.C.Su,
H.Nikaido,
and
E.W.Yu
(2007).
Ligand-transporter interaction in the AcrB multidrug efflux pump determined by fluorescence polarization assay.
|
| |
FEBS Lett,
581,
4972-4976.
|
 |
|
|
|
|
 |
C.F.Higgins
(2007).
Multiple molecular mechanisms for multidrug resistance transporters.
|
| |
Nature,
446,
749-757.
|
 |
|
|
|
|
 |
D.Das,
Q.S.Xu,
J.Y.Lee,
I.Ankoudinova,
C.Huang,
Y.Lou,
A.DeGiovanni,
R.Kim,
and
S.H.Kim
(2007).
Crystal structure of the multidrug efflux transporter AcrB at 3.1A resolution reveals the N-terminal region with conserved amino acids.
|
| |
J Struct Biol,
158,
494-502.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
G.D.Wright
(2007).
The antibiotic resistome: the nexus of chemical and genetic diversity.
|
| |
Nat Rev Microbiol,
5,
175-186.
|
 |
|
|
|
|
 |
G.Sennhauser,
P.Amstutz,
C.Briand,
O.Storchenegger,
and
M.G.Grütter
(2007).
Drug export pathway of multidrug exporter AcrB revealed by DARPin inhibitors.
|
| |
PLoS Biol,
5,
e7.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.A.Sheps,
and
V.Ling
(2007).
Preface: the concept and consequences of multidrug resistance.
|
| |
Pflugers Arch,
453,
545-553.
|
 |
|
|
|
|
 |
O.Lomovskaya,
H.I.Zgurskaya,
M.Totrov,
and
W.J.Watkins
(2007).
Waltzing transporters and 'the dance macabre' between humans and bacteria.
|
| |
Nat Rev Drug Discov,
6,
56-65.
|
 |
|
|
|
|
 |
S.Törnroth-Horsefield,
P.Gourdon,
R.Horsefield,
L.Brive,
N.Yamamoto,
H.Mori,
A.Snijder,
and
R.Neutze
(2007).
Crystal structure of AcrB in complex with a single transmembrane subunit reveals another twist.
|
| |
Structure,
15,
1663-1673.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
V.Dastidar,
W.Mao,
O.Lomovskaya,
and
H.I.Zgurskaya
(2007).
Drug-induced conformational changes in multidrug efflux transporter AcrB from Haemophilus influenzae.
|
| |
J Bacteriol,
189,
5550-5558.
|
 |
|
|
|
|
 |
A.Seelig
(2006).
Unraveling membrane-mediated substrate-transporter interactions.
|
| |
Biophys J,
90,
3825-3826.
|
 |
|
|
|
|
 |
C.A.Elkins,
and
L.B.Mullis
(2006).
Mammalian steroid hormones are substrates for the major RND- and MFS-type tripartite multidrug efflux pumps of Escherichia coli.
|
| |
J Bacteriol,
188,
1191-1195.
|
 |
|
|
|
|
 |
C.C.Su,
M.Li,
R.Gu,
Y.Takatsuka,
G.McDermott,
H.Nikaido,
and
E.W.Yu
(2006).
Conformation of the AcrB multidrug efflux pump in mutants of the putative proton relay pathway.
|
| |
J Bacteriol,
188,
7290-7296.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
E.M.Hearn,
M.R.Gray,
and
J.M.Foght
(2006).
Mutations in the central cavity and periplasmic domain affect efflux activity of the resistance-nodulation-division pump EmhB from Pseudomonas fluorescens cLP6a.
|
| |
J Bacteriol,
188,
115-123.
|
 |
|
|
|
|
 |
H.Omote,
and
M.K.Al-Shawi
(2006).
Interaction of transported drugs with the lipid bilayer and P-glycoprotein through a solvation exchange mechanism.
|
| |
Biophys J,
90,
4046-4059.
|
 |
|
|
|
|
 |
H.Yoneyama,
and
R.Katsumata
(2006).
Antibiotic resistance in bacteria and its future for novel antibiotic development.
|
| |
Biosci Biotechnol Biochem,
70,
1060-1075.
|
 |
|
|
|
|
 |
J.Mikolosko,
K.Bobyk,
H.I.Zgurskaya,
and
P.Ghosh
(2006).
Conformational flexibility in the multidrug efflux system protein AcrA.
|
| |
Structure,
14,
577-587.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
K.A.Hassan,
M.Galea,
J.Wu,
B.A.Mitchell,
R.A.Skurray,
and
M.H.Brown
(2006).
Functional effects of intramembranous proline substitutions in the staphylococcal multidrug transporter QacA.
|
| |
FEMS Microbiol Lett,
263,
76-85.
|
 |
|
|
|
|
 |
L.J.Piddock
(2006).
Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria.
|
| |
Clin Microbiol Rev,
19,
382-402.
|
 |
|
|
|
|
 |
M.H.Saier,
C.V.Tran,
and
R.D.Barabote
(2006).
TCDB: the Transporter Classification Database for membrane transport protein analyses and information.
|
| |
Nucleic Acids Res,
34,
D181-D186.
|
 |
|
|
|
|
 |
R.A.Shilling,
H.Venter,
S.Velamakanni,
A.Bapna,
B.Woebking,
S.Shahi,
and
H.W.van Veen
(2006).
New light on multidrug binding by an ATP-binding-cassette transporter.
|
| |
Trends Pharmacol Sci,
27,
195-203.
|
 |
|
|
|
|
 |
S.Murakami,
R.Nakashima,
E.Yamashita,
T.Matsumoto,
and
A.Yamaguchi
(2006).
Crystal structures of a multidrug transporter reveal a functionally rotating mechanism.
|
| |
Nature,
443,
173-179.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.Schuldiner
(2006).
Structural biology: the ins and outs of drug transport.
|
| |
Nature,
443,
156-157.
|
 |
|
|
|
|
 |
T.T.Le,
T.Emonet,
S.Harlepp,
C.C.Guet,
and
P.Cluzel
(2006).
Dynamical determinants of drug-inducible gene expression in a single bacterium.
|
| |
Biophys J,
90,
3315-3321.
|
 |
|
|
|
|
 |
W.C.Lu,
C.Z.Wang,
E.W.Yu,
and
K.M.Ho
(2006).
Dynamics of the trimeric AcrB transporter protein inferred from a B-factor analysis of the crystal structure.
|
| |
Proteins,
62,
152-158.
|
 |
|
|
|
|
 |
C.R.Dean,
S.Narayan,
D.M.Daigle,
J.L.Dzink-Fox,
X.Puyang,
K.R.Bracken,
K.E.Dean,
B.Weidmann,
Z.Yuan,
R.Jain,
and
N.S.Ryder
(2005).
Role of the AcrAB-TolC efflux pump in determining susceptibility of Haemophilus influenzae to the novel peptide deformylase inhibitor LBM415.
|
| |
Antimicrob Agents Chemother,
49,
3129-3135.
|
 |
|
|
|
|
 |
D.C.Hooper
(2005).
Efflux pumps and nosocomial antibiotic resistance: a primer for hospital epidemiologists.
|
| |
Clin Infect Dis,
40,
1811-1817.
|
 |
|
|
|
|
 |
D.Corcoran,
T.Quinn,
L.Cotter,
and
S.Fanning
(2005).
Relative contribution of target gene mutation and efflux to varying quinolone resistance in Irish Campylobacter isolates.
|
| |
FEMS Microbiol Lett,
253,
39-46.
|
 |
|
|
|
|
 |
E.W.Yu,
J.R.Aires,
G.McDermott,
and
H.Nikaido
(2005).
A periplasmic drug-binding site of the AcrB multidrug efflux pump: a crystallographic and site-directed mutagenesis study.
|
| |
J Bacteriol,
187,
6804-6815.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
I.Sobczak,
and
J.S.Lolkema
(2005).
Structural and mechanistic diversity of secondary transporters.
|
| |
Curr Opin Microbiol,
8,
161-167.
|
 |
|
|
|
|
 |
J.L.Ramos,
M.Martínez-Bueno,
A.J.Molina-Henares,
W.Terán,
K.Watanabe,
X.Zhang,
M.T.Gallegos,
R.Brennan,
and
R.Tobes
(2005).
The TetR family of transcriptional repressors.
|
| |
Microbiol Mol Biol Rev,
69,
326-356.
|
 |
|
|
|
|
 |
J.M.Pagès,
M.Masi,
and
J.Barbe
(2005).
Inhibitors of efflux pumps in Gram-negative bacteria.
|
| |
Trends Mol Med,
11,
382-389.
|
 |
|
|
|
|
 |
J.R.Aires,
and
H.Nikaido
(2005).
Aminoglycosides are captured from both periplasm and cytoplasm by the AcrD multidrug efflux transporter of Escherichia coli.
|
| |
J Bacteriol,
187,
1923-1929.
|
 |
|
|
|
|
 |
K.P.Langton,
P.J.Henderson,
and
R.B.Herbert
(2005).
Antibiotic resistance: multidrug efflux proteins, a common transport mechanism?
|
| |
Nat Prod Rep,
22,
439-451.
|
 |
|
|
|
|
 |
M.J.Lemieux,
C.Ference,
M.M.Cherney,
M.Wang,
C.Garen,
and
M.N.James
(2005).
The crystal structure of Rv0793, a hypothetical monooxygenase from M. tuberculosis.
|
| |
J Struct Funct Genomics,
6,
245-257.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.Jain,
and
J.S.Cox
(2005).
Interaction between polyketide synthase and transporter suggests coupled synthesis and export of virulence lipid in M. tuberculosis.
|
| |
PLoS Pathog,
1,
e2.
|
 |
|
|
|
|
 |
M.S.Wilke,
A.L.Lovering,
and
N.C.Strynadka
(2005).
Beta-lactam antibiotic resistance: a current structural perspective.
|
| |
Curr Opin Microbiol,
8,
525-533.
|
 |
|
|
|
|
 |
O.Lomovskaya,
and
M.Totrov
(2005).
Vacuuming the periplasm.
|
| |
J Bacteriol,
187,
1879-1883.
|
 |
|
|
|
|
 |
P.E.Klebba,
and
H.Nikaido
(2005).
The porinologist.
|
| |
J Bacteriol,
187,
8232-8236.
|
 |
|
|
|
|
 |
R.Chuanchuen,
T.Murata,
N.Gotoh,
and
H.P.Schweizer
(2005).
Substrate-dependent utilization of OprM or OpmH by the Pseudomonas aeruginosa MexJK efflux pump.
|
| |
Antimicrob Agents Chemother,
49,
2133-2136.
|
 |
|
|
|
|
 |
S.Silver,
and
l.e. .T.Phung
(2005).
A bacterial view of the periodic table: genes and proteins for toxic inorganic ions.
|
| |
J Ind Microbiol Biotechnol,
32,
587-605.
|
 |
|
|
|
|
 |
S.Y.Lau,
and
H.I.Zgurskaya
(2005).
Cell division defects in Escherichia coli deficient in the multidrug efflux transporter AcrEF-TolC.
|
| |
J Bacteriol,
187,
7815-7825.
|
 |
|
|
|
|
 |
T.T.Le,
S.Harlepp,
C.C.Guet,
K.Dittmar,
T.Emonet,
T.Pan,
and
P.Cluzel
(2005).
Real-time RNA profiling within a single bacterium.
|
| |
Proc Natl Acad Sci U S A,
102,
9160-9164.
|
 |
|
|
|
|
 |
T.W.Loo,
and
D.M.Clarke
(2005).
Recent progress in understanding the mechanism of P-glycoprotein-mediated drug efflux.
|
| |
J Membr Biol,
206,
173-185.
|
 |
|
|
|
|
 |
A.L.Davidson,
and
J.Chen
(2004).
ATP-binding cassette transporters in bacteria.
|
| |
Annu Rev Biochem,
73,
241-268.
|
 |
|
|
|
|
 |
A.M.Augustus,
T.Celaya,
F.Husain,
M.Humbard,
and
R.Misra
(2004).
Antibiotic-sensitive TolC mutants and their suppressors.
|
| |
J Bacteriol,
186,
1851-1860.
|
 |
|
|
|
|
 |
C.Ma,
and
G.Chang
(2004).
Structure of the multidrug resistance efflux transporter EmrE from Escherichia coli.
|
| |
Proc Natl Acad Sci U S A,
101,
2852-2857.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
D.Nehme,
X.Z.Li,
R.Elliot,
and
K.Poole
(2004).
Assembly of the MexAB-OprM multidrug efflux system of Pseudomonas aeruginosa: identification and characterization of mutations in mexA compromising MexA multimerization and interaction with MexB.
|
| |
J Bacteriol,
186,
2973-2983.
|
 |
|
|
|
|
 |
F.Husain,
M.Humbard,
and
R.Misra
(2004).
Interaction between the TolC and AcrA proteins of a multidrug efflux system of Escherichia coli.
|
| |
J Bacteriol,
186,
8533-8536.
|
 |
|
|
|
|
 |
H.Gerken,
and
R.Misra
(2004).
Genetic evidence for functional interactions between TolC and AcrA proteins of a major antibiotic efflux pump of Escherichia coli.
|
| |
Mol Microbiol,
54,
620-631.
|
 |
|
|
|
|
 |
H.Tokunaga,
K.Mitsuo,
S.Ichinose,
A.Omori,
A.Ventosa,
T.Nakae,
and
M.Tokunaga
(2004).
Salt-inducible multidrug efflux pump protein in the moderately halophilic bacterium Chromohalobacter sp.
|
| |
Appl Environ Microbiol,
70,
4424-4431.
|
 |
|
|
|
|
 |
J.K.Middlemiss,
and
K.Poole
(2004).
Differential impact of MexB mutations on substrate selectivity of the MexAB-OprM multidrug efflux pump of Pseudomonas aeruginosa.
|
| |
J Bacteriol,
186,
1258-1269.
|
 |
|
|
|
|
 |
J.R.Trudell,
and
R.A.Harris
(2004).
Are sobriety and consciousness determined by water in protein cavities?
|
| |
Alcohol Clin Exp Res,
28,
1-3.
|
 |
|
|
|
|
 |
K.Poole
(2004).
Efflux-mediated multiresistance in Gram-negative bacteria.
|
| |
Clin Microbiol Infect,
10,
12-26.
|
 |
|
|
|
|
 |
M.E.Guazzaroni,
W.Terán,
X.Zhang,
M.T.Gallegos,
and
J.L.Ramos
(2004).
TtgV bound to a complex operator site represses transcription of the promoter for the multidrug and solvent extrusion TtgGHI pump.
|
| |
J Bacteriol,
186,
2921-2927.
|
 |
|
|
|
|
 |
M.T.Facciotti,
S.Rouhani-Manshadi,
and
R.M.Glaeser
(2004).
Energy transduction in transmembrane ion pumps.
|
| |
Trends Biochem Sci,
29,
445-451.
|
 |
|
|
|
|
 |
R.Chollet,
J.Chevalier,
A.Bryskier,
and
J.M.Pagès
(2004).
The AcrAB-TolC pump is involved in macrolide resistance but not in telithromycin efflux in Enterobacter aerogenes and Escherichia coli.
|
| |
Antimicrob Agents Chemother,
48,
3621-3624.
|
 |
|
|
|
|
 |
S.Baucheron,
S.Tyler,
D.Boyd,
M.R.Mulvey,
E.Chaslus-Dancla,
and
A.Cloeckaert
(2004).
AcrAB-TolC directs efflux-mediated multidrug resistance in Salmonella enterica serovar typhimurium DT104.
|
| |
Antimicrob Agents Chemother,
48,
3729-3735.
|
 |
|
|
|
|
 |
S.Mullin,
N.Mani,
and
T.H.Grossman
(2004).
Inhibition of antibiotic efflux in bacteria by the novel multidrug resistance inhibitors biricodar (VX-710) and timcodar (VX-853).
|
| |
Antimicrob Agents Chemother,
48,
4171-4176.
|
 |
|
|
|
|
 |
T.Touzé,
J.Eswaran,
E.Bokma,
E.Koronakis,
C.Hughes,
and
V.Koronakis
(2004).
Interactions underlying assembly of the Escherichia coli AcrAB-TolC multidrug efflux system.
|
| |
Mol Microbiol,
53,
697-706.
|
 |
|
|
|
|
 |
V.Koronakis,
J.Eswaran,
and
C.Hughes
(2004).
Structure and function of TolC: the bacterial exit duct for proteins and drugs.
|
| |
Annu Rev Biochem,
73,
467-489.
|
 |
|
|
|
|
 |
W.M.Atkins
(2004).
Implications of the allosteric kinetics of cytochrome P450s.
|
| |
Drug Discov Today,
9,
478-484.
|
 |
|
|
|
|
 |
C.A.Elkins,
and
H.Nikaido
(2003).
Chimeric analysis of AcrA function reveals the importance of its C-terminal domain in its interaction with the AcrB multidrug efflux pump.
|
| |
J Bacteriol,
185,
5349-5356.
|
 |
|
|
|
|
 |
E.W.Yu,
J.R.Aires,
and
H.Nikaido
(2003).
AcrB multidrug efflux pump of Escherichia coli: composite substrate-binding cavity of exceptional flexibility generates its extremely wide substrate specificity.
|
| |
J Bacteriol,
185,
5657-5664.
|
 |
|
|
|
|
 |
H.Nikaido
(2003).
Molecular basis of bacterial outer membrane permeability revisited.
|
| |
Microbiol Mol Biol Rev,
67,
593-656.
|
 |
|
|
|
|
 |
I.T.Paulsen
(2003).
Multidrug efflux pumps and resistance: regulation and evolution.
|
| |
Curr Opin Microbiol,
6,
446-451.
|
 |
|
|
|
|
 |
M.Palmer
(2003).
Efflux of cytoplasmically acting antibiotics from gram-negative bacteria: periplasmic substrate capture by multicomponent efflux pumps inferred from their cooperative action with single-component transporters.
|
| |
J Bacteriol,
185,
5287-5289.
|
 |
|
|
|
|
 |
S.Murakami,
and
A.Yamaguchi
(2003).
Multidrug-exporting secondary transporters.
|
| |
Curr Opin Struct Biol,
13,
443-452.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
code is
shown on the right.
|
');
}
}
 |