spacer
spacer

PDBsum entry 1olc

Go to PDB code: 
protein ligands links
Complex (binding protein/peptide) PDB id
1olc

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
517 a.a. *
Ligands
LYS-LYS-LYS-ALA
IUM ×8
Waters ×337
* Residue conservation analysis
PDB id:
1olc
Name: Complex (binding protein/peptide)
Title: Oligo-peptide binding protein (oppa) complexed with lys-lys-lys-ala
Structure: Oligo-peptide binding protein. Chain: a. Synonym: oppa. Lys-lys-lys-ala. Chain: b. Engineered: yes. Other_details: co-crystallized with uranium acetate
Source: Salmonella typhimurium. Organism_taxid: 602.
Biol. unit: Dimer (from PQS)
Resolution:
2.10Å     R-factor:   0.143     R-free:   0.197
Authors: J.Tame,A.J.Wilkinson
Key ref:
J.R.Tame et al. (1995). The crystal structures of the oligopeptide-binding protein OppA complexed with tripeptide and tetrapeptide ligands. Structure, 3, 1395-1406. PubMed id: 8747465 DOI: 10.1016/S0969-2126(01)00276-3
Date:
10-Sep-95     Release date:   29-Jan-96    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P06202  (OPPA_SALTY) -  Periplasmic oligopeptide-binding protein OppA from Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720)
Seq:
Struc:
 
Seq:
Struc:
543 a.a.
517 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 

 
DOI no: 10.1016/S0969-2126(01)00276-3 Structure 3:1395-1406 (1995)
PubMed id: 8747465  
 
 
The crystal structures of the oligopeptide-binding protein OppA complexed with tripeptide and tetrapeptide ligands.
J.R.Tame, E.J.Dodson, G.Murshudov, C.F.Higgins, A.J.Wilkinson.
 
  ABSTRACT  
 
BACKGROUND: The periplasmic oligopeptide-binding protein OppA has a remarkably broad substrate specificity, binding peptides of two or five amino-acid residues with high affinity, but little regard to sequence. It is therefore an ideal system for studying how different chemical groups can be accommodated in a protein interior. The ability of the protein to bind peptides of different lengths has been studied by co-crystallising it with different ligands. RESULTS: Crystals of OppA from Salmonella typhimurium complexed with the peptides Lys-Lys-Lys (KKK) and Lys-Lys-Lys-Ala (KKKA) have been grown in the presence of uranyl ions which form important crystal contacts. These structures have been refined to 1.4 A and 2.1 A, respectively. The ligands are completely enclosed, their side chains pointing into large hydrated cavities and making few strong interactions with the protein. CONCLUSIONS: Tight peptide binding by OppA arises from strong hydrogen bonding and electrostatic interactions between the protein and the main chain of the ligand. Different basic side chains on the protein form salt bridges with the C terminus of peptide ligands of different lengths.
 
  Selected figure(s)  
 
Figure 1.
Figure 1. Stereo Cα trace of OppA in the closed, ligand bound form. The tri-lysine ligand is shown in thicker lines. Figure 1. Stereo Cα trace of OppA in the closed, ligand bound form. The tri-lysine ligand is shown in thicker lines.
Figure 5.
Figure 5. . Schematic diagram illustrating the interactions made by the main chain of the tri-lysine ligand with OppA. Protein residues are labelled. Hydrogen bonding and electrostatic interactions are indicated by the dotted lines. R1, R2 and R3 indicate the ligand side chains. Figure 5. . Schematic diagram illustrating the interactions made by the main chain of the tri-lysine ligand with OppA. Protein residues are labelled. Hydrogen bonding and electrostatic interactions are indicated by the dotted lines. R1, R2 and R3 indicate the ligand side chains.
 
  The above figures are reprinted by permission from Cell Press: Structure (1995, 3, 1395-1406) copyright 1995.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20582607 F.Tian, L.Yang, F.Lv, X.Luo, and Y.Pan (2011).
Why OppA protein can bind sequence-independent peptides? A combination of QM/MM, PB/SA, and structure-based QSAR analyses.
  Amino Acids, 40, 493-503.  
20808924 A.Dasgupta, K.Sureka, D.Mitra, B.Saha, S.Sanyal, A.K.Das, P.Chakrabarti, M.Jackson, B.Gicquel, M.Kundu, and J.Basu (2010).
An oligopeptide transporter of Mycobacterium tuberculosis regulates cytokine release and apoptosis of infected macrophages.
  PLoS One, 5, e12225.  
20453143 W.X.Zhang, B.B.Xie, X.L.Chen, S.Dong, X.Y.Zhang, B.C.Zhou, and Y.Z.Zhang (2010).
Domains III and I-2{alpha}, at the entrance of the binding cleft, play an important role in cold adaptation of the periplasmic dipeptide-binding protein (DppA) from the deep-sea psychrophilic bacterium Pseudoalteromonas sp. strain SM9913.
  Appl Environ Microbiol, 76, 4354-4361.  
19801540 M.J.Cuneo, L.S.Beese, and H.W.Hellinga (2009).
Structural analysis of semi-specific oligosaccharide recognition by a cellulose-binding protein of thermotoga maritima reveals adaptations for functional diversification of the oligopeptide periplasmic binding protein fold.
  J Biol Chem, 284, 33217-33223.
PDB codes: 2o7i 3i5o
18465087 P.Arun Prasad, and N.Gautham (2008).
A new peptide docking strategy using a mean field technique with mutually orthogonal Latin square sampling.
  J Comput Aided Mol Des, 22, 815-829.  
18007034 M.Tanabe, O.Mirza, T.Bertrand, H.S.Atkins, R.W.Titball, S.Iwata, K.A.Brown, and B.Byrne (2007).
Structures of OppA and PstS from Yersinia pestis indicate variability of interactions with transmembrane domains.
  Acta Crystallogr D Biol Crystallogr, 63, 1185-1193.
PDB codes: 2z22 2z23
16636888 G.Palmieri, A.Casbarra, I.Fiume, G.Catara, A.Capasso, G.Marino, S.Onesti, and M.Rossi (2006).
Identification of the first archaeal oligopeptide-binding protein from the hyperthermophile Aeropyrum pernix.
  Extremophiles, 10, 393-402.  
15281134 D.B.Sherman, S.Zhang, J.B.Pitner, and A.Tropsha (2004).
Evaluation of the relative stability of liganded versus ligand-free protein conformations using Simplicial Neighborhood Analysis of Protein Packing (SNAPP) method.
  Proteins, 56, 828-838.  
14977407 H.Daniel (2004).
Molecular and integrative physiology of intestinal peptide transport.
  Annu Rev Physiol, 66, 361-384.  
15557595 H.S.Garmory, and R.W.Titball (2004).
ATP-binding cassette transporters are targets for the development of antibacterial vaccines and therapies.
  Infect Immun, 72, 6757-6763.  
15502869 L.I.Leichert, and U.Jakob (2004).
Protein thiol modifications visualized in vivo.
  PLoS Biol, 2, e333.  
14679224 X.G.Wang, J.M.Kidder, J.P.Scagliotti, M.S.Klempner, R.Noring, and L.T.Hu (2004).
Analysis of differences in the functional properties of the substrate binding proteins of the Borrelia burgdorferi oligopeptide permease (Opp) operon.
  J Bacteriol, 186, 51-60.  
12923094 D.L.Taylor, P.N.Ward, C.D.Rapier, J.A.Leigh, and L.D.Bowler (2003).
Identification of a differentially expressed oligopeptide binding protein (OppA2) in Streptococcus uberis by representational difference analysis of cDNA.
  J Bacteriol, 185, 5210-5219.  
12960164 J.Heddle, D.J.Scott, S.Unzai, S.Y.Park, and J.R.Tame (2003).
Crystal structures of the liganded and unliganded nickel-binding protein NikA from Escherichia coli.
  J Biol Chem, 278, 50322-50329.
PDB codes: 1uiu 1uiv
14563878 J.Solomon, L.Su, S.Shyn, and A.D.Grossman (2003).
Isolation and characterization of mutants of the Bacillus subtilis oligopeptide permease with altered specificity of oligopeptide transport.
  J Bacteriol, 185, 6425-6433.  
12590143 P.Charbonnel, M.Lamarque, J.C.Piard, C.Gilbert, V.Juillard, and D.Atlan (2003).
Diversity of oligopeptide transport specificity in Lactococcus lactis species. A tool to unravel the role of OppA in uptake specificity.
  J Biol Chem, 278, 14832-14840.  
14568145 Y.Sanz, F.Toldrá, P.Renault, and B.Poolman (2003).
Specificity of the second binding protein of the peptide ABC-transporter (Dpp) of Lactococcus lactis IL1403.
  FEMS Microbiol Lett, 227, 33-38.  
11354461 N.J.Marshall, B.M.Grail, and J.W.Payne (2001).
Predominant torsional forms adopted by oligopeptide conformers in solution: parameters for molecular recognition.
  J Pept Sci, 7, 175-189.  
11320310 T.J.Oldfield (2001).
X-LIGAND: an application for the automated addition of flexible ligands into electron density.
  Acta Crystallogr D Biol Crystallogr, 57, 696-705.  
10692365 A.Picon, E.R.Kunji, F.C.Lanfermeijer, W.N.Konings, and B.Poolman (2000).
Specificity mutants of the binding protein of the oligopeptide transport system of Lactococcus lactis.
  J Bacteriol, 182, 1600-1608.  
10809391 B.M.Grail, and J.W.Payne (2000).
Predominant torsional forms adopted by dipeptide conformers in solution: parameters for molecular recognition.
  J Pept Sci, 6, 186-199.  
10899119 F.C.Lanfermeijer, F.J.Detmers, W.N.Konings, and B.Poolman (2000).
On the binding mechanism of the peptide receptor of the oligopeptide transport system of Lactococcus lactis.
  EMBO J, 19, 3649-3656.  
11092921 J.R.Tame (2000).
Ab initio phasing of a 4189-atom protein structure at 1.2 A resolution.
  Acta Crystallogr D Biol Crystallogr, 56, 1554-1559.  
10769143 Y.Sanz, F.C.Lanfermeijer, W.N.Konings, and B.Poolman (2000).
Kinetics and structural requirements for the binding protein of the Di-tripeptide transport system of Lactococcus lactis.
  Biochemistry, 39, 4855-4862.  
10545166 F.C.Lanfermeijer, A.Picon, W.N.Konings, and B.Poolman (1999).
Kinetics and consequences of binding of nona- and dodecapeptides to the oligopeptide binding protein (OppA) of Lactococcus lactis.
  Biochemistry, 38, 14440-14450.  
  10422831 T.G.Davies, R.E.Hubbard, and J.R.Tame (1999).
Relating structure to thermodynamics: the crystal structures and binding affinity of eight OppA-peptide complexes.
  Protein Sci, 8, 1432-1444.
PDB codes: 1b0h 1b1h 1b2h 1b3h 1b4h 1b5h 1b6h 1b7h
  9605322 J.E.Bruce, V.F.Smith, C.Liu, L.L.Randall, and R.D.Smith (1998).
The observation of chaperone-ligand noncovalent complexes with electrospray ionization mass spectrometry.
  Protein Sci, 7, 1180-1185.  
  9546157 V.Juillard, A.Guillot, D.Le Bars, and J.C.Gripon (1998).
Specificity of milk peptide utilization by Lactococcus lactis.
  Appl Environ Microbiol, 64, 1230-1236.  
9245406 S.H.Sleigh, J.R.Tame, E.J.Dodson, and A.J.Wilkinson (1997).
Peptide binding in OppA, the crystal structures of the periplasmic oligopeptide binding protein in the unliganded form and in complex with lysyllysine.
  Biochemistry, 36, 9747-9758.
PDB codes: 1rkm 2rkm
  9260287 V.F.Smith, S.J.Hardy, and L.L.Randall (1997).
Determination of the binding frame of the chaperone SecB within the physiological ligand oligopeptide-binding protein.
  Protein Sci, 6, 1746-1755.  
8807882 A.J.Wilkinson (1996).
Accommodating structurally diverse peptides in proteins.
  Chem Biol, 3, 519-524.  
8946852 J.R.Tame, S.H.Sleigh, A.J.Wilkinson, and J.E.Ladbury (1996).
The role of water in sequence-independent ligand binding by an oligopeptide transporter protein.
  Nat Struct Biol, 3, 998.
PDB codes: 1jet 1jeu 1jev
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer