spacer
spacer

PDBsum entry 1mir

Go to PDB code: 
protein links
Hydrolase PDB id
1mir

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
313 a.a. *
Waters ×99
* Residue conservation analysis
PDB id:
1mir
Name: Hydrolase
Title: Rat procathepsin b
Structure: Procathepsin b. Chain: a, b. Engineered: yes. Mutation: yes
Source: Rattus norvegicus. Norway rat. Organism_taxid: 10116. Variant: naturally occurring variant v223a. Expressed in: pichia pastoris. Expression_system_taxid: 4922
Resolution:
2.80Å     R-factor:   0.220     R-free:   0.270
Authors: M.Cygler,J.Sivaraman,P.Grochulski,R.Coulombe,A.C.Storer,J.S.Mort
Key ref:
M.Cygler et al. (1996). Structure of rat procathepsin B: model for inhibition of cysteine protease activity by the proregion. Structure, 4, 405-416. PubMed id: 8740363 DOI: 10.1016/S0969-2126(96)00046-9
Date:
12-Jan-96     Release date:   11-Jan-97    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P00787  (CATB_RAT) -  Cathepsin B from Rattus norvegicus
Seq:
Struc:
339 a.a.
313 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 4 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class: E.C.3.4.22.1  - cathepsin B.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Hydrolysis of proteins with broad specificity for peptide bonds. Preferentially cleaves -Arg-Arg-|-Xaa bonds in small molecule substrates (thus differing from cathepsin L). In addition to being an endopeptidase, shows peptidyl-dipeptidase activity, liberating C-terminal dipeptides.

 

 
DOI no: 10.1016/S0969-2126(96)00046-9 Structure 4:405-416 (1996)
PubMed id: 8740363  
 
 
Structure of rat procathepsin B: model for inhibition of cysteine protease activity by the proregion.
M.Cygler, J.Sivaraman, P.Grochulski, R.Coulombe, A.C.Storer, J.S.Mort.
 
  ABSTRACT  
 
BACKGROUND: Cysteine proteases of the papain superfamily are synthesized as inactive precursors with a 60-110 residue N-terminal prosegment. The propeptides are potent inhibitors of their parent proteases. Although the proregion binding mode has been elucidated for all other protease classes, that of the cysteine proteases remained elusive. RESULTS: We report the three-dimensional structure of rat procathepsin B, determined at 2.8 A resolution. The 62-residue proregion does not form a globular structure on its own, but folds along the surface of mature cathepsin B. The N-terminal part of the proregion packs against a surface loop, with Trp24p (p indicating the proregion) playing a pivotal role in these interactions. Inhibition occurs by blocking access to the active site: part of the proregion enters the substrate-binding cleft in a similar manner to a natural substrate, but in a reverse orientation. CONCLUSIONS: The structure of procathepsin B provides the first insight into the mode of interaction between a mature cysteine protease from the papain superfamily and its prosegment. Maturation results in only one loop of cathepsin B changing conformation significantly, replacing contacts lost by removal of the prosegment. Contrary to many other proproteases, no rearrangement of the N terminus occurs following activation. Binding of the prosegment involves interaction with regions of the enzyme remote from the substrate-binding cleft and suggests a novel strategy for inhibitor design. The region of the prosegment where the activating cleavage occurs makes little contact with the enzyme, leading to speculation on the activation mechanism.
 
  Selected figure(s)  
 
Figure 2.
Figure 2. Molecular surface of the mature portion of procathepsin B with the prosegment shown as a worm representation. The view is toward the active site. Figure 2. Molecular surface of the mature portion of procathepsin B with the prosegment shown as a worm representation. The view is toward the active site. (The figure was prepared using GRASP [[3]48].)
Figure 5.
Figure 5. Contacts between the prosegment and catB within the occluding-loop crevice. Hydrogen bonds are shown as dashed lines. The prosegment is drawn in dark lines. Figure 5. Contacts between the prosegment and catB within the occluding-loop crevice. Hydrogen bonds are shown as dashed lines. The prosegment is drawn in dark lines. (Figure was created using MOLSCRIPT [[3]47].)
 
  The above figures are reprinted by permission from Cell Press: Structure (1996, 4, 405-416) copyright 1996.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20853148 X.Yao, J.Zhang, J.Sun, and B.Liu (2011).
Recombinant expression, characterization and expressional analysis of clam Meretrix meretrix cathepsin B, an enzyme involved in nutrient digestion.
  Mol Biol Rep, 38, 1861-1868.  
20860624 M.Renko, U.Požgan, D.Majera, and D.Turk (2010).
Stefin A displaces the occluding loop of cathepsin B only by as much as required to bind to the active site cleft.
  FEBS J, 277, 4338-4345.
PDB code: 3k9m
19361282 C.Serbielle, S.Moreau, F.Veillard, E.Voldoire, A.Bézier, M.A.Mannucci, A.N.Volkoff, J.M.Drezen, G.Lalmanach, and E.Huguet (2009).
Identification of parasite-responsive cysteine proteases in Manduca sexta.
  Biol Chem, 390, 493-502.  
19143833 J.R.Pungercar, D.Caglic, M.Sajid, M.Dolinar, O.Vasiljeva, U.Pozgan, D.Turk, M.Bogyo, V.Turk, and B.Turk (2009).
Autocatalytic processing of procathepsin B is triggered by proenzyme activity.
  FEBS J, 276, 660-668.  
19479029 K.C.Pandey, D.T.Barkan, A.Sali, and P.J.Rosenthal (2009).
Regulatory elements within the prodomain of falcipain-2, a cysteine protease of the malaria parasite Plasmodium falciparum.
  PLoS One, 4, e5694.  
18515357 I.Redzynia, A.Ljunggren, M.Abrahamson, J.S.Mort, J.C.Krupa, M.Jaskolski, and G.Bujacz (2008).
Displacement of the occluding loop by the parasite protein, chagasin, results in efficient inhibition of human cathepsin B.
  J Biol Chem, 283, 22815-22825.
PDB codes: 3cbj 3cbk
17993455 N.Mallorquí-Fernández, S.P.Manandhar, G.Mallorquí-Fernández, I.Usón, K.Wawrzonek, T.Kantyka, M.Solà, I.B.Thøgersen, J.J.Enghild, J.Potempa, and F.X.Gomis-Rüth (2008).
A New Autocatalytic Activation Mechanism for Cysteine Proteases Revealed by Prevotella intermedia Interpain A.
  J Biol Chem, 283, 2871-2882.
PDB codes: 3bb7 3bba
17726009 D.Caglic, J.R.Pungercar, G.Pejler, V.Turk, and B.Turk (2007).
Glycosaminoglycans facilitate procathepsin B activation through disruption of propeptide-mature enzyme interactions.
  J Biol Chem, 282, 33076-33085.  
17617796 E.Wieczerzak, S.Rodziewicz-Motowidło, E.Jankowska, A.Giełdoń, and J.Ciarkowski (2007).
An enormously active and selective azapeptide inhibitor of cathepsin B.
  J Pept Sci, 13, 536-543.  
16650055 E.Wieczerzak, E.Jankowska, S.Rodziewicz-MotowidÅ‚o, A.GieÅ‚doÅ„, J.Lagiewka, Z.Grzonka, M.Abrahamson, A.Grubb, and D.Brömme (2005).
Novel azapeptide inhibitors of cathepsins B and K. Structural background to increased specificity for cathepsin B.
  J Pept Res, 66, 1.  
16164419 M.Horn, L.Dolecková-Maresová, L.Rulísek, M.Mása, O.Vasiljeva, B.Turk, T.Gan-Erdene, M.Baudys, and M.Mares (2005).
Activation processing of cathepsin H impairs recognition by its propeptide.
  Biol Chem, 386, 941-947.  
15195995 A.Rossi, Q.Deveraux, B.Turk, and A.Sali (2004).
Comprehensive search for cysteine cathepsins in the human genome.
  Biol Chem, 385, 363-372.  
14585834 D.H.Ebert, S.A.Kopecky-Bromberg, and T.S.Dermody (2004).
Cathepsin B Is Inhibited in Mutant Cells Selected during Persistent Reovirus Infection.
  J Biol Chem, 279, 3837-3851.  
13679369 A.N.Hodder, D.R.Drew, V.C.Epa, M.Delorenzi, R.Bourgon, S.K.Miller, R.L.Moritz, D.F.Frecklington, R.J.Simpson, T.P.Speed, R.N.Pike, and B.S.Crabb (2003).
Enzymic, phylogenetic, and structural characterization of the unusual papain-like protease domain of Plasmodium falciparum SERA5.
  J Biol Chem, 278, 48169-48177.  
12860980 D.N.Li, S.P.Matthews, A.N.Antoniou, D.Mazzeo, and C.Watts (2003).
Multistep autoactivation of asparaginyl endopeptidase in vitro and in vivo.
  J Biol Chem, 278, 38980-38990.  
12554931 D.Turk, and G.Guncar (2003).
Lysosomal cysteine proteases (cathepsins): promising drug targets.
  Acta Crystallogr D Biol Crystallogr, 59, 203-213.  
12874290 R.Filipek, M.Rzychon, A.Oleksy, M.Gruca, A.Dubin, J.Potempa, and M.Bochtler (2003).
The Staphostatin-staphopain complex: a forward binding inhibitor in complex with its target cysteine protease.
  J Biol Chem, 278, 40959-40966.
PDB code: 1pxv
12108538 G.Lalmanach, A.Boulangé, C.Serveau, F.Lecaille, J.Scharfstein, F.Gauthier, and E.Authié (2002).
Congopain from Trypanosoma congolense: drug target and vaccine candidate.
  Biol Chem, 383, 739-749.  
11910036 M.Horn, M.Baudys, Z.Voburka, I.Kluh, J.Vondrásek, and M.Mares (2002).
Free-thiol Cys331 exposed during activation process is critical for native tetramer structure of cathepsin C (dipeptidyl peptidase I).
  Protein Sci, 11, 933-943.  
11258881 C.Therrien, P.Lachance, T.Sulea, E.O.Purisima, H.Qi, E.Ziomek, A.Alvarez-Hernandez, W.R.Roush, and R.Ménard (2001).
Cathepsins X and B can be differentiated through their respective mono- and dipeptidyl carboxypeptidase activities.
  Biochemistry, 40, 2702-2711.  
11726493 D.Turk, V.Janjić, I.Stern, M.Podobnik, D.Lamba, S.W.Dahl, C.Lauritzen, J.Pedersen, V.Turk, and B.Turk (2001).
Structure of human dipeptidyl peptidase I (cathepsin C): exclusion domain added to an endopeptidase framework creates the machine for activation of granular serine proteases.
  EMBO J, 20, 6570-6582.
PDB code: 1k3b
11322895 F.Lecaille, E.Authié, T.Moreau, C.Serveau, F.Gauthier, and G.Lalmanach (2001).
Subsite specificity of trypanosomal cathepsin L-like cysteine proteases. Probing the S2 pocket with phenylalanine-derived amino acids.
  Eur J Biochem, 268, 2733-2741.  
11517939 R.Ménard, C.Therrien, P.Lachance, T.Sulea, H.Qo, A.D.Alvarez-Hernandez, and W.R.Roush (2001).
Cathepsins X and B display distinct activity profiles that can be exploited for inhibitor design.
  Biol Chem, 382, 839-845.  
11532926 V.Turk, B.Turk, and D.Turk (2001).
Lysosomal cysteine proteases: facts and opportunities.
  EMBO J, 20, 4629-4633.  
11048948 D.Greenbaum, K.F.Medzihradszky, A.Burlingame, and M.Bogyo (2000).
Epoxide electrophiles as activity-dependent cysteine protease profiling and discovery tools.
  Chem Biol, 7, 569-581.  
10716634 R.I.Brinkworth, J.F.Tort, P.J.Brindley, and J.P.Dalton (2000).
Phylogenetic relationships and theoretical model of human cathepsin W (lymphopain), a cysteine proteinase from cytotoxic T lymphocytes.
  Int J Biochem Cell Biol, 32, 373-384.  
10681429 T.F.Kagawa, J.C.Cooney, H.M.Baker, S.McSweeney, M.Liu, S.Gubba, J.M.Musser, and E.N.Baker (2000).
Crystal structure of the zymogen form of the group A Streptococcus virulence factor SpeB: an integrin-binding cysteine protease.
  Proc Natl Acad Sci U S A, 97, 2235-2240.
PDB code: 1dki
10092883 B.Turk, I.Dolenc, B.Lenarcic, I.Krizaj, V.Turk, J.G.Bieth, and I.Björk (1999).
Acidic pH as a physiological regulator of human cathepsin L activity.
  Eur J Biochem, 259, 926-932.  
10350606 C.Czaplewski, Z.Grzonka, M.Jaskólski, F.Kasprzykowski, M.Kozak, E.Politowska, and J.Ciarkowski (1999).
Binding modes of a new epoxysuccinyl-peptide inhibitor of cysteine proteases. Where and how do cysteine proteases express their selectivity?
  Biochim Biophys Acta, 1431, 290-305.  
10601010 C.M.Hosfield, J.S.Elce, P.L.Davies, and Z.Jia (1999).
Crystal structure of calpain reveals the structural basis for Ca(2+)-dependent protease activity and a novel mode of enzyme activation.
  EMBO J, 18, 6880-6889.
PDB code: 1df0
10384960 E.Krepela, J.Procházka, and B.Kárová (1999).
Regulation of cathepsin B activity by cysteine and related thiols.
  Biol Chem, 380, 541-551.  
10022822 G.Guncar, G.Pungercic, I.Klemencic, V.Turk, and D.Turk (1999).
Crystal structure of MHC class II-associated p41 Ii fragment bound to cathepsin L reveals the structural basis for differentiation between cathepsins L and S.
  EMBO J, 18, 793-803.
PDB code: 1icf
9893980 J.M.LaLonde, B.Zhao, C.A.Janson, K.J.D'Alessio, M.S.McQueney, M.J.Orsini, C.M.Debouck, and W.W.Smith (1999).
The crystal structure of human procathepsin K.
  Biochemistry, 38, 862-869.
PDB code: 1by8
  10048321 J.Sivaraman, M.Lalumière, R.Ménard, and M.Cygler (1999).
Crystal structure of wild-type human procathepsin K.
  Protein Sci, 8, 283-290.
PDB code: 7pck
9890884 K.E.Lukong, M.A.Elsliger, J.S.Mort, M.Potier, and A.V.Pshezhetsky (1999).
Identification of UDP-N-acetylglucosamine-phosphotransferase-binding sites on the lysosomal proteases, cathepsins A, B, and D.
  Biochemistry, 38, 73-80.  
10410800 M.E.McGrath (1999).
The lysosomal cysteine proteases.
  Annu Rev Biophys Biomol Struct, 28, 181-204.  
10447692 T.Okamoto, A.Yuki, N.Mitsuhashi, T.Minamikawa, and T.Mimamikawa (1999).
Asparaginyl endopeptidase (VmPE-1) and autocatalytic processing synergistically activate the vacuolar cysteine proteinase (SH-EP).
  Eur J Biochem, 264, 223-232.  
  10456870 Y.V.Matsuka, S.Pillai, S.Gubba, J.M.Musser, and S.B.Olmsted (1999).
Fibrinogen cleavage by the Streptococcus pyogenes extracellular cysteine protease and generation of antibodies that inhibit enzyme proteolytic activity.
  Infect Immun, 67, 4326-4333.  
9776083 A.A.Sinha, B.J.Quast, M.J.Wilson, P.K.Reddy, D.F.Gleason, and B.F.Sloane (1998).
Codistribution of procathepsin B and mature cathepsin B forms in human prostate tumors detected by confocal and immunofluorescence microscopy.
  Anat Rec, 252, 281-289.  
  9568890 A.R.Khan, and M.N.James (1998).
Molecular mechanisms for the conversion of zymogens to active proteolytic enzymes.
  Protein Sci, 7, 815-836.  
  9524065 D.Turk, G.Guncar, M.Podobnik, and B.Turk (1998).
Revised definition of substrate binding sites of papain-like cysteine proteases.
  Biol Chem, 379, 137-147.  
  9655332 M.E.McGrath, J.T.Palmer, D.Brömme, and J.R.Somoza (1998).
Crystal structure of human cathepsin S.
  Protein Sci, 7, 1294-1302.  
  9524060 M.T.Stubbs, M.Renatus, and W.Bode (1998).
An active zymogen: unravelling the mystery of tissue-type plasminogen activator.
  Biol Chem, 379, 95.  
9406551 A.R.Khan, M.M.Cherney, N.I.Tarasova, and M.N.James (1997).
Structural characterization of activation 'intermediate 2' on the pathway to human gastricsin.
  Nat Struct Biol, 4, 1010-1015.
PDB code: 1avf
9092819 J.L.Sohl, A.K.Shiau, S.D.Rader, B.J.Wilk, and D.A.Agard (1997).
Inhibition of alpha-lytic protease by pro region C-terminal steric occlusion of the active site.
  Biochemistry, 36, 3894-3902.  
9033587 M.E.McGrath, J.L.Klaus, M.G.Barnes, and D.Brömme (1997).
Crystal structure of human cathepsin K complexed with a potent inhibitor.
  Nat Struct Biol, 4, 105-109.
PDB code: 1mem
  9260273 S.A.Gillmor, C.S.Craik, and R.J.Fletterick (1997).
Structural determinants of specificity in the cysteine protease cruzain.
  Protein Sci, 6, 1603-1611.
PDB codes: 1aim 2aim
9233788 S.C.Johnston, C.N.Larsen, W.J.Cook, K.D.Wilkinson, and C.P.Hill (1997).
Crystal structure of a deubiquitinating enzyme (human UCH-L3) at 1.8 A resolution.
  EMBO J, 16, 3787-3796.
PDB code: 1uch
  9165062 W.Baumeister, Z.Cejka, M.Kania, and E.Seemüller (1997).
The proteasome: a macromolecular assembly designed to confine proteolysis to a nanocompartment.
  Biol Chem, 378, 121-130.  
8973203 D.Maes, J.Bouckaert, F.Poortmans, L.Wyns, and Y.Looze (1996).
Structure of chymopapain at 1.7 A resolution.
  Biochemistry, 35, 16292-16298.
PDB code: 1yal
  8896443 R.Coulombe, P.Grochulski, J.Sivaraman, R.Ménard, J.S.Mort, and M.Cygler (1996).
Structure of human procathepsin L reveals the molecular basis of inhibition by the prosegment.
  EMBO J, 15, 5492-5503.
PDB code: 1cjl
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer