spacer
spacer

PDBsum entry 1md9

Go to PDB code: 
protein ligands links
Ligase PDB id
1md9

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
536 a.a. *
Ligands
AMP
DBH
* Residue conservation analysis
PDB id:
1md9
Name: Ligase
Title: Crystal structure of dhbe in complex with dhb and amp
Structure: 2,3-dihydroxybenzoate-amp ligase. Chain: a. Synonym: dhbe, dihydroxybenzoic acid-activating enzyme. Engineered: yes
Source: Bacillus subtilis. Organism_taxid: 1423. Strain: m15 atcc 21332. Expressed in: escherichia coli. Expression_system_taxid: 562
Resolution:
2.80Å     R-factor:   0.232     R-free:   0.288
Authors: J.J.May,N.Kessler,M.A.Marahiel,M.T.Stubbs
Key ref:
J.J.May et al. (2002). Crystal structure of DhbE, an archetype for aryl acid activating domains of modular nonribosomal peptide synthetases. Proc Natl Acad Sci U S A, 99, 12120-12125. PubMed id: 12221282 DOI: 10.1073/pnas.182156699
Date:
07-Aug-02     Release date:   11-Sep-02    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P40871  (DHBE_BACSU) -  2,3-dihydroxybenzoate-AMP ligase from Bacillus subtilis (strain 168)
Seq:
Struc:
 
Seq:
Struc:
539 a.a.
536 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 3 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class: E.C.6.2.1.71  - 2,3-dihydroxybenzoate--[aryl-carrier protein] ligase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: 2,3-dihydroxybenzoate + holo-[ACP] + ATP = 2,3-dihydroxybenzoyl-[ACP] + AMP + diphosphate
2,3-dihydroxybenzoate
Bound ligand (Het Group name = DBH)
corresponds exactly
+ holo-[ACP]
+ ATP
= 2,3-dihydroxybenzoyl-[ACP]
+
AMP
Bound ligand (Het Group name = AMP)
corresponds exactly
+ diphosphate
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1073/pnas.182156699 Proc Natl Acad Sci U S A 99:12120-12125 (2002)
PubMed id: 12221282  
 
 
Crystal structure of DhbE, an archetype for aryl acid activating domains of modular nonribosomal peptide synthetases.
J.J.May, N.Kessler, M.A.Marahiel, M.T.Stubbs.
 
  ABSTRACT  
 
The synthesis of the catecholic siderophore bacillibactin is accomplished by the nonribosomal peptide synthetase (NRPS) encoded by the dhb operon. DhbE is responsible for the initial step in bacillibactin synthesis, the activation of the aryl acid 2,3-dihydroxybenzoate (DHB). The stand-alone adenylation (A) domain DhbE, the structure of which is presented here, exhibits greatest homology to other NRPS A-domains, acyl-CoA ligases and luciferases. It's structure is solved in three different states, without the ligands ATP and DHB (native state), with the product DHB-AMP (adenylate state) and with the hydrolyzed product AMP and DHB (hydrolyzed state). The 59.9-kDa protein folds into two domains, with the active site at the interface between them. In contrast to previous proposals of a major reorientation of the large and small domains on substrate binding, we observe only local structural rearrangements. The structure of the phosphate binding loop could be determined, a motif common to many adenylate-forming enzymes, as well as with bound DHB-adenylate and the hydrolyzed product DHB*AMP. Based on the structure and amino acid sequence alignments, an adapted specificity conferring code for aryl acid activating domains is proposed, allowing assignment of substrate specificity to gene products of previously unknown function.
 
  Selected figure(s)  
 
Figure 1.
Fig 1. (A) Bacillibactin NRPS cluster from B. subtilis with the corresponding domain organization of synthetase modules. ICL, isochorismatase; C, condensation domain; T, thiolation domain. (B) Structure of the trilactone Bacillibactin, with one of the catecholic moiety activated by DhbE shaded in gray. (C) The DhbE-dependent aryl acid adenylation in peptide synthesis is an ATP-consuming process leading to a protein-bound adenylate.
Figure 5.
Fig 5. Determination of the specificity conferring code of ca-activating domains. The primary sequence between core A4 and A5 (see Fig. 3) of nine ca activating domains are aligned by using the Clustal method. Based on the structural data of DhbE, extraction of the 10 residues conferring the substrate specificity leads to the identification of the signature sequence of ca activating A domain. The asterisks define the residues that allow discrimination between DHB and SAL.
 
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20306296 N.R.Tawari, and M.S.Degani (2011).
Predictive models for nucleoside bisubstrate analogs as inhibitors of siderophore biosynthesis in Mycobacterium tuberculosis: pharmacophore mapping and chemometric QSAR study.
  Mol Divers, 15, 435-444.  
20516619 A.K.Bera, V.Atanasova, S.Gamage, H.Robinson, and J.F.Parsons (2010).
Structure of the D-alanylgriseoluteic acid biosynthetic protein EhpF, an atypical member of the ANL superfamily of adenylating enzymes.
  Acta Crystallogr D Biol Crystallogr, 66, 664-672.
PDB code: 3l2k
20359185 A.L.Sikora, D.J.Wilson, C.C.Aldrich, and J.S.Blanchard (2010).
Kinetic and inhibition studies of dihydroxybenzoate-AMP ligase from Escherichia coli.
  Biochemistry, 49, 3648-3657.  
20225828 B.D.Ames, and C.T.Walsh (2010).
Anthranilate-activating modules from fungal nonribosomal peptide assembly lines.
  Biochemistry, 49, 3351-3365.  
  20345662 H.A.Crosby, E.K.Heiniger, C.S.Harwood, and J.C.Escalante-Semerena (2010).
Reversible N epsilon-lysine acetylation regulates the activity of acyl-CoA synthetases involved in anaerobic benzoate catabolism in Rhodopseudomonas palustris.
  Mol Microbiol, 76, 874-888.  
20089862 K.Fujiwara, N.Maita, H.Hosaka, K.Okamura-Ikeda, A.Nakagawa, and H.Taniguchi (2010).
Global conformational change associated with the two-step reaction catalyzed by Escherichia coli lipoate-protein ligase A.
  J Biol Chem, 285, 9971-9980.
PDB codes: 3a7a 3a7l 3a7r 3a7u
20577996 M.Moon, and S.G.Van Lanen (2010).
Characterization of a dual specificity aryl acid adenylation enzyme with dual function in nikkomycin biosynthesis.
  Biopolymers, 93, 791-801.  
21080397 R.Teta, M.Gurgui, E.J.Helfrich, S.Künne, A.Schneider, G.Van Echten-Deckert, A.Mangoni, and J.Piel (2010).
Genome mining reveals trans-AT polyketide synthase directed antibiotic biosynthesis in the bacterial phylum bacteroidetes.
  Chembiochem, 11, 2506-2512.  
19923209 T.V.Lee, L.J.Johnson, R.D.Johnson, A.Koulman, G.A.Lane, J.S.Lott, and V.L.Arcus (2010).
Structure of a eukaryotic nonribosomal peptide synthetase adenylation domain that activates a large hydroxamate amino acid in siderophore biosynthesis.
  J Biol Chem, 285, 2415-2427.
PDB code: 3ite
19636447 A.Koglin, and C.T.Walsh (2009).
Structural insights into nonribosomal peptide enzymatic assembly lines.
  Nat Prod Rep, 26, 987.  
  19610673 A.M.Gulick (2009).
Conformational dynamics in the Acyl-CoA synthetases, adenylation domains of non-ribosomal peptide synthetases, and firefly luciferase.
  ACS Chem Biol, 4, 811-827.  
  19724119 J.Zaitseva, K.M.Meneely, and A.L.Lamb (2009).
Structure of Escherichia coli malate dehydrogenase at 1.45 A resolution.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 65, 866-869.
PDB code: 3hhp
19201978 K.Ishida, M.Welker, G.Christiansen, S.Cadel-Six, C.Bouchier, E.Dittmann, C.Hertweck, and N.Tandeau de Marsac (2009).
Plasticity and evolution of aeruginosin biosynthesis in cyanobacteria.
  Appl Environ Microbiol, 75, 2017-2026.  
19544569 M.B.Shah, C.Ingram-Smith, L.L.Cooper, J.Qu, Y.Meng, K.S.Smith, and A.M.Gulick (2009).
The 2.1 A crystal structure of an acyl-CoA synthetase from Methanosarcina acetivorans reveals an alternate acyl-binding pocket for small branched acyl substrates.
  Proteins, 77, 685-698.
PDB code: 3etc
19182784 P.Arora, A.Goyal, V.T.Natarajan, E.Rajakumara, P.Verma, R.Gupta, M.Yousuf, O.A.Trivedi, D.Mohanty, A.Tyagi, R.Sankaranarayanan, and R.S.Gokhale (2009).
Mechanistic and functional insights into fatty acid activation in Mycobacterium tuberculosis.
  Nat Chem Biol, 5, 166-173.
PDB code: 3e53
19350396 R.E.Frederick, J.A.Mayfield, and J.L.DuBois (2009).
Iron trafficking as an antimicrobial target.
  Biometals, 22, 583-593.  
19320426 R.Wu, A.S.Reger, X.Lu, A.M.Gulick, and D.Dunaway-Mariano (2009).
The mechanism of domain alternation in the acyl-adenylate forming ligase superfamily member 4-chlorobenzoate: coenzyme A ligase.
  Biochemistry, 48, 4115-4125.
PDB code: 3dlp
19182782 S.Schmelz, N.Kadi, S.A.McMahon, L.Song, D.Oves-Costales, M.Oke, H.Liu, K.A.Johnson, L.G.Carter, C.H.Botting, M.F.White, G.L.Challis, and J.H.Naismith (2009).
AcsD catalyzes enantioselective citrate desymmetrization in siderophore biosynthesis.
  Nat Chem Biol, 5, 174-182.
PDB codes: 2w02 2w03 2w04
19053762 A.Gupte, H.I.Boshoff, D.J.Wilson, J.Neres, N.P.Labello, R.V.Somu, C.Xing, C.E.Barry, and C.C.Aldrich (2008).
Inhibition of siderophore biosynthesis by 2-triazole substituted analogues of 5'-O-[N-(salicyl)sulfamoyl]adenosine: antibacterial nucleosides effective against Mycobacterium tuberculosis.
  J Med Chem, 51, 7495-7507.  
18620418 A.S.Reger, R.Wu, D.Dunaway-Mariano, and A.M.Gulick (2008).
Structural characterization of a 140 degrees domain movement in the two-step reaction catalyzed by 4-chlorobenzoate:CoA ligase.
  Biochemistry, 47, 8016-8025.
PDB codes: 3cw8 3cw9
18583577 A.Tanovic, S.A.Samel, L.O.Essen, and M.A.Marahiel (2008).
Crystal structure of the termination module of a nonribosomal peptide synthetase.
  Science, 321, 659-663.
PDB code: 2vsq
18502859 G.Mercado, M.Tello, M.Marín, O.Monasterio, and R.Lagos (2008).
The production in vivo of microcin E492 with antibacterial activity depends on salmochelin and EntF.
  J Bacteriol, 190, 5464-5471.  
18264582 H.Fraga (2008).
Firefly luminescence: a historical perspective and recent developments.
  Photochem Photobiol Sci, 7, 146-158.  
18158259 J.A.Ferreras, K.L.Stirrett, X.Lu, J.S.Ryu, C.E.Soll, D.S.Tan, and L.E.Quadri (2008).
Mycobacterial phenolic glycolipid virulence factor biosynthesis: mechanism and small-molecule inhibition of polyketide chain initiation.
  Chem Biol, 15, 51-61.  
18928302 J.Neres, D.J.Wilson, L.Celia, B.J.Beck, and C.C.Aldrich (2008).
Aryl acid adenylating enzymes involved in siderophore biosynthesis: fluorescence polarization assay, ligand specificity, and discovery of non-nucleoside inhibitors via high-throughput screening.
  Biochemistry, 47, 11735-11749.  
18690677 J.Neres, N.P.Labello, R.V.Somu, H.I.Boshoff, D.J.Wilson, J.Vannada, L.Chen, C.E.Barry, E.M.Bennett, and C.C.Aldrich (2008).
Inhibition of siderophore biosynthesis in Mycobacterium tuberculosis with nucleoside bisubstrate analogues: structure-activity relationships of the nucleobase domain of 5'-O-[N-(salicyl)sulfamoyl]adenosine.
  J Med Chem, 51, 5349-5370.  
18568158 J.S.Cisar, and D.S.Tan (2008).
Small molecule inhibition of microbial natural product biosynthesis-an emerging antibiotic strategy.
  Chem Soc Rev, 37, 1320-1329.  
18959400 N.P.Labello, E.M.Bennett, D.M.Ferguson, and C.C.Aldrich (2008).
Quantitative three dimensional structure linear interaction energy model of 5'-O-[N-(salicyl)sulfamoyl]adenosine and the aryl acid adenylating enzyme MbtA.
  J Med Chem, 51, 7154-7160.  
18264581 V.Viviani (2008).
Introduction to the themed issue on bioluminescence.
  Photochem Photobiol Sci, 7, 145.  
18762421 X.Lu, H.Zhang, P.J.Tonge, and D.S.Tan (2008).
Mechanism-based inhibitors of MenE, an acyl-CoA synthetase involved in bacterial menaquinone biosynthesis.
  Bioorg Med Chem Lett, 18, 5963-5966.  
18973344 Y.Tian, D.H.Suk, F.Cai, D.Crich, and A.D.Mesecar (2008).
Bacillus anthracis o-succinylbenzoyl-CoA synthetase: reaction kinetics and a novel inhibitor mimicking its reaction intermediate.
  Biochemistry, 47, 12434-12447.  
18990191 Z.Heather, M.T.Holden, K.F.Steward, J.Parkhill, L.Song, G.L.Challis, C.Robinson, N.Davis-Poynter, and A.S.Waller (2008).
A novel streptococcal integrative conjugative element involved in iron acquisition.
  Mol Microbiol, 70, 1274-1292.  
17601782 A.D.Berti, N.J.Greve, Q.H.Christensen, and M.G.Thomas (2007).
Identification of a biosynthetic gene cluster and the six associated lipopeptides involved in swarming motility of Pseudomonas syringae pv. tomato DC3000.
  J Bacteriol, 189, 6312-6323.  
17630307 A.Renier, E.Vivien, S.Cociancich, P.Letourmy, X.Perrier, P.C.Rott, and M.Royer (2007).
Substrate specificity-conferring regions of the nonribosomal peptide synthetase adenylation domains involved in albicidin pathotoxin biosynthesis are highly conserved within the species Xanthomonas albilineans.
  Appl Environ Microbiol, 73, 5523-5530.  
17497934 A.S.Reger, J.M.Carney, and A.M.Gulick (2007).
Biochemical and crystallographic analysis of substrate binding and conformational changes in acetyl-CoA synthetase.
  Biochemistry, 46, 6536-6546.
PDB codes: 2p20 2p2b 2p2f 2p2j 2p2m 2p2q
17513367 A.Szarecka, Y.Xu, and P.Tang (2007).
Dynamics of firefly luciferase inhibition by general anesthetics: Gaussian and anisotropic network analyses.
  Biophys J, 93, 1895-1905.  
  17350930 C.Ingram-Smith, and K.S.Smith (2007).
AMP-forming acetyl-CoA synthetases in Archaea show unexpected diversity in substrate utilization.
  Archaea, 2, 95.  
17967002 C.Qiao, A.Gupte, H.I.Boshoff, D.J.Wilson, E.M.Bennett, R.V.Somu, C.E.Barry, and C.C.Aldrich (2007).
5'-O-[(N-acyl)sulfamoyl]adenosines as antitubercular agents that inhibit MbtA: an adenylation enzyme required for siderophore biosynthesis of the mycobactins.
  J Med Chem, 50, 6080-6094.  
17542590 J.S.Cisar, J.A.Ferreras, R.K.Soni, L.E.Quadri, and D.S.Tan (2007).
Exploiting ligand conformation in selective inhibition of non-ribosomal peptide synthetase amino acid adenylation with designed macrocyclic small molecules.
  J Am Chem Soc, 129, 7752-7753.  
17804665 M.Miethke, and M.A.Marahiel (2007).
Siderophore-based iron acquisition and pathogen control.
  Microbiol Mol Biol Rev, 71, 413-451.  
17584611 P.Schneider, M.Weber, K.Rosenberger, and D.Hoffmeister (2007).
A one-pot chemoenzymatic synthesis for the universal precursor of antidiabetes and antiviral bis-indolylquinones.
  Chem Biol, 14, 635-644.  
16632253 E.J.Drake, D.A.Nicolai, and A.M.Gulick (2006).
Structure of the EntB multidomain nonribosomal peptide synthetase and functional analysis of its interaction with the EntE adenylation domain.
  Chem Biol, 13, 409-419.
PDB code: 2fq1
16464627 G.Niu, G.Liu, Y.Tian, and H.Tan (2006).
SanJ, an ATP-dependent picolinate-CoA ligase, catalyzes the conversion of picolinate to picolinate-CoA during nikkomycin biosynthesis in Streptomyces ansochromogenes.
  Metab Eng, 8, 183-195.  
16524919 J.Grünewald, and M.A.Marahiel (2006).
Chemoenzymatic and template-directed synthesis of bioactive macrocyclic peptides.
  Microbiol Mol Biol Rev, 70, 121-146.  
17020283 J.Vannada, E.M.Bennett, D.J.Wilson, H.I.Boshoff, C.E.Barry, and C.C.Aldrich (2006).
Design, synthesis, and biological evaluation of beta-ketosulfonamide adenylation inhibitors as potential antitubercular agents.
  Org Lett, 8, 4707-4710.  
16512902 M.Ehling-Schulz, M.Fricker, H.Grallert, P.Rieck, M.Wagner, and S.Scherer (2006).
Cereulide synthetase gene cluster from emetic Bacillus cereus: structure and location on a mega virulence plasmid related to Bacillus anthracis toxin plasmid pXO1.
  BMC Microbiol, 6, 20.  
16889643 M.Miethke, O.Klotz, U.Linne, J.J.May, C.L.Beckering, and M.A.Marahiel (2006).
Ferri-bacillibactin uptake and hydrolysis in Bacillus subtilis.
  Mol Microbiol, 61, 1413-1427.  
16403027 M.Miethke, P.Bisseret, C.L.Beckering, D.Vignard, J.Eustache, and M.A.Marahiel (2006).
Inhibition of aryl acid adenylation domains involved in bacterial siderophore synthesis.
  FEBS J, 273, 409-419.  
17181146 R.V.Somu, D.J.Wilson, E.M.Bennett, H.I.Boshoff, L.Celia, B.J.Beck, C.E.Barry, and C.C.Aldrich (2006).
Antitubercular nucleosides that inhibit siderophore biosynthesis: SAR of the glycosyl domain.
  J Med Chem, 49, 7623-7635.  
16541080 T.Nakatsu, S.Ichiyama, J.Hiratake, A.Saldanha, N.Kobashi, K.Sakata, and H.Kato (2006).
Structural basis for the spectral difference in luciferase bioluminescence.
  Nature, 440, 372-376.
PDB codes: 2d1q 2d1r 2d1s 2d1t
16214297 C.Chutrakul, and J.F.Peberdy (2005).
Isolation and characterisation of a partial peptide synthetase gene from Trichoderma asperellum.
  FEMS Microbiol Lett, 252, 257-265.  
16407990 J.A.Ferreras, J.S.Ryu, F.Di Lello, D.S.Tan, and L.E.Quadri (2005).
Small-molecule inhibition of siderophore biosynthesis in Mycobacterium tuberculosis and Yersinia pestis.
  Nat Chem Biol, 1, 29-32.  
15955059 J.J.May, R.Finking, F.Wiegeshoff, T.T.Weber, N.Bandur, U.Koert, and M.A.Marahiel (2005).
Inhibition of the D-alanine:D-alanyl carrier protein ligase from Bacillus subtilis increases the bacterium's susceptibility to antibiotics that target the cell wall.
  FEBS J, 272, 2993-3003.  
15691327 L.Di Vincenzo, I.Grgurina, and S.Pascarella (2005).
In silico analysis of the adenylation domains of the freestanding enzymes belonging to the eucaryotic nonribosomal peptide synthetase-like family.
  FEBS J, 272, 929-941.  
15678426 N.Gaitatzis, B.Kunze, and R.Müller (2005).
Novel insights into siderophore formation in myxobacteria.
  Chembiochem, 6, 365-374.  
15686561 S.K.Samanta, and C.S.Harwood (2005).
Use of the Rhodopseudomonas palustris genome sequence to identify a single amino acid that contributes to the activity of a coenzyme A ligase with chlorinated substrates.
  Mol Microbiol, 55, 1151-1159.  
16408055 S.Lautru, R.J.Deeth, L.M.Bailey, and G.L.Challis (2005).
Discovery of a new peptide natural product by Streptomyces coelicolor genome mining.
  Nat Chem Biol, 1, 265-269.  
16320629 U.Holzgrabe (2005).
[New pathways to selective anti-infective agents]
  Pharm Unserer Zeit, 34, 446-447.  
  15077674 M.Royer, L.Costet, E.Vivien, M.Bes, A.Cousin, A.Damais, I.Pieretti, A.Savin, S.Megessier, M.Viard, R.Frutos, D.W.Gabriel, and P.C.Rott (2004).
Albicidin pathotoxin produced by Xanthomonas albilineans is encoded by three large PKS and NRPS genes present in a gene cluster also containing several putative modifying, regulatory, and resistance genes.
  Mol Plant Microbe Interact, 17, 414-427.  
15042094 O.A.Trivedi, P.Arora, V.Sridharan, R.Tickoo, D.Mohanty, and R.S.Gokhale (2004).
Enzymic activation and transfer of fatty acids as acyl-adenylates in mycobacteria.
  Nature, 428, 441-445.  
15487945 R.Finking, and M.A.Marahiel (2004).
Biosynthesis of nonribosomal peptides1.
  Annu Rev Microbiol, 58, 453-488.  
14756782 S.Cendrowski, W.MacArthur, and P.Hanna (2004).
Bacillus anthracis requires siderophore biosynthesis for growth in macrophages and mouse virulence.
  Mol Microbiol, 51, 407-417.  
15123287 T.Duerfahrt, K.Eppelmann, R.Müller, and M.A.Marahiel (2004).
Rational design of a bimodular model system for the investigation of heterocyclization in nonribosomal peptide biosynthesis.
  Chem Biol, 11, 261-271.  
12744455 B.K.Scholz-Schroeder, J.D.Soule, and D.C.Gross (2003).
The sypA, sypS, and sypC synthetase genes encode twenty-two modules involved in the nonribosomal peptide synthesis of syringopeptin by Pseudomonas syringae pv. syringae B301D.
  Mol Plant Microbe Interact, 16, 271-280.  
  12889743 C.D.Reeves (2003).
The enzymology of combinatorial biosynthesis.
  Crit Rev Biotechnol, 23, 95.  
12819348 K.Schneider, K.Hövel, K.Witzel, B.Hamberger, D.Schomburg, E.Kombrink, and H.P.Stuible (2003).
The substrate specificity-determining amino acid code of 4-coumarate:CoA ligase.
  Proc Natl Acad Sci U S A, 100, 8601-8606.  
12964169 R.Finking, A.Neumüller, J.Solsbacher, D.Konz, G.Kretzschmar, M.Schweitzer, T.Krumm, and M.A.Marahiel (2003).
Aminoacyl adenylate substrate analogues for the inhibition of adenylation domains of nonribosomal peptide synthetases.
  Chembiochem, 4, 903-906.  
14700635 T.Correia, N.Grammel, I.Ortel, U.Keller, and P.Tudzynski (2003).
Molecular cloning and analysis of the ergopeptine assembly system in the ergot fungus Claviceps purpurea.
  Chem Biol, 10, 1281-1292.  
14622284 T.Duerfahrt, S.Doekel, T.Sonke, P.J.Quaedflieg, and M.A.Marahiel (2003).
Construction of hybrid peptide synthetases for the production of alpha-l-aspartyl-l-phenylalanine, a precursor for the high-intensity sweetener aspartame.
  Eur J Biochem, 270, 4555-4563.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer