spacer
spacer

PDBsum entry 1m7v

Go to PDB code: 
protein ligands links
Oxidoreductase PDB id
1m7v

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
361 a.a. *
Ligands
ARG
HEM
THG
Waters ×258
* Residue conservation analysis
PDB id:
1m7v
Name: Oxidoreductase
Title: Structure of a nitric oxide synthase heme protein from bacillus subtilis with tetrahydrofolate and arginine bound
Structure: Nitric oxide synthase. Chain: a. Engineered: yes
Source: Bacillus subtilis. Organism_taxid: 1423. Expressed in: escherichia coli bl21(de3). Expression_system_taxid: 469008.
Biol. unit: Dimer (from PDB file)
Resolution:
1.95Å     R-factor:   0.225     R-free:   0.239
Authors: K.Pant,A.M.Bilwes,S.Adak,D.J.Stuehr,B.R.Crane
Key ref:
K.Pant et al. (2002). Structure of a nitric oxide synthase heme protein from Bacillus subtilis. Biochemistry, 41, 11071-11079. PubMed id: 12220171 DOI: 10.1021/bi0263715
Date:
22-Jul-02     Release date:   30-Oct-02    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
O34453  (NOSO_BACSU) -  Nitric oxide synthase oxygenase from Bacillus subtilis (strain 168)
Seq:
Struc:
363 a.a.
361 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 17 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class: E.C.1.14.14.47  - nitric-oxide synthase (flavodoxin).
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: 3 reduced [flavodoxin] + 2 L-arginine + 4 O2 = 3 oxidized [flavodoxin] + 2 L-citrulline + 2 nitric oxide + 4 H2O + 5 H+
3 × reduced [flavodoxin]
+
2 × L-arginine
Bound ligand (Het Group name = ARG)
corresponds exactly
+ 4 × O2
= 3 × oxidized [flavodoxin]
+ 2 × L-citrulline
+ 2 × nitric oxide
+ 4 × H2O
+ 5 × H(+)
      Cofactor: 5,6,7,8-tetrahydrobiopterin; Ferriheme b
5,6,7,8-tetrahydrobiopterin
Ferriheme b
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1021/bi0263715 Biochemistry 41:11071-11079 (2002)
PubMed id: 12220171  
 
 
Structure of a nitric oxide synthase heme protein from Bacillus subtilis.
K.Pant, A.M.Bilwes, S.Adak, D.J.Stuehr, B.R.Crane.
 
  ABSTRACT  
 
Eukaryotic nitric oxide synthases (NOSs) produce nitric oxide to mediate intercellular signaling and protect against pathogens. Recently, proteins homologous to mammalian NOS oxygenase domains have been found in prokaryotes and one from Bacillus subtilis (bsNOS) has been demonstrated to produce nitric oxide [Adak, S., Aulak, K. S., and Stuehr, D. J. (2002) J. Biol. Chem. 277, 16167-16171]. We present structures of bsNOS complexed with the active cofactor tetrahydrofolate and the substrate L-arginine (L-Arg) or the intermediate N(omega)-hydroxy-L-arginine (NHA) to 1.9 or 2.2 A resolution, respectively. The bsNOS structure is similar to those of the mammalian NOS oxygenase domains (mNOS(ox)) except for the absence of an N-terminal beta-hairpin hook and zinc-binding region that interact with pterin and stabilize the mNOS(ox) dimer. Changes in patterns of residue conservation between bacterial and mammalian NOSs correlate to different binding modes for pterin side chains. Residue conservation on a surface patch surrounding an exposed heme edge indicates a likely interaction site for reductase proteins in all NOSs. The heme pockets of bsNOS and mNOS(ox) recognize L-Arg and NHA similarly, although a change from Val to Ile beside the substrate guanidinium may explain the 10-20-fold slower dissociation of product NO from the bacterial enzyme. Overall, these structures suggest that bsNOS functions naturally to produce nitrogen oxides from L-Arg and NHA in a pterin-dependent manner, but that the regulation and purpose of NO production by NOS may be quite different in B. subtilis than in mammals.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
20840589 A.Maréchal, T.A.Mattioli, D.J.Stuehr, and J.Santolini (2010).
NO synthase isoforms specifically modify peroxynitrite reactivity.
  FEBS J, 277, 3963-3973.  
20370423 B.R.Crane, J.Sudhamsu, and B.A.Patel (2010).
Bacterial nitric oxide synthases.
  Annu Rev Biochem, 79, 445-470.  
19853011 S.R.Vincent (2010).
Nitric oxide neurons and neurotransmission.
  Prog Neurobiol, 90, 246-255.  
19841256 B.A.Patel, M.Moreau, J.Widom, H.Chen, L.Yin, Y.Hua, and B.R.Crane (2009).
Endogenous nitric oxide regulates the recovery of the radiation-resistant bacterium Deinococcus radiodurans from exposure to UV light.
  Proc Natl Acad Sci U S A, 106, 18183-18188.  
19745150 I.Gusarov, K.Shatalin, M.Starodubtseva, and E.Nudler (2009).
Endogenous nitric oxide protects bacteria against a wide spectrum of antibiotics.
  Science, 325, 1380-1384.  
19375324 J.Sudhamsu, and B.R.Crane (2009).
Bacterial nitric oxide synthases: what are they good for?
  Trends Microbiol, 17, 212-218.  
19805284 T.Agapie, S.Suseno, J.J.Woodward, S.Stoll, R.D.Britt, and M.A.Marletta (2009).
NO formation by a catalytically self-sufficient bacterial nitric oxide synthase from Sorangium cellulosum.
  Proc Natl Acad Sci U S A, 106, 16221-16226.  
18316370 I.Gusarov, M.Starodubtseva, Z.Q.Wang, L.McQuade, S.J.Lippard, D.J.Stuehr, and E.Nudler (2008).
Bacterial nitric-oxide synthases operate without a dedicated redox partner.
  J Biol Chem, 283, 13140-13147.  
18215992 K.Shatalin, I.Gusarov, E.Avetissova, Y.Shatalina, L.E.McQuade, S.J.Lippard, and E.Nudler (2008).
Bacillus anthracis-derived nitric oxide is essential for pathogen virulence and survival in macrophages.
  Proc Natl Acad Sci U S A, 105, 1009-1013.  
18285340 N.J.Gilberthorpe, and R.K.Poole (2008).
Nitric oxide homeostasis in Salmonella typhimurium: roles of respiratory nitrate reductase and flavohemoglobin.
  J Biol Chem, 283, 11146-11154.  
17534532 A.W.Munro, H.M.Girvan, and K.J.McLean (2007).
Variations on a (t)heme--novel mechanisms, redox partners and catalytic functions in the cytochrome P450 superfamily.
  Nat Prod Rep, 24, 585-609.  
17537725 F.J.Chartier, and M.Couture (2007).
Substrate-specific interactions with the heme-bound oxygen molecule of nitric-oxide synthase.
  J Biol Chem, 282, 20877-20886.  
17537732 H.K.Leiros, A.L.Pey, M.Innselset, E.Moe, I.Leiros, I.H.Steen, and A.Martinez (2007).
Structure of phenylalanine hydroxylase from Colwellia psychrerythraea 34H, a monomeric cold active enzyme with local flexibility around the active site and high overall stability.
  J Biol Chem, 282, 21973-21986.
PDB codes: 2v27 2v28
17127770 Z.Q.Wang, R.J.Lawson, M.R.Buddha, C.C.Wei, B.R.Crane, A.W.Munro, and D.J.Stuehr (2007).
Bacterial flavodoxins support nitric oxide production by Bacillus subtilis nitric-oxide synthase.
  J Biol Chem, 282, 2196-2202.  
16473878 F.J.Chartier, S.P.Blais, and M.Couture (2006).
A weak Fe-O bond in the oxygenated complex of the nitric-oxide synthase of Staphylococcus aureus.
  J Biol Chem, 281, 9953-9962.  
16407211 J.Sudhamsu, and B.R.Crane (2006).
Structure and reactivity of a thermostable prokaryotic nitric-oxide synthase that forms a long-lived oxy-heme complex.
  J Biol Chem, 281, 9623-9632.
PDB code: 2flq
16719719 R.Loria, J.Kers, and M.Joshi (2006).
Evolution of plant pathogenicity in Streptomyces.
  Annu Rev Phytopathol, 44, 469-487.  
16605249 R.Pejchal, E.Campbell, B.D.Guenther, B.W.Lennon, R.G.Matthews, and M.L.Ludwig (2006).
Structural perturbations in the Ala --> Val polymorphism of methylenetetrahydrofolate reductase: how binding of folates may protect against inactivation.
  Biochemistry, 45, 4808-4818.
PDB codes: 2fmn 2fmo
15345570 F.J.Chartier, and M.Couture (2004).
Stability of the heme environment of the nitric oxide synthase from Staphylococcus aureus in the absence of pterin cofactor.
  Biophys J, 87, 1939-1950.  
15520379 M.R.Buddha, K.M.Keery, and B.R.Crane (2004).
An unusual tryptophanyl tRNA synthetase interacts with nitric oxide synthase in Deinococcus radiodurans.
  Proc Natl Acad Sci U S A, 101, 15881-15886.  
15466862 M.R.Buddha, T.Tao, R.J.Parry, and B.R.Crane (2004).
Regioselective nitration of tryptophan by a complex between bacterial nitric-oxide synthase and tryptophanyl-tRNA synthetase.
  J Biol Chem, 279, 49567-49570.  
15170116 Y.Sasaki, N.Takaya, A.Nakamura, and H.Shoun (2004).
Isolation of flavohemoglobin from the actinomycete Streptomyces antibioticus grown without external nitric oxide stress.
  Biosci Biotechnol Biochem, 68, 1106-1112.  
14976216 Z.Q.Wang, C.C.Wei, M.Sharma, K.Pant, B.R.Crane, and D.J.Stuehr (2004).
A conserved Val to Ile switch near the heme pocket of animal and bacterial nitric-oxide synthases helps determine their distinct catalytic profiles.
  J Biol Chem, 279, 19018-19025.  
12847099 K.Panda, S.Adak, K.S.Aulak, J.Santolini, J.F.McDonald, and D.J.Stuehr (2003).
Distinct influence of N-terminal elements on neuronal nitric-oxide synthase structure and catalysis.
  J Biol Chem, 278, 37122-37131.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer