spacer
spacer

PDBsum entry 1m2f

Go to PDB code: 
protein links
Circadian clock protein PDB id
1m2f

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
135 a.a. *
* Residue conservation analysis
PDB id:
1m2f
Name: Circadian clock protein
Title: Solution structure of the n-terminal domain of synechococcus elongatus kaia (kaia135n); family of 25 structures
Structure: Kaia. Chain: a. Fragment: n-terminal domain (residues 1-135). Engineered: yes
Source: Synechococcus elongatus. Organism_taxid: 32046. Gene: kaia. Expressed in: escherichia coli bl21(de3). Expression_system_taxid: 469008.
NMR struc: 25 models
Authors: S.B.Williams,I.Vakonakis,S.S.Golden,A.C.Liwang
Key ref:
S.B.Williams et al. (2002). Structure and function from the circadian clock protein KaiA of Synechococcus elongatus: a potential clock input mechanism. Proc Natl Acad Sci U S A, 99, 15357-15362. PubMed id: 12438647 DOI: 10.1073/pnas.232517099
Date:
23-Jun-02     Release date:   13-Nov-02    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
Q79PF6  (KAIA_SYNE7) -  Circadian clock oscillator protein KaiA from Synechococcus elongatus (strain ATCC 33912 / PCC 7942 / FACHB-805)
Seq:
Struc:
284 a.a.
135 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.?
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

 

 
DOI no: 10.1073/pnas.232517099 Proc Natl Acad Sci U S A 99:15357-15362 (2002)
PubMed id: 12438647  
 
 
Structure and function from the circadian clock protein KaiA of Synechococcus elongatus: a potential clock input mechanism.
S.B.Williams, I.Vakonakis, S.S.Golden, A.C.LiWang.
 
  ABSTRACT  
 
In the cyanobacterium Synechococcus elongatus (PCC 7942) the proteins KaiA, KaiB, and KaiC are required for circadian clock function. We deduced a circadian clock function for KaiA from a combination of biochemical and structural data. Both KaiA and its isolated carboxyl-terminal domain (KaiA180C) stimulated KaiC autophosphorylation and facilitated attenuation of KaiC autophosphorylation by KaiB. An amino-terminal domain (KaiA135N) had no function in the autophosphorylation assay. NMR structure determination showed that KaiA135N is a pseudo-receiver domain. We propose that this pseudo-receiver is a timing input-device that regulates KaiA stimulation of KaiC autophosphorylation, which in turn is essential for circadian timekeeping.
 
  Selected figure(s)  
 
Figure 3.
Fig 3. The solution structure of KaiA135N and comparisons to other receiver domain proteins. -strands are in blue, -helices are in purple, and the flexible loop of KaiA135N and the equivalent region of other receiver domains are in gold. The structure coordinates have been deposited in the Protein Data Bank under PDB ID codes 1M2E and 1M2F for the average minimized structure and the family of structures, respectively. (Ai) Schematic representation of the average minimized structure. The solution structure of KaiA135N is an - - sandwich built around a five-parallel-strand -sheet with b-a-c-d-e arrangement. The rotational correlation time ( [c]) was calculated to be 8.2 ns, which is consistent with a monomer in solution (21). (Aii) Stereoview of the overlaid backbone of a family of 25 low-energy structures calculated from 2,034 distance and geometry restraints. The backbone rms deviation from the average is 0.38 ± 0.04 Å for residues 4-83 and 98-135. The rms deviation for all heavy atoms is 0.78 ± 0.05 Å for the same residues. Few medium- or long-range NOE contacts were identified for residues 83-97, and 15N dynamics (see supporting information) showed that this region is highly dynamic. (B) Structural comparison of KaiA135N with other receiver domains. Shown here are KaiA135N (Bi), the NtrC (1DC7) receiver domain (Bii), and the AmiR (1QO0 [PDB] , residues 11-131) receiver domain (Biii) at two mutually orthogonal views. Figures were prepared with SPOCK (38).
Figure 5.
Fig 5. Working model of KaiA protein function and its role in S. elongatus circadian timekeeping. CikA and other environmental sensors initiate signal transduction cascades that result in activation of the KaiA pseudo-receiver domain. This activation modulates the KaiA carboxyl-terminal domain's enhancement of the KaiC autophosphorylation rate. Thus, equilibria between KaiC phosphorylation states are perturbed. These states differentially control clock output, possibly through the SasA protein kinase. In this manner, a cycle of input, oscillation, and output can be established.
 
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21149676 D.Zwicker, D.K.Lubensky, and P.R.ten Wolde (2010).
Robust circadian clocks from coupled protein-modification and transcription-translation cycles.
  Proc Natl Acad Sci U S A, 107, 22540-22545.  
20178745 G.Dong, Q.Yang, Q.Wang, Y.I.Kim, T.L.Wood, K.W.Osteryoung, A.van Oudenaarden, and S.S.Golden (2010).
Elevated ATPase activity of KaiC applies a circadian checkpoint on cell division in Synechococcus elongatus.
  Cell, 140, 529-539.  
20231482 T.L.Wood, J.Bridwell-Rabb, Y.I.Kim, T.Gao, Y.G.Chang, A.LiWang, D.P.Barondeau, and S.S.Golden (2010).
The KaiA protein of the cyanobacterial circadian oscillator is modulated by a redox-active cofactor.
  Proc Natl Acad Sci U S A, 107, 5804-5809.  
19956664 R.Pattanayek, T.Mori, Y.Xu, S.Pattanayek, C.H.Johnson, and M.Egli (2009).
Structures of KaiC circadian clock mutant proteins: a new phosphorylation site at T426 and mechanisms of kinase, ATPase and phosphatase.
  PLoS One, 4, e7529.
PDB codes: 3jzm 3k09 3k0a 3k0c 3k0e 3k0f
19032344 S.Kurosawa, R.Murakami, K.Onai, M.Morishita, D.Hasegawa, R.Iwase, T.Uzumaki, F.Hayashi, T.Kitajima-Ihara, S.Sakata, M.Murakami, T.Kouyama, and M.Ishiura (2009).
Functionally important structural elements of the cyanobacterial clock-related protein Pex.
  Genes Cells, 14, 1.
PDB codes: 2dql 2zfw
19179401 S.Mittal, and L.Kroos (2009).
A combination of unusual transcription factors binds cooperatively to control Myxococcus xanthus developmental gene expression.
  Proc Natl Acad Sci U S A, 106, 1965-1970.  
19201804 S.Mittal, and L.Kroos (2009).
Combinatorial regulation by a novel arrangement of FruA and MrpC2 transcription factors during Myxococcus xanthus development.
  J Bacteriol, 191, 2753-2763.  
19395479 Y.Chen, Y.I.Kim, S.R.Mackey, C.K.Holtman, A.Liwang, and S.S.Golden (2009).
A novel allele of kaiA shortens the circadian period and strengthens interaction of oscillator components in the cyanobacterium Synechococcus elongatus PCC 7942.
  J Bacteriol, 191, 4392-4400.  
18832306 D.Ruiz, P.Salinas, M.L.Lopez-Redondo, M.L.Cayuela, A.Marina, and A.Contreras (2008).
Phosphorylation-independent activation of the atypical response regulator NblR.
  Microbiology, 154, 3002-3015.  
18983934 G.Dong, and S.S.Golden (2008).
How a cyanobacterium tells time.
  Curr Opin Microbiol, 11, 541-546.  
18502804 K.Eguchi, M.Yoda, T.P.Terada, and M.Sasai (2008).
Mechanism of robust circadian oscillation of KaiC phosphorylation in vitro.
  Biophys J, 95, 1773-1784.  
18363969 R.Murakami, A.Miyake, R.Iwase, F.Hayashi, T.Uzumaki, and M.Ishiura (2008).
ATPase activity and its temperature compensation of the cyanobacterial clock protein KaiC.
  Genes Cells, 13, 387-395.  
18497745 R.Pattanayek, D.R.Williams, S.Pattanayek, T.Mori, C.H.Johnson, P.L.Stewart, and M.Egli (2008).
Structural model of the circadian clock KaiB-KaiC complex and mechanism for modulation of KaiC phosphorylation.
  EMBO J, 27, 1767-1778.
PDB code: 2qke
18728181 Y.I.Kim, G.Dong, C.W.Carruthers, S.S.Golden, and A.LiWang (2008).
The day/night switch in KaiC, a central oscillator component of the circadian clock of cyanobacteria.
  Proc Natl Acad Sci U S A, 105, 12825-12830.  
18477603 Y.Kitayama, T.Nishiwaki, K.Terauchi, and T.Kondo (2008).
Dual KaiC-based oscillations constitute the circadian system of cyanobacteria.
  Genes Dev, 22, 1513-1521.  
18165308 Y.Murayama, T.Oyama, and T.Kondo (2008).
Regulation of circadian clock gene expression by phosphorylation states of KaiC in cyanobacteria.
  J Bacteriol, 190, 1691-1698.  
17940004 C.R.McClung (2007).
The cyanobacterial circadian clock is based on the intrinsic ATPase activity of KaiC.
  Proc Natl Acad Sci U S A, 104, 16727-16728.  
  17401208 H.Ming, K.Miyazono, and M.Tanokura (2007).
Cloning, expression, purification, crystallization and preliminary crystallographic analysis of selenomethionine-labelled KaiC-like protein PH0186 from Pyrococcus horikoshii OT3.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 63, 327-329.  
17573816 J.S.Fraser, J.P.Merlie, N.Echols, S.R.Weisfield, T.Mignot, D.E.Wemmer, D.R.Zusman, and T.Alber (2007).
An atypical receiver domain controls the dynamic polar localization of the Myxococcus xanthus social motility protein FrzS.
  Mol Microbiol, 65, 319-332.
PDB codes: 2gkg 2i6f 2nt3 2nt4
17460047 J.S.van Zon, D.K.Lubensky, P.R.Altena, and P.R.ten Wolde (2007).
An allosteric model of circadian KaiC phosphorylation.
  Proc Natl Acad Sci U S A, 104, 7420-7425.  
17901204 K.Terauchi, Y.Kitayama, T.Nishiwaki, K.Miwa, Y.Murayama, T.Oyama, and T.Kondo (2007).
ATPase activity of KaiC determines the basic timing for circadian clock of cyanobacteria.
  Proc Natl Acad Sci U S A, 104, 16377-16381.  
17916691 M.J.Rust, J.S.Markson, W.S.Lane, D.S.Fisher, and E.K.O'Shea (2007).
Ordered phosphorylation governs oscillation of a three-protein circadian clock.
  Science, 318, 809-812.  
17804240 S.R.Mackey, and S.S.Golden (2007).
Winding up the cyanobacterial circadian clock.
  Trends Microbiol, 15, 381-388.  
17473879 S.S.Golden, V.M.Cassone, and A.LiWang (2007).
Shifting nanoscopic clock gears.
  Nat Struct Mol Biol, 14, 362-363.  
18419290 S.S.Golden (2007).
Integrating the circadian oscillator into the life of the cyanobacterial cell.
  Cold Spring Harb Symp Quant Biol, 72, 331-338.  
17322531 T.Gao, X.Zhang, N.B.Ivleva, S.S.Golden, and A.LiWang (2007).
NMR structure of the pseudo-receiver domain of CikA.
  Protein Sci, 16, 465-475.
PDB code: 2j48
17388688 T.Mori, D.R.Williams, M.O.Byrne, X.Qin, M.Egli, H.S.Mchaourab, P.L.Stewart, and C.H.Johnson (2007).
Elucidating the ticking of an in vitro circadian clockwork.
  PLoS Biol, 5, e93.  
17717528 T.Nishiwaki, Y.Satomi, Y.Kitayama, K.Terauchi, R.Kiyohara, T.Takao, and T.Kondo (2007).
A sequential program of dual phosphorylation of KaiC as a basis for circadian rhythm in cyanobacteria.
  EMBO J, 26, 4029-4037.  
17210789 Y.Taniguchi, M.Katayama, R.Ito, N.Takai, T.Kondo, and T.Oyama (2007).
labA: a novel gene required for negative feedback regulation of the cyanobacterial circadian clock protein KaiC.
  Genes Dev, 21, 60-70.  
16863394 A.Mehra, C.I.Hong, M.Shi, J.J.Loros, J.C.Dunlap, and P.Ruoff (2006).
Circadian rhythmicity by autocatalysis.
  PLoS Comput Biol, 2, e96.  
16798799 G.Kurosawa, K.Aihara, and Y.Iwasa (2006).
A model for the circadian rhythm of cyanobacteria that maintains oscillation without gene expression.
  Biophys J, 91, 2015-2023.  
17088557 N.B.Ivleva, T.Gao, A.C.LiWang, and S.S.Golden (2006).
Quinone sensing by the circadian input kinase of the cyanobacterial circadian clock.
  Proc Natl Acad Sci U S A, 103, 17468-17473.  
16707582 R.M.Smith, and S.B.Williams (2006).
Circadian rhythms in gene transcription imparted by chromosome compaction in the cyanobacterium Synechococcus elongatus.
  Proc Natl Acad Sci U S A, 103, 8564-8569.  
16628225 R.Pattanayek, D.R.Williams, S.Pattanayek, Y.Xu, T.Mori, C.H.Johnson, P.L.Stewart, and M.Egli (2006).
Analysis of KaiA-KaiC protein interactions in the cyano-bacterial circadian clock using hybrid structural methods.
  EMBO J, 25, 2017-2028.
PDB code: 2gbl
16629668 X.Zhang, G.Dong, and S.S.Golden (2006).
The pseudo-receiver domain of CikA regulates the cyanobacterial circadian input pathway.
  Mol Microbiol, 60, 658-668.  
15893664 J.Wang (2005).
Recent cyanobacterial Kai protein structures suggest a rotary clock.
  Structure, 13, 735-741.  
15775978 N.B.Ivleva, M.R.Bramlett, P.A.Lindahl, and S.S.Golden (2005).
LdpA: a component of the circadian clock senses redox state of the cell.
  EMBO J, 24, 1202-1210.  
16134337 V.Dvornyk, and B.Knudsen (2005).
Functional divergence of the circadian clock proteins in prokaryotes.
  Genetica, 124, 247-254.  
15059250 C.H.Johnson (2004).
Global orchestration of gene expression by the biological clock of cyanobacteria.
  Genome Biol, 5, 217.  
15221019 C.H.Johnson, and M.Egli (2004).
Visualizing a biological clockwork's cogs.
  Nat Struct Mol Biol, 11, 584-585.  
15256595 I.Vakonakis, and A.C.LiWang (2004).
Structure of the C-terminal domain of the clock protein KaiA in complex with a KaiC-derived peptide: implications for KaiC regulation.
  Proc Natl Acad Sci U S A, 101, 10925-10930.
PDB codes: 1suy 1sv1
14749515 I.Vakonakis, J.Sun, T.Wu, A.Holzenburg, S.S.Golden, and A.C.LiWang (2004).
NMR structure of the KaiC-interacting C-terminal domain of KaiA, a circadian clock protein: implications for KaiA-KaiC interaction.
  Proc Natl Acad Sci U S A, 101, 1479-1484.
PDB codes: 1q6a 1q6b
15262934 K.Onai, M.Morishita, S.Itoh, K.Okamoto, and M.Ishiura (2004).
Circadian rhythms in the thermophilic cyanobacterium Thermosynechococcus elongatus: compensation of period length over a wide temperature range.
  J Bacteriol, 186, 4972-4977.  
15071498 R.G.Garces, N.Wu, W.Gillon, and E.F.Pai (2004).
Anabaena circadian clock proteins KaiA and KaiB reveal a potential common binding site to their partner KaiC.
  EMBO J, 23, 1688-1698.
PDB codes: 1r5p 1r5q
15039567 R.Iwase, K.Imada, F.Hayashi, T.Uzumaki, K.Namba, and M.Ishiura (2004).
Crystallization and preliminary crystallographic analysis of the circadian clock protein KaiB from the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1.
  Acta Crystallogr D Biol Crystallogr, 60, 727-729.  
15367731 S.S.Golden (2004).
Meshing the gears of the cyanobacterial circadian clock.
  Proc Natl Acad Sci U S A, 101, 13697-13698.  
15347812 T.Nishiwaki, Y.Satomi, M.Nakajima, C.Lee, R.Kiyohara, H.Kageyama, Y.Kitayama, M.Temamoto, A.Yamaguchi, A.Hijikata, M.Go, H.Iwasaki, T.Takao, and T.Kondo (2004).
Role of KaiC phosphorylation in the circadian clock system of Synechococcus elongatus PCC 7942.
  Proc Natl Acad Sci U S A, 101, 13927-13932.  
15170179 T.Uzumaki, M.Fujita, T.Nakatsu, F.Hayashi, H.Shibata, N.Itoh, H.Kato, and M.Ishiura (2004).
Crystal structure of the C-terminal clock-oscillator domain of the cyanobacterial KaiA protein.
  Nat Struct Mol Biol, 11, 623-631.
PDB code: 1v2z
15347809 Y.Xu, T.Mori, R.Pattanayek, S.Pattanayek, M.Egli, and C.H.Johnson (2004).
Identification of key phosphorylation sites in the circadian clock protein KaiC by crystallographic and mutagenetic analyses.
  Proc Natl Acad Sci U S A, 101, 13933-13938.
PDB code: 1u9i
14616072 J.L.Ditty, S.B.Williams, and S.S.Golden (2003).
A cyanobacterial circadian timing mechanism.
  Annu Rev Genet, 37, 513-543.  
15035023 S.S.Golden, and S.R.Canales (2003).
Cyanobacterial circadian clocks--timing is everything.
  Nat Rev Microbiol, 1, 191-199.  
12524513 S.S.Golden (2003).
Think like a bacterium. Conference on bacterial neural networks.
  EMBO Rep, 4, 15-17.  
14662347 S.S.Golden (2003).
Timekeeping in bacteria: the cyanobacterial circadian clock.
  Curr Opin Microbiol, 6, 535-540.  
12727879 Y.Kitayama, H.Iwasaki, T.Nishiwaki, and T.Kondo (2003).
KaiB functions as an attenuator of KaiC phosphorylation in the cyanobacterial circadian clock system.
  EMBO J, 22, 2127-2134.  
12727878 Y.Xu, T.Mori, and C.H.Johnson (2003).
Cyanobacterial circadian clockwork: roles of KaiA, KaiB and the kaiBC promoter in regulating KaiC.
  EMBO J, 22, 2117-2126.  
12391300 H.Iwasaki, T.Nishiwaki, Y.Kitayama, M.Nakajima, and T.Kondo (2002).
KaiA-stimulated KaiC phosphorylation in circadian timing loops in cyanobacteria.
  Proc Natl Acad Sci U S A, 99, 15788-15793.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer