spacer
spacer

PDBsum entry 1m1a

Go to PDB code: 
protein dna_rna ligands metals Protein-protein interface(s) links
Structural protein/DNA PDB id
1m1a

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
99 a.a. *
80 a.a. *
105 a.a. *
93 a.a. *
93 a.a. *
DNA/RNA
Ligands
IMT-IMT-PYB-PYB-
ABU-PYB-PYB-PYB-
PYB-BAL-DIB
Metals
_MN ×10
Waters ×220
* Residue conservation analysis
PDB id:
1m1a
Name: Structural protein/DNA
Title: Ligand binding alters the structure and dynamics of nucleosomal DNA
Structure: Palindromic 146 base pair DNA fragment. Chain: i, j. Engineered: yes. Histone h3.3c. Chain: a, e. Engineered: yes. Histone h4. Chain: b, f. Engineered: yes.
Source: Synthetic: yes. Synthetic construct. Organism_taxid: 32630. Xenopus laevis. African clawed frog. Organism_taxid: 8355. Gene: h3-5. Expressed in: escherichia coli. Expression_system_taxid: 562.
Biol. unit: Undecamer (from PQS)
Resolution:
2.65Å     R-factor:   0.223     R-free:   0.267
Authors: R.K.Suto,R.S.Edayathumangalam,C.L.White,C.Melander,J.M.Gottesfeld, P.B.Dervan,K.Luger
Key ref:
R.K.Suto et al. (2003). Crystal structures of nucleosome core particles in complex with minor groove DNA-binding ligands. J Mol Biol, 326, 371-380. PubMed id: 12559907 DOI: 10.1016/S0022-2836(02)01407-9
Date:
18-Jun-02     Release date:   18-Feb-03    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P02302  (H3C_XENLA) -  Histone H3.3C from Xenopus laevis
Seq:
Struc:
136 a.a.
99 a.a.*
Protein chain
Pfam   ArchSchema ?
P62799  (H4_XENLA) -  Histone H4 from Xenopus laevis
Seq:
Struc:
103 a.a.
80 a.a.
Protein chains
Pfam   ArchSchema ?
P06897  (H2A1_XENLA) -  Histone H2A type 1 from Xenopus laevis
Seq:
Struc:
130 a.a.
105 a.a.*
Protein chains
Pfam   ArchSchema ?
P02281  (H2B11_XENLA) -  Histone H2B 1.1 from Xenopus laevis
Seq:
Struc:
126 a.a.
93 a.a.*
Protein chain
Pfam   ArchSchema ?
P62799  (H4_XENLA) -  Histone H4 from Xenopus laevis
Seq:
Struc:
103 a.a.
93 a.a.
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 3 residue positions (black crosses)

DNA/RNA chains
  A-T-C-A-A-T-A-T-C-C-A-C-C-T-G-C-A-G-A-T-T-C-T-A-C-C-A-A-A-A-G-T-G-T-A-T-T-T-G- 146 bases
  A-T-C-A-A-T-A-T-C-C-A-C-C-T-G-C-A-G-A-T-T-C-T-A-C-C-A-A-A-A-G-T-G-T-A-T-T-T-G- 146 bases

 Enzyme reactions 
   Enzyme class: Chains A, B, C, D, E, F, G, H: E.C.?
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

 

 
DOI no: 10.1016/S0022-2836(02)01407-9 J Mol Biol 326:371-380 (2003)
PubMed id: 12559907  
 
 
Crystal structures of nucleosome core particles in complex with minor groove DNA-binding ligands.
R.K.Suto, R.S.Edayathumangalam, C.L.White, C.Melander, J.M.Gottesfeld, P.B.Dervan, K.Luger.
 
  ABSTRACT  
 
We determined the crystal structures of three nucleosome core particles in complex with site-specific DNA-binding ligands, the pyrrole-imidazole polyamides. While the structure of the histone octamer and its interaction with the DNA remain unaffected by ligand binding, nucleosomal DNA undergoes significant structural changes at the ligand-binding sites and in adjacent regions to accommodate the ligands. Our findings suggest that twist diffusion occurs over long distances through tightly bound nucleosomal DNA. This may be relevant to the mechanism of ATP-dependent and spontaneous nucleosome translocation, and to the effect of bound factors on nucleosome dynamics.
 
  Selected figure(s)  
 
Figure 2.
Figure 2. DNA parameters. (a) Minor groove widths were averaged for the 10 -- 11 base-pairs between indi- vidual protein -- DNA contact points, and are plotted against the superhelix location. Values for X-NCP, NCP-PA1, NCP-PA2, and NCP-PA3 are plotted against SHLs in black, blue, green, and magenta, respectively. The location of polyamides in each structure is indicated by blue, green, and magenta boxes, respectively. Data points for SHLs at which stretching occurs are circled; the equivalent regions in the long half are indicated by broken-line circles. (b) DNA twist angles, averaged as in (a). The position of stretch sites is indicated as in (a). A vertical line indicates the location of the dyad axis (SHL 0).
Figure 4.
Figure 4. Stretching of nucleosomal DNA. (a) A schematic describing the alignment procedure. Long (turquoise) and short DNA halves (black and brown, respectively for NCP-PA1,2 and X-NCP) were aligned using LSQMAN (Uppsala Software Factory). Base-pair 73 is indicated by F. Stretching of the short half occurs at SHL-5 in NCP-PA1 and 2, and at SHL-2 in X-NCP. Hatched regions indicate those regions of the short half where the sequence is out of register by one base-pair compared to the long half. (b) Overview of parts of the structure of NCP-PA1, viewed down the superhelical axis as in Figure 1(a). Only base-pairs 13 -- 78 (short half) and associated proteins are shown. The long half (turquoise, base-pairs 68 -- 134) was superimposed onto the short half (white) as described for (a). Polyamide 1 is shown in blue; histone coloring is as described for Figure 1. The dyad axis is indicated by a broken line, base-pair 73 is indicated by F, the L1L2 DNA-binding motif is indicated by O, the a1 -- a1 motif is indicated by *. (c) X-NCP with aligned long and short halves (turquoise and gold, respectively) was superimposed onto NCP-PA1 by a structural alignment of 30 base-pairs centered on either stretching site, as shown in (a). All other labels are as in (b).
 
  The above figures are reprinted by permission from Elsevier: J Mol Biol (2003, 326, 371-380) copyright 2003.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
23202585 F.Mueller-Planitz, H.Klinker, J.Ludwigsen, and P.B.Becker (2013).
The ATPase domain of ISWI is an autonomous nucleosome remodeling machine.
  Nat Struct Mol Biol, 20, 82-89.  
22722606 K.Luger, M.L.Dechassa, and D.J.Tremethick (2012).
New insights into nucleosome and chromatin structure: an ordered state or a disordered affair?
  Nat Rev Mol Cell Biol, 13, 436-447.  
21332355 A.J.Andrews, and K.Luger (2011).
Nucleosome structure(s) and stability: variations on a theme.
  Annu Rev Biophys, 40, 99.  
21208404 A.Marathe, and M.Bansal (2011).
An ensemble of B-DNA dinucleotide geometries lead to characteristic nucleosomal DNA structure and provide plasticity required for gene expression.
  BMC Struct Biol, 11, 1.  
21176878 S.Tan, and C.A.Davey (2011).
Nucleosome structural studies.
  Curr Opin Struct Biol, 21, 128-136.  
19920127 B.Heddi, C.Oguey, C.Lavelle, N.Foloppe, and B.Hartmann (2010).
Intrinsic flexibility of B-DNA: the experimental TRX scale.
  Nucleic Acids Res, 38, 1034-1047.  
20176964 C.D.Carlson, C.L.Warren, K.E.Hauschild, M.S.Ozers, N.Qadir, D.Bhimsaria, Y.Lee, F.Cerrina, and A.Z.Ansari (2010).
Specificity landscapes of DNA binding molecules elucidate biological function.
  Proc Natl Acad Sci U S A, 107, 4544-4549.  
20812704 D.M.Chenoweth, and P.B.Dervan (2010).
Structural basis for cyclic Py-Im polyamide allosteric inhibition of nuclear receptor binding.
  J Am Chem Soc, 132, 14521-14529.
PDB code: 3omj
20647418 F.Xu, A.V.Colasanti, Y.Li, and W.K.Olson (2010).
Long-range effects of histone point mutations on DNA remodeling revealed from computational analyses of SIN-mutant nucleosome structures.
  Nucleic Acids Res, 38, 6872-6882.  
20060707 G.D.Bowman (2010).
Mechanisms of ATP-dependent nucleosome sliding.
  Curr Opin Struct Biol, 20, 73-81.  
20026584 G.E.Davey, B.Wu, Y.Dong, U.Surana, and C.A.Davey (2010).
DNA stretching in the nucleosome facilitates alkylation by an intercalating antitumour agent.
  Nucleic Acids Res, 38, 2081-2088.
PDB code: 3kuy
20950488 H.Yue, Y.Zhu, Y.Wang, and G.Chen (2010).
Investigation and improvement of DNA cleavage models of polyamide + Cu(II) nuclease + OOH- ligands bound to DNA.
  BMC Struct Biol, 10, 35.  
20494975 K.Mohideen, R.Muhammad, and C.A.Davey (2010).
Perturbations in nucleosome structure from heavy metal association.
  Nucleic Acids Res, 38, 6301-6311.
PDB codes: 3mgp 3mgq 3mgr 3mgs
20739938 R.D.Makde, J.R.England, H.P.Yennawar, and S.Tan (2010).
Structure of RCC1 chromatin factor bound to the nucleosome core particle.
  Nature, 467, 562-566.
PDB code: 3mvd
20100606 S.Watanabe, M.Resch, W.Lilyestrom, N.Clark, J.C.Hansen, C.Peterson, and K.Luger (2010).
Structural characterization of H3K56Q nucleosomes and nucleosomal arrays.
  Biochim Biophys Acta, 1799, 480-486.
PDB codes: 3kwq 3kxb
20179336 T.Moreno, J.Pous, J.A.Subirana, and J.L.Campos (2010).
Coiled-coil conformation of a pentamidine-DNA complex.
  Acta Crystallogr D Biol Crystallogr, 66, 251-257.
PDB code: 3ey0
19666554 D.M.Chenoweth, and P.B.Dervan (2009).
Allosteric modulation of DNA by small molecules.
  Proc Natl Acad Sci U S A, 106, 13175-13179.
PDB codes: 3i5e 3i5l
  20046924 R.C.Todd, and S.J.Lippard (2009).
Inhibition of transcription by platinum antitumor compounds.
  Metallomics, 1, 280-291.  
19289051 S.Balasubramanian, F.Xu, and W.K.Olson (2009).
DNA sequence-directed organization of chromatin: structure-based computational analysis of nucleosome-binding sequences.
  Biophys J, 96, 2245-2260.  
19236904 S.Kundu, and C.L.Peterson (2009).
Role of chromatin states in transcriptional memory.
  Biochim Biophys Acta, 1790, 445-455.  
18940663 B.Wu, and C.A.Davey (2008).
Platinum drug adduct formation in the nucleosome core alters nucleosome mobility but not positioning.
  Chem Biol, 15, 1023-1028.  
18477633 D.Svozil, J.Kalina, M.Omelka, and B.Schneider (2008).
DNA conformations and their sequence preferences.
  Nucleic Acids Res, 36, 3690-3706.  
18924284 G.E.Davey, and C.A.Davey (2008).
Chromatin - a new, old drug target?
  Chem Biol Drug Des, 72, 165-170.  
18411210 S.Keleş, C.L.Warren, C.D.Carlson, and A.Z.Ansari (2008).
CSI-Tree: a regression tree approach for modeling binding properties of DNA-binding molecules based on cognate site identification (CSI) data.
  Nucleic Acids Res, 36, 3171-3184.  
18424496 T.C.Bishop (2008).
Geometry of the nucleosomal DNA superhelix.
  Biophys J, 95, 1007-1017.  
17252562 D.Roccatano, A.Barthel, and M.Zacharias (2007).
Structural flexibility of the nucleosome core particle at atomic resolution studied by molecular dynamics simulation.
  Biopolymers, 85, 407-421.  
17264930 M.J.Hannon (2007).
Supramolecular DNA recognition.
  Chem Soc Rev, 36, 280-295.  
17175539 N.G.Nickols, C.S.Jacobs, M.E.Farkas, and P.B.Dervan (2007).
Improved nuclear localization of DNA-binding polyamides.
  Nucleic Acids Res, 35, 363-370.  
16723979 A.Saha, J.Wittmeyer, and B.R.Cairns (2006).
Chromatin remodelling: the industrial revolution of DNA around histones.
  Nat Rev Mol Cell Biol, 7, 437-447.  
16679369 C.E.Caesar, R.Johnsson, U.Ellervik, K.R.Fox, P.Lincoln, and B.Nordén (2006).
A polarized-light spectroscopy study of interactions of a hairpin polyamide with DNA.
  Biophys J, 91, 904-911.  
16415862 J.D.Trzupek, J.M.Gottesfeld, and D.L.Boger (2006).
Alkylation of duplex DNA in nucleosome core particles by duocarmycin SA and yatakemycin.
  Nat Chem Biol, 2, 79-82.  
16421582 K.S.Gates (2006).
Getting under wraps: alkylating DNA in the nucleosome.
  Nat Chem Biol, 2, 64-66.  
16880996 B.Liu, P.Yu, P.G.Alluri, and T.Kodadek (2005).
Simple reporter gene-based assays for hairpin poly(amide) conjugate permeability and DNA-binding activity in living cells.
  Mol Biosyst, 1, 307-317.  
16107708 S.Chakravarthy, S.K.Gundimella, C.Caron, P.Y.Perche, J.R.Pehrson, S.Khochbin, and K.Luger (2005).
Structural characterization of the histone variant macroH2A.
  Mol Cell Biol, 25, 7616-7624.
PDB codes: 1u35 1yd9
15501936 W.Ge, B.Schneider, and W.K.Olson (2005).
Knowledge-based elastic potentials for docking drugs or proteins with nucleic acids.
  Biophys J, 88, 1166-1190.  
15196463 A.Flaus, and T.Owen-Hughes (2004).
Mechanisms for ATP-dependent chromatin remodelling: farewell to the tuna-can octamer?
  Curr Opin Genet Dev, 14, 165-173.  
15556999 B.Z.Olenyuk, G.J.Zhang, J.M.Klco, N.G.Nickols, W.G.Kaelin, and P.B.Dervan (2004).
Inhibition of vascular endothelial growth factor with a sequence-specific hypoxia response element antagonist.
  Proc Natl Acad Sci U S A, 101, 16768-16773.  
15056849 M.S.Murty, and H.Sugiyama (2004).
Biology of N-methylpyrrole-N-methylimidazole hairpin polyamide.
  Biol Pharm Bull, 27, 468-474.  
15016354 P.Auffinger, L.Bielecki, and E.Westhof (2004).
Anion binding to nucleic acids.
  Structure, 12, 379-388.  
15100411 R.S.Edayathumangalam, P.Weyermann, J.M.Gottesfeld, P.B.Dervan, and K.Luger (2004).
Molecular recognition of the nucleosomal "supergroove".
  Proc Natl Acad Sci U S A, 101, 6864-6869.
PDB code: 1s32
16117653 S.Chakravarthy, Y.Bao, V.A.Roberts, D.Tremethick, and K.Luger (2004).
Structural characterization of histone H2A variants.
  Cold Spring Harb Symp Quant Biol, 69, 227-234.  
14739929 U.M.Muthurajan, Y.Bao, L.J.Forsberg, R.S.Edayathumangalam, P.N.Dyer, C.L.White, and K.Luger (2004).
Crystal structures of histone Sin mutant nucleosomes reveal altered protein-DNA interactions.
  EMBO J, 23, 260-271.
PDB codes: 1p34 1p3a 1p3b 1p3f 1p3g 1p3i 1p3k 1p3l 1p3m 1p3o 1p3p
14522056 B.Dudouet, R.Burnett, L.A.Dickinson, M.R.Wood, C.Melander, J.M.Belitsky, B.Edelson, N.Wurtz, C.Briehn, P.B.Dervan, and J.M.Gottesfeld (2003).
Accessibility of nuclear chromatin by DNA binding polyamides.
  Chem Biol, 10, 859-867.  
12672489 K.Luger (2003).
Structure and dynamic behavior of nucleosomes.
  Curr Opin Genet Dev, 13, 127-135.  
12831879 P.B.Dervan, and B.S.Edelson (2003).
Recognition of the DNA minor groove by pyrrole-imidazole polyamides.
  Curr Opin Struct Biol, 13, 284-299.  
12767978 S.Aoyagi, P.A.Wade, and J.J.Hayes (2003).
Nucleosome sliding induced by the xMi-2 complex does not occur exclusively via a simple twist-diffusion mechanism.
  J Biol Chem, 278, 30562-30568.  
14583253 S.W.Ebbinghaus (2003).
Site-selective DNA binding drugs.
  Chem Biol, 10, 895-897.  
14576293 T.G.Uil, H.J.Haisma, and M.G.Rots (2003).
Therapeutic modulation of endogenous gene function by agents with designed DNA-sequence specificities.
  Nucleic Acids Res, 31, 6064-6078.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer