spacer
spacer

PDBsum entry 1lls

Go to PDB code: 
protein metals links
Sugar binding protein PDB id
1lls

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
370 a.a. *
Metals
_XE
Waters ×171
* Residue conservation analysis
PDB id:
1lls
Name: Sugar binding protein
Title: Crystal structure of unliganded maltose binding protein with xenon
Structure: Maltose-binding periplasmic protein. Chain: a. Synonym: maltodextrin-binding protein, mmbp. Engineered: yes
Source: Escherichia coli. Organism_taxid: 562. Expressed in: escherichia coli bl21(de3). Expression_system_taxid: 469008.
Resolution:
1.80Å     R-factor:   0.204     R-free:   0.226
Authors: S.M.Rubin,S.-Y.Lee,E.J.Ruiz,A.Pines,D.E.Wemmer
Key ref:
S.M.Rubin et al. (2002). Detection and characterization of xenon-binding sites in proteins by 129Xe NMR spectroscopy. J Mol Biol, 322, 425-440. PubMed id: 12217701 DOI: 10.1016/S0022-2836(02)00739-8
Date:
30-Apr-02     Release date:   18-Sep-02    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P0AEX9  (MALE_ECOLI) -  Maltose/maltodextrin-binding periplasmic protein from Escherichia coli (strain K12)
Seq:
Struc:
396 a.a.
370 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.?
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

 

 
DOI no: 10.1016/S0022-2836(02)00739-8 J Mol Biol 322:425-440 (2002)
PubMed id: 12217701  
 
 
Detection and characterization of xenon-binding sites in proteins by 129Xe NMR spectroscopy.
S.M.Rubin, S.Y.Lee, E.J.Ruiz, A.Pines, D.E.Wemmer.
 
  ABSTRACT  
 
Xenon-binding sites in proteins have led to a number of applications of xenon in biochemical and structural studies. Here we further develop the utility of 129Xe NMR in characterizing specific xenon-protein interactions. The sensitivity of the 129Xe chemical shift to its local environment and the intense signals attainable by optical pumping make xenon a useful NMR reporter of its own interactions with proteins. A method for detecting specific xenon-binding interactions by analysis of 129Xe chemical shift data is illustrated using the maltose binding protein (MBP) from Escherichia coli as an example. The crystal structure of MBP in the presence of 8atm of xenon confirms the binding site determined from NMR data. Changes in the structure of the xenon-binding cavity upon the binding of maltose by the protein can account for the sensitivity of the 129Xe chemical shift to MBP conformation. 129Xe NMR data for xenon in solution with a number of cavity containing phage T4 lysozyme mutants show that xenon can report on cavity structure. In particular, a correlation exists between cavity size and the binding-induced 129Xe chemical shift. Further applications of 129Xe NMR to biochemical assays, including the screening of proteins for xenon binding for crystallography are considered.
 
  Selected figure(s)  
 
Figure 2.
Figure 2. Stereo diagram of MBP with bound xenon. The density shown in magenta marks the difference Fourier map (contoured at 5s) generated from the previously published native data set and the data set presented here for MBP crystals pressurized with 8 atm xenon. The xenon-binding cavity is located in the N-terminal domain of the protein below the surface of the sugar binding cleft.
Figure 3.
Figure 3. Stereo view of the xenon-binding cavity in MBP. The electron density in cyan corresponds to a 2F[obs] -F[calc] map contoured at 2s. The xenon is localized in the cavity away from the lysine and water that mark the end of the cavity at the protein surface. While the presence of many hydrophobic side-chains is often observed in xenon-binding cavities, the proximity of the cavity to the surface is less common.
 
  The above figures are reprinted by permission from Elsevier: J Mol Biol (2002, 322, 425-440) copyright 2002.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20665694 C.Liebold, F.List, H.R.Kalbitzer, R.Sterner, and E.Brunner (2010).
The interaction of ammonia and xenon with the imidazole glycerol phosphate synthase from Thermotoga maritima as detected by NMR spectroscopy.
  Protein Sci, 19, 1774-1782.  
20694226 N.Klein, C.Herzog, M.Sabo, I.Senkovska, J.Getzschmann, S.Paasch, M.R.Lohe, E.Brunner, and S.Kaskel (2010).
Monitoring adsorption-induced switching by (129)Xe NMR spectroscopy in a new metal-organic framework Ni(2)(2,6-ndc)(2)(dabco).
  Phys Chem Chem Phys, 12, 11778-11784.  
20886471 P.Berthault, H.Desvaux, T.Wendlinger, M.Gyejacquot, A.Stopin, T.Brotin, J.P.Dutasta, and Y.Boulard (2010).
Effect of pH and counterions on the encapsulation properties of xenon in water-soluble cryptophanes.
  Chemistry, 16, 12941-12946.  
20711561 S.Paasch, and E.Brunner (2010).
Trends in solid-state NMR spectroscopy and their relevance for bioanalytics.
  Anal Bioanal Chem, 398, 2351-2362.  
  19241380 A.S.Olia, S.Casjens, and G.Cingolani (2009).
Structural plasticity of the phage P22 tail needle gp26 probed with xenon gas.
  Protein Sci, 18, 537-548.
PDB code: 3c9i
18477634 A.Nigham, L.Tucker-Kellogg, I.Mihalek, C.Verma, and D.Hsu (2008).
pFlexAna: detecting conformational changes in remotely related proteins.
  Nucleic Acids Res, 36, W246-W251.  
18004666 H.J.Lee, H.S.Moon, d.o. .S.Jang, H.J.Cha, B.H.Hong, K.Y.Choi, and H.C.Lee (2008).
Probing the equilibrium unfolding of ketosteroid isomerase through xenon-perturbed 1H-15N multidimensional NMR spectroscopy.
  J Biomol NMR, 40, 65-70.  
18266406 L.B.Casabianca, and A.C.de Dios (2008).
Ab initio calculations of NMR chemical shifts.
  J Chem Phys, 128, 052201.  
17400927 L.Mouawad, C.Tetreau, S.Abdel-Azeim, D.Perahia, and D.Lavalette (2007).
CO migration pathways in cytochrome P450cam studied by molecular dynamics simulations.
  Protein Sci, 16, 781-794.  
16292784 P.Berthault, G.Huber, P.T.Ha, L.Dubois, H.Desvaux, and E.Guittet (2006).
Study of the hydrophobic cavity of beta-cryptogein through laser-polarized xenon NMR spectroscopy.
  Chembiochem, 7, 59-64.  
15489303 C.Tetreau, L.Mouawad, S.Murail, P.Duchambon, Y.Blouquit, and D.Lavalette (2005).
Disentangling ligand migration and heme pocket relaxation in cytochrome P450cam.
  Biophys J, 88, 1250-1263.  
15772304 E.Brunner (2005).
Detection of multiple protein conformations by laser-polarized xenon.
  Protein Sci, 14, 847.  
15741343 T.J.Lowery, M.Doucleff, E.J.Ruiz, S.M.Rubin, A.Pines, and D.E.Wemmer (2005).
Distinguishing multiple chemotaxis Y protein conformations with laser-polarized 129Xe NMR.
  Protein Sci, 14, 848-855.
PDB code: 1zdm
16143635 T.Stockner, H.J.Vogel, and D.P.Tieleman (2005).
A salt-bridge motif involved in ligand binding and large-scale domain motions of the maltose-binding protein.
  Biophys J, 89, 3362-3371.  
15606769 A.Möglich, B.Koch, W.Gronwald, W.Hengstenberg, E.Brunner, and H.R.Kalbitzer (2004).
Solution structure of the active-centre mutant I14A of the histidine-containing phosphocarrier protein from Staphylococcus carnosus.
  Eur J Biochem, 271, 4815-4824.
PDB code: 1txe
14695286 C.Tetreau, Y.Blouquit, E.Novikov, E.Quiniou, and D.Lavalette (2004).
Competition with xenon elicits ligand migration and escape pathways in myoglobin.
  Biophys J, 86, 435-447.  
15268283 D.Stueber, and C.J.Jameson (2004).
The chemical shifts of Xe in the cages of clathrate hydrate Structures I and II.
  J Chem Phys, 120, 1560-1571.  
15558679 D.V.Soldatov, I.L.Moudrakovski, and J.A.Ripmeester (2004).
Dipeptides as microporous materials.
  Angew Chem Int Ed Engl, 43, 6308-6311.  
15596727 I.Moudrakovski, D.V.Soldatov, J.A.Ripmeester, D.N.Sears, and C.J.Jameson (2004).
Xe NMR lineshapes in channels of peptide molecular crystals.
  Proc Natl Acad Sci U S A, 101, 17924-17929.  
15476190 T.J.Lowery, S.M.Rubin, E.J.Ruiz, A.Pines, and D.E.Wemmer (2004).
Design of a conformation-sensitive xenon-binding cavity in the ribose-binding protein.
  Angew Chem Int Ed Engl, 43, 6320-6322.  
12824478 D.R.Smyth, M.K.Mrozkiewicz, W.J.McGrath, P.Listwan, and B.Kobe (2003).
Crystal structures of fusion proteins with large-affinity tags.
  Protein Sci, 12, 1313-1322.  
14635128 R.S.Prajapati, G.M.Lingaraju, K.Bacchawat, A.Surolia, and R.Varadarajan (2003).
Thermodynamic effects of replacements of Pro residues in helix interiors of maltose-binding protein.
  Proteins, 53, 863-871.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer