spacer
spacer

PDBsum entry 1lds

Go to PDB code: 
protein metals links
Immune system PDB id
1lds

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
97 a.a. *
Metals
_NA
Waters ×103
* Residue conservation analysis
PDB id:
1lds
Name: Immune system
Title: Crystal structure of monomeric human beta-2-microglobulin
Structure: Beta-2-microglobulin. Chain: a. Engineered: yes
Source: Homo sapiens. Human. Organism_taxid: 9606. Gene: b2m. Expressed in: escherichia coli bl21(de3). Expression_system_taxid: 469008.
Biol. unit: Dimer (from PQS)
Resolution:
1.80Å     R-factor:   0.187     R-free:   0.233
Authors: C.H.Trinh,D.P.Smith,A.P.Kalverda,S.E.V.Phillips,S.E.Radford
Key ref:
C.H.Trinh et al. (2002). Crystal structure of monomeric human beta-2-microglobulin reveals clues to its amyloidogenic properties. Proc Natl Acad Sci U S A, 99, 9771-9776. PubMed id: 12119416 DOI: 10.1073/pnas.152337399
Date:
09-Apr-02     Release date:   31-Jul-02    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P61769  (B2MG_HUMAN) -  Beta-2-microglobulin from Homo sapiens
Seq:
Struc:
119 a.a.
97 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 

 
DOI no: 10.1073/pnas.152337399 Proc Natl Acad Sci U S A 99:9771-9776 (2002)
PubMed id: 12119416  
 
 
Crystal structure of monomeric human beta-2-microglobulin reveals clues to its amyloidogenic properties.
C.H.Trinh, D.P.Smith, A.P.Kalverda, S.E.Phillips, S.E.Radford.
 
  ABSTRACT  
 
Dissociation of human beta-2-microglobulin (beta(2)m) from the heavy chain of the class I HLA complex is a critical first step in the formation of amyloid fibrils from this protein. As a consequence of renal failure, the concentration of circulating monomeric beta(2)m increases, ultimately leading to deposition of the protein into amyloid fibrils and development of the disorder, dialysis-related amyloidosis. Here we present the crystal structure of a monomeric form of human beta(2)m determined at 1.8-A resolution that reveals remarkable structural changes relative to the HLA-bound protein. These involve the restructuring of a beta bulge that separates two short beta strands to form a new six-residue beta strand at one edge of this beta sandwich protein. These structural changes remove key features proposed to have evolved to protect beta sheet proteins from aggregation [Richardson, J. & Richardson, D. (2002) and replaces them with an aggregation-competent surface. In combination with solution studies using (1)H NMR, we show that the crystal structure presented here represents a rare species in solution that could provide important clues about the mechanism of amyloid formation from the normally highly soluble native protein.
 
  Selected figure(s)  
 
Figure 1.
Fig. 1. Ribbon diagram of the crystal structures of (a) M[H] [2]m and (c) HLA [2]m. Detailed views of the conformation of residues 49-68 are also shown for (b) M[H] [2]m and (d) HLA [2]m. The structure of HLA [2]m was taken from PDB ID code 1DUZ (25). Individual strands are labeled A although G. a and c were drawn by using the program MOLSCRIPT (37) and RASTER 3D (38) and b and d, by using SPOCK (39).
Figure 3.
Fig. 3. Schematic diagram showing the pattern of NH-NH and C H-C H NOEs predicted for conformations of M[H] [2]m (a) lacking and (b) containing the bulge involving residues 53 and 54. C H-C H region (c) and NH-NH region (d) of a 1H-1H NOESY spectrum of M[H] [2]m acquired at pH 5.7, 37°C, in D[2]O and H[2]O, respectively. Crosspeaks consistent with the presence of the bulge in solution are marked in bold and underlined. Crosspeaks expected were M[H] [2]m to adopt a conformation in solution identical to that in a are shown as solid circles.
 
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21107472 B.Pavone, S.Bucci, V.Sirolli, G.Merlini, P.Del Boccio, M.Di Rienzo, P.Felaco, L.Amoroso, P.Sacchetta, C.Di Ilio, G.Federici, A.Urbani, and M.Bonomini (2011).
Beta2-microglobulin causes abnormal phosphatidylserine exposure in human red blood cells.
  Mol Biosyst, 7, 651-658.  
21131979 C.Liu, M.R.Sawaya, and D.Eisenberg (2011).
β₂-microglobulin forms three-dimensional domain-swapped amyloid fibrils with disulfide linkages.
  Nat Struct Mol Biol, 18, 49-55.
PDB codes: 3low 3loz
20820495 E.Jurneczko, and P.E.Barran (2011).
How useful is ion mobility mass spectrometry for structural biology? The relationship between protein crystal structures and their collision cross sections in the gas phase.
  Analyst, 136, 20-28.  
21220305 K.Domanska, S.Vanderhaegen, V.Srinivasan, E.Pardon, F.Dupeux, J.A.Marquez, S.Giorgetti, M.Stoppini, L.Wyns, V.Bellotti, and J.Steyaert (2011).
Atomic structure of a nanobody-trapped domain-swapped dimer of an amyloidogenic beta2-microglobulin variant.
  Proc Natl Acad Sci U S A, 108, 1314-1319.
PDB code: 2x89
21365783 S.Kang, J.E.Yang, J.Kim, M.Ahn, H.J.Koo, M.Kim, Y.S.Lee, and S.R.Paik (2011).
Removal of intact β2-microglobulin at neutral ph by using seed-conjugated polymer beads prepared with β2-microglobulin-derived peptide (58-67).
  Biotechnol Prog, 27, 521-529.  
21255727 T.Eichner, A.P.Kalverda, G.S.Thompson, S.W.Homans, and S.E.Radford (2011).
Conformational conversion during amyloid formation at atomic resolution.
  Mol Cell, 41, 161-172.
PDB codes: 2xks 2xku
20335170 C.L.Ladner, M.Chen, D.P.Smith, G.W.Platt, S.E.Radford, and R.Langen (2010).
Stacked sets of parallel, in-register beta-strands of beta2-microglobulin in amyloid fibrils revealed by site-directed spin labeling and chemical labeling.
  J Biol Chem, 285, 17137-17147.  
21077676 G.T.Debelouchina, G.W.Platt, M.J.Bayro, S.E.Radford, and R.G.Griffin (2010).
Intermolecular Alignment in β2-Microglobulin Amyloid Fibrils.
  J Am Chem Soc, 132, 17077-17079.  
19496082 B.Sorce, S.Sabella, M.Sandal, B.Samorì, A.Santino, R.Cingolani, R.Rinaldi, and P.P.Pompa (2009).
Single-molecule mechanical unfolding of amyloidogenic beta2-microglobulin: the force-spectroscopy approach.
  Chemphyschem, 10, 1471-1477.  
18835891 E.Rennella, A.Corazza, F.Fogolari, P.Viglino, S.Giorgetti, M.Stoppini, V.Bellotti, and G.Esposito (2009).
Equilibrium unfolding thermodynamics of beta2-microglobulin analyzed through native-state H/D exchange.
  Biophys J, 96, 169-179.  
19433089 G.W.Platt, and S.E.Radford (2009).
Glimpses of the molecular mechanisms of beta2-microglobulin fibril formation in vitro: aggregation on a complex energy landscape.
  FEBS Lett, 583, 2623-2629.  
19345691 H.E.White, J.L.Hodgkinson, T.R.Jahn, S.Cohen-Krausz, W.S.Gosal, S.Müller, E.V.Orlova, S.E.Radford, and H.R.Saibil (2009).
Globular tetramers of beta(2)-microglobulin assemble into elaborate amyloid fibrils.
  J Mol Biol, 389, 48-57.  
18996721 J.P.Hodkinson, T.R.Jahn, S.E.Radford, and A.E.Ashcroft (2009).
HDX-ESI-MS reveals enhanced conformational dynamics of the amyloidogenic protein beta(2)-microglobulin upon release from the MHC-1.
  J Am Soc Mass Spectrom, 20, 278-286.  
19824733 M.Mustata, R.Capone, H.Jang, F.T.Arce, S.Ramachandran, R.Lal, and R.Nussinov (2009).
K3 fragment of amyloidogenic beta(2)-microglobulin forms ion channels: implication for dialysis related amyloidosis.
  J Am Chem Soc, 131, 14938-14945.  
19657763 N.H.Heegaard (2009).
beta(2)-microglobulin: from physiology to amyloidosis.
  Amyloid, 16, 151-173.  
19357935 P.Mendoza-Espinosa, V.García-González, A.Moreno, R.Castillo, and J.Mas-Oliva (2009).
Disorder-to-order conformational transitions in protein structure and its relationship to disease.
  Mol Cell Biochem, 330, 105-120.  
18668126 P.Ye, C.Wu, L.Sheng, and H.Li (2009).
Effect of xuezhikang on alpha1- and beta2-microglobulin in patients with essential hypertension.
  J Hum Hypertens, 23, 72-74.  
19754160 R.Srikanth, V.L.Mendoza, J.D.Bridgewater, G.Zhang, and R.W.Vachet (2009).
Copper binding to beta-2-microglobulin and its pre-amyloid oligomers.
  Biochemistry, 48, 9871-9881.  
18853280 S.Yu, X.Chen, and J.Ao (2009).
Molecular characterization and expression analysis of beta2-microglobulin in large yellow croaker Pseudosciaena crocea.
  Mol Biol Rep, 36, 1715-1723.  
18342332 G.W.Platt, K.E.Routledge, S.W.Homans, and S.E.Radford (2008).
Fibril growth kinetics reveal a region of beta2-microglobulin important for nucleation and elongation of aggregation.
  J Mol Biol, 378, 251-263.  
18161737 H.Heise (2008).
Solid-state NMR spectroscopy of amyloid proteins.
  Chembiochem, 9, 179-189.  
18162431 J.G.Ghosh, S.A.Houck, and J.I.Clark (2008).
Interactive sequences in the molecular chaperone, human alphaB crystallin modulate the fibrillation of amyloidogenic proteins.
  Int J Biochem Cell Biol, 40, 954-967.  
19172750 M.F.Calabrese, C.M.Eakin, J.M.Wang, and A.D.Miranker (2008).
A regulatable switch mediates self-association in an immunoglobulin fold.
  Nat Struct Mol Biol, 15, 965-971.
PDB code: 3ciq
  18323608 W.Chen, F.Chu, H.Peng, J.Zhang, J.Qi, F.Jiang, C.Xia, and F.Gao (2008).
Expression, purification, crystallization and preliminary X-ray diffraction analysis of grass carp beta2-microglobulin.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 64, 200-202.  
17964800 D.P.Smith, K.Giles, R.H.Bateman, S.E.Radford, and A.E.Ashcroft (2007).
Monitoring copopulated conformational states during protein folding events using electrospray ionization-ion mobility spectrometry-mass spectrometry.
  J Am Soc Mass Spectrom, 18, 2180-2190.  
16491088 C.M.Eakin, A.J.Berman, and A.D.Miranker (2006).
A native to amyloidogenic transition regulated by a backbone trigger.
  Nat Struct Mol Biol, 13, 202-208.
PDB code: 2f8o
16322574 S.Park, and J.G.Saven (2006).
Simulation of pH-dependent edge strand rearrangement in human beta-2 microglobulin.
  Protein Sci, 15, 200-207.  
16491092 T.R.Jahn, M.J.Parker, S.W.Homans, and S.E.Radford (2006).
Amyloid formation under physiological conditions proceeds via a native-like folding intermediate.
  Nat Struct Mol Biol, 13, 195-201.  
14675065 E.A.Grovender, B.Kellogg, J.Singh, D.Blom, H.Ploegh, K.D.Wittrup, R.S.Langer, and G.A.Ameer (2004).
Single-chain antibody fragment-based adsorbent for the extracorporeal removal of beta2-microglobulin.
  Kidney Int, 65, 310-322.  
15323134 J.B.Henry, C.A.Hubbell, M.C.Davis, M.A.Fernandez-Vina, E.J.Yunis, and A.E.Shrimpton (2004).
A new HLA-A1 mutation: a novel, null variant allele.
  Am J Clin Pathol, 122, 185-192.  
14673392 J.N.Buxbaum (2004).
The systemic amyloidoses.
  Curr Opin Rheumatol, 16, 67-75.  
14767076 J.Villanueva, M.Hoshino, H.Katou, J.Kardos, K.Hasegawa, H.Naiki, and Y.Goto (2004).
Increase in the conformational flexibility of beta 2-microglobulin upon copper binding: a possible role for copper in dialysis-related amyloidosis.
  Protein Sci, 13, 797-809.  
14500893 J.A.Siepen, S.E.Radford, and D.R.Westhead (2003).
Beta edge strands in protein structure prediction and aggregation.
  Protein Sci, 12, 2348-2359.  
14622000 M.I.Ivanova, M.Gingery, L.J.Whitson, and D.Eisenberg (2003).
Role of the C-terminal 28 residues of beta2-microglobulin in amyloid fibril formation.
  Biochemistry, 42, 13536-13540.  
12832782 S.Zuccotti, C.Rosano, P.Mangione, V.Bellotti, and M.Bolognesi (2003).
Preliminary crystallographic characterization of the human beta2 microglobulin His31Tyr mutant in a tetrameric assembly.
  Acta Crystallogr D Biol Crystallogr, 59, 1270-1272.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer