spacer
spacer

PDBsum entry 1l1d

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Oxidoreductase PDB id
1l1d

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
144 a.a. *
Ligands
CAC ×3
Waters ×124
* Residue conservation analysis
PDB id:
1l1d
Name: Oxidoreductase
Title: Crystal structure of thE C-terminal methionine sulfoxide reductase domain (msrb) of n. Gonorrhoeae pilb
Structure: Peptide methionine sulfoxide reductase. Chain: a, b. Fragment: msrb domain, c-terminal domain. Engineered: yes
Source: Neisseria gonorrhoeae. Organism_taxid: 485. Gene: pilb. Expressed in: escherichia coli bl21(de3). Expression_system_taxid: 469008.
Resolution:
1.85Å     R-factor:   0.207     R-free:   0.237
Authors: W.T.Lowther,H.Weissbach,F.Etienne,N.Brot,B.W.Matthews
Key ref:
W.T.Lowther et al. (2002). The mirrored methionine sulfoxide reductases of Neisseria gonorrhoeae pilB. Nat Struct Biol, 9, 348-352. PubMed id: 11938352 DOI: 10.1038/nsb783
Date:
15-Feb-02     Release date:   01-May-02    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P14930  (MSRAB_NEIGO) -  Peptide methionine sulfoxide reductase MsrA/MsrB from Neisseria gonorrhoeae
Seq:
Struc:
 
Seq:
Struc:
522 a.a.
144 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class 2: E.C.1.8.4.11  - peptide-methionine (S)-S-oxide reductase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction:
1. L-methionyl-[protein] + [thioredoxin]-disulfide + H2O = L-methionyl- (S)-S-oxide-[protein] + [thioredoxin]-dithiol
2. [thioredoxin]-disulfide + L-methionine + H2O = L-methionine (S)-S- oxide + [thioredoxin]-dithiol
L-methionyl-[protein]
+ [thioredoxin]-disulfide
+ H2O
= L-methionyl- (S)-S-oxide-[protein]
+ [thioredoxin]-dithiol
[thioredoxin]-disulfide
+ L-methionine
+ H2O
= L-methionine (S)-S- oxide
+ [thioredoxin]-dithiol
   Enzyme class 3: E.C.1.8.4.12  - peptide-methionine (R)-S-oxide reductase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: L-methionyl-[protein] + [thioredoxin]-disulfide + H2O = L-methionyl-(R)- S-oxide-[protein] + [thioredoxin]-dithiol
Peptide-L-methionine
+ thioredoxin disulfide
+ H(2)O
= peptide-L- methionine (R)-S-oxide
+ thioredoxin
      Cofactor: Se(2+); Zn(2+)
Note, where more than one E.C. class is given (as above), each may correspond to a different protein domain or, in the case of polyprotein precursors, to a different mature protein.
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1038/nsb783 Nat Struct Biol 9:348-352 (2002)
PubMed id: 11938352  
 
 
The mirrored methionine sulfoxide reductases of Neisseria gonorrhoeae pilB.
W.T.Lowther, H.Weissbach, F.Etienne, N.Brot, B.W.Matthews.
 
  ABSTRACT  
 
Methionine sulfoxide reductases (Msr) protect against oxidative damage that can contribute to cell death. The tandem Msr domains (MsrA and MsrB) of the pilB protein from Neisseria gonorrhoeae each reduce different epimeric forms of methionine sulfoxide. The overall fold of the MsrB domain revealed by the 1.85 A crystal structure shows no resemblance to the previously determined MsrA structures from other organisms. Despite the lack of homology, the active sites show approximate mirror symmetry. In each case, conserved amino acid motifs mediate the stereo-specific recognition and reduction of the substrate. Unlike the MsrA domain, the MsrB domain activates the cysteine or selenocysteine nucleophile through a unique Cys-Arg-Asp/Glu catalytic triad. The collapse of the reaction intermediate most likely results in the formation of a sulfenic or selenenic acid moiety. Regeneration of the active site occurs through a series of thiol-disulfide exchange steps involving another active site Cys residue and thioredoxin. These observations have broad implications for modular catalysis, antibiotic drug design and continuing longevity studies in mammals.
 
  Selected figure(s)  
 
Figure 3.
Figure 3. Mirror-like relationship between the active sites of MsrB and MsrA domains. a, Model for the interactions of Met-R(O) (orange carbon atoms) with the active site of the pilB MsrB domain (this work). b, Model for the interaction of Met-S(O) with the active site of bovine MsrA^16. In each case, only small adjustments to the rotamer angle of the presumed nucleophilic Cys residue, Cys 495 or Cys 72, were required to establish a feasible interaction ( 2.1 Å) with the sulfur atom of the sulfoxide moiety (dashed yellow lines). The substrates were also docked in a manner to place the oxygen and sulfur atoms at the axial positions of the putative trigonal-bipyramidal intermediate of the reaction (Fig. 4). The MsrA domain of pilB presumably shows interactions similar to those here because the active site residues are conserved and the overall sequence identity is 40% (ref. 15).
Figure 4.
Figure 4. Proposed reaction mechanism for MsrB catalysis. The active site residues and the solvent molecule, W 1, are indicated in bold. The nucleophilic attack by Cys 495 (I) results in a trigonal-bipyramidal intermediate (II). Collapse of the intermediate leads to the formation of a sulfenic acid derivative of Cys 495 and the release of methionine (III). The analogous derivative within the MsrB homolog SelX probably contains a selenenic acid modification (Fig. 2a). A series of thiol-disulfide exchange reactions (III and IV) and the action of reducing thiols, either dithiothreitol (DTT) in vitro or the thioredoxin-thioredoxin reductase system (TR/TRR) with its associated cofactor NADPH in vivo, return the active site to the fully reduced state. Whether the addition of the proton to the oxygen atom of the sulfoxide moiety occurs between steps I and II or steps II and III, as shown, remains to be determined.
 
  The above figures are reprinted by permission from Macmillan Publishers Ltd: Nat Struct Biol (2002, 9, 348-352) copyright 2002.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21075204 B.C.Lee, and V.N.Gladyshev (2011).
The biological significance of methionine sulfoxide stereochemistry.
  Free Radic Biol Med, 50, 221-227.  
21219456 M.Carella, J.Becher, O.Ohlenschläger, R.Ramachandran, K.H.Gührs, G.Wellenreuther, W.Meyer-Klaucke, S.H.Heinemann, and M.Görlach (2011).
Structure-function relationship in an archaebacterial methionine sulphoxide reductase B.
  Mol Microbiol, 79, 342-358.
PDB code: 2k8d
20176891 I.Iglesias-Baena, S.Barranco-Medina, A.Lázaro-Payo, F.J.López-Jaramillo, F.Sevilla, and J.J.Lázaro (2010).
Characterization of plant sulfiredoxin and role of sulphinic form of 2-Cys peroxiredoxin.
  J Exp Bot, 61, 1509-1521.  
20229362 M.Carella, O.Ohlenschläger, R.Ramachandran, and M.Görlach (2010).
1H, 13C and 15N resonance assignment of a zinc-binding methionine sulfoxide reductase type-B from the thermophilic archeabacterium Methanothermobacter thermoautotrophicus.
  Biomol NMR Assign, 4, 93-95.  
19958171 N.Ugarte, I.Petropoulos, and B.Friguet (2010).
Oxidized mitochondrial protein degradation and repair in aging and oxidative stress.
  Antioxid Redox Signal, 13, 539-549.  
19049972 D.T.Le, B.C.Lee, S.M.Marino, Y.Zhang, D.E.Fomenko, A.Kaya, E.Hacioglu, G.H.Kwak, A.Koc, H.Y.Kim, and V.N.Gladyshev (2009).
Functional Analysis of Free Methionine-R-sulfoxide Reductase from Saccharomyces cerevisiae.
  J Biol Chem, 284, 4354-4364.  
19446492 J.P.Jacquot, H.Eklund, N.Rouhier, and P.Schürmann (2009).
Structural and evolutionary aspects of thioredoxin reductases in photosynthetic organisms.
  Trends Plant Sci, 14, 336-343.  
19406205 R.J.Hondal (2009).
Using chemical approaches to study selenoproteins-focus on thioredoxin reductases.
  Biochim Biophys Acta, 1790, 1501-1512.  
19151101 T.Takenawa, A.Yokota, M.Oda, H.Takahashi, and M.Iwakura (2009).
Protein oxidation during long storage: identification of the oxidation sites in dihydrofolate reductase from Escherichia coli through LC-MS and fragment studies.
  J Biochem, 145, 517-523.  
19400786 Y.K.Kim, Y.J.Shin, W.H.Lee, H.Y.Kim, and K.Y.Hwang (2009).
Structural and kinetic analysis of an MsrA-MsrB fusion protein from Streptococcus pneumoniae.
  Mol Microbiol, 72, 699-709.
PDB codes: 3e0m 3e0o
18505275 D.T.Le, X.Liang, D.E.Fomenko, A.S.Raza, C.K.Chong, B.A.Carlson, D.L.Hatfield, and V.N.Gladyshev (2008).
Analysis of methionine/selenomethionine oxidation and methionine sulfoxide reductase function using methionine-rich proteins and antibodies against their oxidized forms.
  Biochemistry, 47, 6685-6694.  
18227433 F.R.Salsbury, S.T.Knutson, L.B.Poole, and J.S.Fetrow (2008).
Functional site profiling and electrostatic analysis of cysteines modifiable to cysteine sulfenic acid.
  Protein Sci, 17, 299-312.  
18557976 X.H.Zhang, and H.Weissbach (2008).
Origin and evolution of the protein-repairing enzymes methionine sulphoxide reductases.
  Biol Rev Camb Philos Soc, 83, 249-257.  
17519015 A.De Luca, P.Sacchetta, M.Nieddu, C.Di Ilio, and B.Favaloro (2007).
Important roles of multiple Sp1 binding sites and epigenetic modifications in the regulation of the methionine sulfoxide reductase B1 (MsrB1) promoter.
  BMC Mol Biol, 8, 39.  
17997579 B.Chen, L.M.Markillie, Y.Xiong, M.U.Mayer, and T.C.Squier (2007).
Increased catalytic efficiency following gene fusion of bifunctional methionine sulfoxide reductase enzymes from Shewanella oneidensis.
  Biochemistry, 46, 14153-14161.  
17766244 F.Neiers, S.Sonkaria, A.Olry, S.Boschi-Muller, and G.Branlant (2007).
Characterization of the amino acids from Neisseria meningitidis methionine sulfoxide reductase B involved in the chemical catalysis and substrate specificity of the reductase step.
  J Biol Chem, 282, 32397-32405.  
17180746 L.Delaye, A.Becerra, L.Orgel, and A.Lazcano (2007).
Molecular evolution of peptide methionine sulfoxide reductases (MsrA and MsrB): on the early development of a mechanism that protects against oxidative damage.
  J Mol Evol, 64, 15-32.  
17135266 N.Rouhier, B.Kauffmann, F.Tete-Favier, P.Palladino, P.Gans, G.Branlant, J.P.Jacquot, and S.Boschi-Muller (2007).
Functional and structural aspects of poplar cytosolic and plastidial type a methionine sulfoxide reductases.
  J Biol Chem, 282, 3367-3378.
PDB code: 2j89
18041903 S.J.Sasindran, S.Saikolappan, and S.Dhandayuthapani (2007).
Methionine sulfoxide reductases and virulence of bacterial pathogens.
  Future Microbiol, 2, 619-630.  
17535911 Z.Lin, L.C.Johnson, H.Weissbach, N.Brot, M.O.Lively, and W.T.Lowther (2007).
Free methionine-(R)-sulfoxide reductase from Escherichia coli reveals a new GAF domain function.
  Proc Natl Acad Sci U S A, 104, 9597-9602.  
16735467 D.Sagher, D.Brunell, J.F.Hejtmancik, M.Kantorow, N.Brot, and H.Weissbach (2006).
Thionein can serve as a reducing agent for the methionine sulfoxide reductases.
  Proc Natl Acad Sci U S A, 103, 8656-8661.  
16916796 D.Sagher, D.Brunell, N.Brot, B.L.Vallee, and H.Weissbach (2006).
Selenocompounds can serve as oxidoreductants with the methionine sulfoxide reductase enzymes.
  J Biol Chem, 281, 31184-31187.  
17105189 H.Y.Kim, D.E.Fomenko, Y.E.Yoon, and V.N.Gladyshev (2006).
Catalytic advantages provided by selenocysteine in methionine-S-sulfoxide reductases.
  Biochemistry, 45, 13697-13704.  
16322566 M.B.Cannon, and S.J.Remington (2006).
Re-engineering redox-sensitive green fluorescent protein for improved response rate.
  Protein Sci, 15, 45-57.
PDB codes: 2ah8 2aha
16926157 N.Brot, J.F.Collet, L.C.Johnson, T.J.Jönsson, H.Weissbach, and W.T.Lowther (2006).
The thioredoxin domain of Neisseria gonorrhoeae PilB can use electrons from DsbD to reduce downstream methionine sulfoxide reductases.
  J Biol Chem, 281, 32668-32675.
PDB code: 2h30
16885452 P.Alamuri, and R.J.Maier (2006).
Methionine sulfoxide reductase in Helicobacter pylori: interaction with methionine-rich proteins and stress-induced expression.
  J Bacteriol, 188, 5839-5850.  
16251365 A.Olry, S.Boschi-Muller, H.Yu, D.Burnel, and G.Branlant (2005).
Insights into the role of the metal binding site in methionine-R-sulfoxide reductases B.
  Protein Sci, 14, 2828-2837.  
15601707 B.Ezraty, J.Bos, F.Barras, and L.Aussel (2005).
Methionine sulfoxide reduction and assimilation in Escherichia coli: new role for the biotin sulfoxide reductase BisC.
  J Bacteriol, 187, 231-237.  
16262444 H.Y.Kim, and V.N.Gladyshev (2005).
Different catalytic mechanisms in mammalian selenocysteine- and cysteine-containing methionine-R-sulfoxide reductases.
  PLoS Biol, 3, e375.  
15691956 J.Walter, P.Chagnaud, G.W.Tannock, D.M.Loach, F.Dal Bello, H.F.Jenkinson, W.P.Hammes, and C.Hertel (2005).
A high-molecular-mass surface protein (Lsp) and methionine sulfoxide reductase B (MsrB) contribute to the ecological performance of Lactobacillus reuteri in the murine gut.
  Appl Environ Microbiol, 71, 979-986.  
15668226 J.Wu, F.Neiers, S.Boschi-Muller, and G.Branlant (2005).
The N-terminal domain of PILB from Neisseria meningitidis is a disulfide reductase that can recycle methionine sulfoxide reductases.
  J Biol Chem, 280, 12344-12350.  
15965542 R.Bentley (2005).
Role of sulfur chirality in the chemical processes of biology.
  Chem Soc Rev, 34, 609-624.  
15280355 F.Neiers, A.Kriznik, S.Boschi-Muller, and G.Branlant (2004).
Evidence for a new sub-class of methionine sulfoxide reductases B with an alternative thioredoxin recognition signature.
  J Biol Chem, 279, 42462-42468.  
14699060 H.Y.Kim, and V.N.Gladyshev (2004).
Methionine sulfoxide reduction in mammals: characterization of methionine-R-sulfoxide reductases.
  Mol Biol Cell, 15, 1055-1064.  
14744249 L.B.Poole, P.A.Karplus, and A.Claiborne (2004).
Protein sulfenic acids in redox signaling.
  Annu Rev Pharmacol Toxicol, 44, 325-347.  
14745014 O.Yermolaieva, R.Xu, C.Schinstock, N.Brot, H.Weissbach, S.H.Heinemann, and T.Hoshi (2004).
Methionine sulfoxide reductase A protects neuronal cells against brief hypoxia/reoxygenation.
  Proc Natl Acad Sci U S A, 101, 1159-1164.  
15239056 P.F.Mugford, S.M.Lait, B.A.Keay, and R.J.Kazlauskas (2004).
Enantiocomplementary enzymatic resolution of the chiral auxiliary: cis,cis-6-(2,2-dimethylpropanamido)spiro[4.4]nonan-1-ol and the molecular basis for the high enantioselectivity of subtilisin Carlsberg.
  Chembiochem, 5, 980-987.  
15150247 T.Douglas, D.S.Daniel, B.K.Parida, C.Jagannath, and S.Dhandayuthapani (2004).
Methionine sulfoxide reductase A (MsrA) deficiency affects the survival of Mycobacterium smegmatis within macrophages.
  J Bacteriol, 186, 3590-3598.  
12837786 A.B.Taylor, D.M.Benglis, S.Dhandayuthapani, and P.J.Hart (2003).
Structure of Mycobacterium tuberculosis methionine sulfoxide reductase A in complex with protein-bound methionine.
  J Bacteriol, 185, 4119-4126.
PDB code: 1nwa
14580313 E.R.Stadtman, J.Moskovitz, and R.L.Levine (2003).
Oxidation of methionine residues of proteins: biological consequences.
  Antioxid Redox Signal, 5, 577-582.  
12954610 M.Antoine, S.Boschi-Muller, and G.Branlant (2003).
Kinetic characterization of the chemical steps involved in the catalytic mechanism of methionine sulfoxide reductase A from Neisseria meningitidis.
  J Biol Chem, 278, 45352-45357.  
12096194 E.P.Skaar, D.M.Tobiason, J.Quick, R.C.Judd, H.Weissbach, F.Etienne, N.Brot, and H.S.Seifert (2002).
The outer membrane localization of the Neisseria gonorrhoeae MsrA/B is involved in survival against reactive oxygen species.
  Proc Natl Acad Sci U S A, 99, 10108-10113.  
12145281 R.A.Kumar, A.Koc, R.L.Cerny, and V.N.Gladyshev (2002).
Reaction mechanism, evolutionary analysis, and role of zinc in Drosophila methionine-R-sulfoxide reductase.
  J Biol Chem, 277, 37527-37535.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer