spacer
spacer

PDBsum entry 1jb7

Go to PDB code: 
protein dna_rna metals Protein-protein interface(s) links
DNA-binding protein/DNA PDB id
1jb7

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
460 a.a. *
216 a.a. *
DNA/RNA
Metals
_NA ×4
_CL
Waters ×503
* Residue conservation analysis
PDB id:
1jb7
Name: DNA-binding protein/DNA
Title: DNA g-quartets in a 1.86 a resolution structure of an oxytricha nova telomeric protein-DNA complex
Structure: 5'-d( Gp Gp Gp Gp Tp Tp Tp Tp Gp Gp Gp G)-3'. Chain: d, g, h. Engineered: yes. Other_details: chain d is single strand DNA. Chains g and h are a g- quartet linked DNA dimer. Telomere-binding protein alpha subunit. Chain: a. Engineered: yes. Other_details: alanine version.
Source: Synthetic: yes. Other_details: 3' terminal single strand DNA sequence of macronuclear telomeres. Sterkiella nova. Organism_taxid: 200597. Gene: mac-56a. Expressed in: escherichia coli. Expression_system_taxid: 562. Gene: mac-41a.
Biol. unit: Pentamer (from PQS)
Resolution:
1.86Å     R-factor:   0.230     R-free:   0.246
Authors: M.P.Horvath,S.C.Schultz
Key ref:
M.P.Horvath and S.C.Schultz (2001). DNA G-quartets in a 1.86 A resolution structure of an Oxytricha nova telomeric protein-DNA complex. J Mol Biol, 310, 367-377. PubMed id: 11428895 DOI: 10.1006/jmbi.2001.4766
Date:
02-Jun-01     Release date:   11-Jun-01    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P29549  (TEBA_STENO) -  Telomere-binding protein subunit alpha from Sterkiella nova
Seq:
Struc:
495 a.a.
460 a.a.
Protein chain
Pfam   ArchSchema ?
P16458  (TEBB_STENO) -  Telomere-binding protein subunit beta from Sterkiella nova
Seq:
Struc:
385 a.a.
216 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

DNA/RNA chains
  G-G-G-G-T-T-T-T-G-G-G-G 12 bases
  G-G-G-G-T-T-T-T-G-G-G-G 12 bases
  G-G-G-G-T-T-T-T-G-G-G-G 12 bases

 

 
DOI no: 10.1006/jmbi.2001.4766 J Mol Biol 310:367-377 (2001)
PubMed id: 11428895  
 
 
DNA G-quartets in a 1.86 A resolution structure of an Oxytricha nova telomeric protein-DNA complex.
M.P.Horvath, S.C.Schultz.
 
  ABSTRACT  
 
The Oxytricha nova telomere end binding protein (OnTEBP) recognizes, binds and protects the single-stranded 3'-terminal DNA extension found at the ends of macronuclear chromosomes. The structure of this complex shows that the single strand GGGGTTTTGGGG DNA binds in a deep cleft between the two protein subunits of OnTEBP, adopting a non-helical and irregular conformation. In extending the resolution limit of this structure to 1.86 A, we were surprised to find a G-quartet linked dimer of the GGGGTTTTGGGG DNA also packing within the crystal lattice and interacting with the telomere end binding protein. The G-quartet DNA exhibits the same structure and topology as previously observed in solution by NMR with diagonally crossing d(TTTT) loops at either end of the four-stranded helix. Additionally, the crystal structure reveals clearly visible Na(+), and specific patterns of bound water molecules in the four non-equivalent grooves. Although the G-quartet:protein contact surfaces are modest and might simply represent crystal packing interactions, it is interesting to speculate that the two types of telomeric DNA-protein interactions observed here might both be important in telomere biology.
 
  Selected figure(s)  
 
Figure 4.
Figure 4. Hydration of the G-quartet linked G[4]T[4]G[4] DNA dimer. Electron density maps and schematic representations are shown side-by-side for water molecules bound in the four grooves. The electron density map is colored gray for the DNA grooves and blue for the water molecules. In the schematic phosphorous atoms are colored yellow, non-bridging phosphate oxygen atoms are red, N2 (and N3 if shown) atoms are green, the C8 atom is gray, water molecules are cyan for 1–2 σ peaks in the S.A. omit electron density maps and dark blue for>2 σ peaks. The deoxyribose group is a pentagon and the bases are represented as rectangles. The position in the 5′ → 3′ sequence and the syn/anti conformation about the N-glycosyl bond of each base is indicated. From top to bottom the grooves are the (a) wide groove (10 Šacross), (b) intermediate I (4.6 Šacross), (c) narrow (3.0 Šacross), and (d) intermediate II (4.6 Šacross). The two intermediate grooves and associated hydration patterns are pseudo 2-fold symmetric, so each DNA-water interaction is corroborated by two independent observations. In solution, the wide and narrow grooves are each pseudo 2-fold symmetric, but water interactions are not exactly repeated in the top and bottom halves of these two grooves presumably because of protein and lattice interactions.
Figure 5.
Figure 5. Distribution of waters interacting with N3, N2, and C8 groups of the G bases. (a) All 16 G-G base-pairs are superimposed and shown as a generalized G-G pair. The number of observations for each hydration site is indicated. (b) The N2-water-O4' bridge and the C8-water-OP bridge are shown for the anti-anti G-G configuration. (c) The N2-water-OP bridge and (d) the C8-water-O4' bridge are other examples of bidentate water interactions and each of these bridges involves a base in the syn conformation.
 
  The above figures are reprinted by permission from Elsevier: J Mol Biol (2001, 310, 367-377) copyright 2001.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
19360177 A.Wong, F.W.Kotch, I.C.Kwan, J.T.Davis, and G.Wu (2009).
Probing the Na+ binding site in a calix[4]arene-guanosine conjugate dimer by solid-state 23Na NMR and quantum chemical calculation.
  Chem Commun (Camb), (), 2154-2156.  
19757406 F.Cesare Marincola, A.Virno, A.Randazzo, F.Mocci, G.Saba, and A.Lai (2009).
Competitive binding exchange between alkali metal ions (K(+), Rb(+), and Cs(+)) and Na(+) ions bound to the dimeric quadruplex [d(G(4)T(4)G(4))](2): a (23)Na and (1)H NMR study.
  Magn Reson Chem, 47, 1036-1042.  
18774931 B.Chen, J.Liang, X.Tian, and X.Liu (2008).
G-quadruplex structure: a target for anticancer therapy and a probe for detection of potassium.
  Biochemistry (Mosc), 73, 853-861.  
17505106 C.Creze, B.Rinaldi, R.Haser, P.Bouvet, and P.Gouet (2007).
Structure of a d(TGGGGT) quadruplex crystallized in the presence of Li+ ions.
  Acta Crystallogr D Biol Crystallogr, 63, 682-688.
PDB code: 2o4f
17719795 C.L.Mazzitelli, J.Wang, S.I.Smith, and J.S.Brodbelt (2007).
Gas-phase stability of G-quadruplex DNA determined by electrospray ionization tandem mass spectrometry and molecular dynamics simulations.
  J Am Soc Mass Spectrom, 18, 1760-1773.  
18217607 I.C.Kwan, Y.M.She, and G.Wu (2007).
Trivalent lanthanide metal ions promote formation of stacking G-quartets.
  Chem Commun (Camb), (), 4286-4288.  
17967698 J.Sponer, and N.Spacková (2007).
Molecular dynamics simulations and their application to four-stranded DNA.
  Methods, 43, 278-290.  
17412708 P.Podbevsek, N.V.Hud, and J.Plavec (2007).
NMR evaluation of ammonium ion movement within a unimolecular G-quadruplex in solution.
  Nucleic Acids Res, 35, 2554-2563.  
17308634 R.Ida, I.C.Kwan, and G.Wu (2007).
Direct 23Na NMR observation of mixed cations residing inside a G-quadruplex channel.
  Chem Commun (Camb), (), 795-797.  
17221902 T.van Mourik, and A.J.Dingley (2007).
Geometry dependence of spin-spin couplings in cyanamide by DFT analysis.
  Chemphyschem, 8, 288-296.  
16890443 J.E.Croy, and D.S.Wuttke (2006).
Themes in ssDNA recognition by telomere-end protection proteins.
  Trends Biochem Sci, 31, 516-525.  
16614450 J.T.Nielsen, K.Arar, and M.Petersen (2006).
NMR solution structures of LNA (locked nucleic acid) modified quadruplexes.
  Nucleic Acids Res, 34, 2006-2014.
PDB codes: 2chj 2chk
16945956 M.L.Gill, S.A.Strobel, and J.P.Loria (2006).
Crystallization and characterization of the thallium form of the Oxytricha nova G-quadruplex.
  Nucleic Acids Res, 34, 4506-4514.
PDB code: 2hbn
17082188 P.Buczek, and M.P.Horvath (2006).
Structural reorganization and the cooperative binding of single-stranded telomere DNA in Sterkiella nova.
  J Biol Chem, 281, 40124-40134.
PDB code: 2i0q
16678852 P.Buczek, and M.P.Horvath (2006).
Thermodynamic characterization of binding Oxytricha nova single strand telomere DNA with the alpha protein N-terminal domain.
  J Mol Biol, 359, 1217-1234.  
16641317 P.Hazel, G.N.Parkinson, and S.Neidle (2006).
Predictive modelling of topology and loop variations in dimeric DNA quadruplex structures.
  Nucleic Acids Res, 34, 2117-2127.  
16575881 T.C.Mou, M.Shen, S.Abdalla, D.Delamora, E.Bochkareva, A.Bochkarev, and D.M.Gray (2006).
Effects of ssDNA sequences on non-sequence-specific protein binding.
  Chirality, 18, 370-382.  
16834337 T.Suzuki, M.McKenzie, E.Ott, O.Ilkun, and M.P.Horvath (2006).
DNA binding affinity and sequence permutation preference of the telomere protein from Euplotes crassus.
  Biochemistry, 45, 8628-8638.  
16416452 Y.Xu, and H.Sugiyama (2006).
Photochemical approach to probing different DNA structures.
  Angew Chem Int Ed Engl, 45, 1354-1362.  
15731338 B.Saccà, L.Lacroix, and J.L.Mergny (2005).
The effect of chemical modifications on the thermal stability of different G-quadruplex-forming oligonucleotides.
  Nucleic Acids Res, 33, 1182-1192.  
16216584 C.Larkin, S.Datta, M.J.Harley, B.J.Anderson, A.Ebie, V.Hargreaves, and J.F.Schildbach (2005).
Inter- and intramolecular determinants of the specificity of single-stranded DNA binding and cleavage by the F factor relaxase.
  Structure, 13, 1533-1544.
PDB code: 2a0i
15699629 G.V.Tolstonog, G.Li, R.L.Shoeman, and P.Traub (2005).
Interaction in vitro of type III intermediate filament proteins with higher order structures of single-stranded DNA, particularly with G-quadruplex DNA.
  DNA Cell Biol, 24, 85.  
16142245 K.Paeschke, T.Simonsson, J.Postberg, D.Rhodes, and H.J.Lipps (2005).
Telomere end-binding proteins control the formation of G-quadruplex DNA structures in vivo.
  Nat Struct Mol Biol, 12, 847-854.  
15967465 P.Buczek, R.S.Orr, S.R.Pyper, M.Shum, E.Kimmel, I.Ota, S.E.Gerum, and M.P.Horvath (2005).
Binding linkage in a telomere DNA-protein complex at the ends of Oxytricha nova chromosomes.
  J Mol Biol, 350, 938-952.  
15985684 P.Sket, M.Crnugelj, and J.Plavec (2005).
Identification of mixed di-cation forms of G-quadruplex in solution.
  Nucleic Acids Res, 33, 3691-3697.  
16052652 T.van Mourik, and A.J.Dingley (2005).
Characterization of the monovalent ion position and hydrogen-bond network in guanine quartets by DFT calculations of NMR parameters.
  Chemistry, 11, 6064-6079.  
14960719 C.Cáceres, G.Wright, C.Gouyette, G.Parkinson, and J.A.Subirana (2004).
A thymine tetrad in d(TGGGGT) quadruplexes stabilized with Tl+/Na+ ions.
  Nucleic Acids Res, 32, 1097-1102.
PDB codes: 1s45 1s47
15240460 E.Fadrná, N.Spacková, R.Stefl, J.Koca, T.E.Cheatham, and J.Sponer (2004).
Molecular dynamics simulations of Guanine quadruplex loops: advances and force field limitations.
  Biophys J, 87, 227-242.  
15123728 J.C.Stern, B.J.Anderson, T.J.Owens, and J.F.Schildbach (2004).
Energetics of the sequence-specific binding of single-stranded DNA by the F factor relaxase domain.
  J Biol Chem, 279, 29155-29159.  
15005708 S.H.Yoshimura, H.Maruyama, F.Ishikawa, R.Ohki, and K.Takeyasu (2004).
Molecular mechanisms of DNA end-loop formation by TRF2.
  Genes Cells, 9, 205-218.  
12657780 A.Ghosh, and M.Bansal (2003).
A glossary of DNA structures from A to Z.
  Acta Crystallogr D Biol Crystallogr, 59, 620-626.  
12598368 D.L.Theobald, R.M.Mitton-Fry, and D.S.Wuttke (2003).
Nucleic acid recognition by OB-fold proteins.
  Annu Rev Biophys Biomol Struct, 32, 115-133.  
12912928 D.L.Theobald, and S.C.Schultz (2003).
Nucleotide shuffling and ssDNA recognition in Oxytricha nova telomere end-binding protein complexes.
  EMBO J, 22, 4314-4324.
PDB codes: 1pa6 1ph1 1ph2 1ph3 1ph4 1ph5 1ph6 1ph7 1ph8 1ph9 1phj
12560479 J.H.Thorpe, S.C.Teixeira, B.C.Gale, and C.J.Cardin (2003).
Crystal structure of the complementary quadruplex formed by d(GCATGCT) at atomic resolution.
  Nucleic Acids Res, 31, 844-849.
PDB code: 1mf5
12944293 R.Stefl, T.E.Cheatham, N.Spacková, E.Fadrná, I.Berger, J.Koca, and J.Sponer (2003).
Formation pathways of a guanine-quadruplex DNA revealed by molecular dynamics and thermodynamic analysis of the substates.
  Biophys J, 85, 1787-1804.  
12831878 S.Neidle, and G.N.Parkinson (2003).
The structure of telomeric DNA.
  Curr Opin Struct Biol, 13, 275-283.  
12235382 C.Krafft, J.M.Benevides, and G.J.Thomas (2002).
Secondary structure polymorphism in Oxytricha nova telomeric DNA.
  Nucleic Acids Res, 30, 3981-3991.  
12364610 E.M.Anderson, W.A.Halsey, and D.S.Wuttke (2002).
Delineation of the high-affinity single-stranded telomeric DNA-binding domain of Saccharomyces cerevisiae Cdc13.
  Nucleic Acids Res, 30, 4305-4313.  
12009909 M.J.Harley, D.Toptygin, T.Troxler, and J.F.Schildbach (2002).
R150A mutant of F TraI relaxase domain: reduced affinity and specificity for single-stranded DNA and altered fluorescence anisotropy of a bound labeled oligonucleotide.
  Biochemistry, 41, 6460-6468.  
11935027 R.M.Mitton-Fry, E.M.Anderson, T.R.Hughes, V.Lundblad, and D.S.Wuttke (2002).
Conserved structure for single-stranded telomeric DNA recognition.
  Science, 296, 145-147.
PDB code: 1kxl
11891627 J.Sühnel (2001).
Beyond nucleic acid base pairs: from triads to heptads.
  Biopolymers, 61, 32-51.  
11745112 R.H.Shafer, and I.Smirnov (2000).
Biological aspects of DNA/RNA quadruplexes.
  Biopolymers, 56, 209-227.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer