spacer
spacer

PDBsum entry 1ii5

Go to PDB code: 
protein ligands links
Membrane protein PDB id
1ii5

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
221 a.a. *
Ligands
GLU
Waters ×134
* Residue conservation analysis
PDB id:
1ii5
Name: Membrane protein
Title: Crystal structure of the glur0 ligand binding core complex with l- glutamate
Structure: Slr1257 protein. Chain: a. Fragment: glur0 ligand binding core, residues 44-140, 256-385. Engineered: yes
Source: Synechocystis sp. Pcc 6803 substr. Kazusa. Organism_taxid: 1111708. Strain: pcc 6803 / kazusa. Gene: glur0 slr1257, slr1257. Expressed in: escherichia coli bl21(de3). Expression_system_taxid: 469008.
Biol. unit: Dimer (from PDB file)
Resolution:
1.60Å     R-factor:   0.216     R-free:   0.263
Authors: M.L.Mayer,R.Olson,E.Gouaux
Key ref:
M.L.Mayer et al. (2001). Mechanisms for ligand binding to GluR0 ion channels: crystal structures of the glutamate and serine complexes and a closed apo state. J Mol Biol, 311, 815-836. PubMed id: 11518533 DOI: 10.1006/jmbi.2001.4884
Date:
20-Apr-01     Release date:   19-Sep-01    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P73797  (P73797_SYNY3) -  Slr1257 protein from Synechocystis sp. (strain PCC 6803 / Kazusa)
Seq:
Struc:
397 a.a.
221 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 6 residue positions (black crosses)

 

 
DOI no: 10.1006/jmbi.2001.4884 J Mol Biol 311:815-836 (2001)
PubMed id: 11518533  
 
 
Mechanisms for ligand binding to GluR0 ion channels: crystal structures of the glutamate and serine complexes and a closed apo state.
M.L.Mayer, R.Olson, E.Gouaux.
 
  ABSTRACT  
 
High-resolution structures of the ligand binding core of GluR0, a glutamate receptor ion channel from Synechocystis PCC 6803, have been solved by X-ray diffraction. The GluR0 structures reveal homology with bacterial periplasmic binding proteins and the rat GluR2 AMPA subtype neurotransmitter receptor. The ligand binding site is formed by a cleft between two globular alpha/beta domains. L-Glutamate binds in an extended conformation, similar to that observed for glutamine binding protein (GlnBP). However, the L-glutamate gamma-carboxyl group interacts exclusively with Asn51 in domain 1, different from the interactions of ligand with domain 2 residues observed for GluR2 and GlnBP. To address how neutral amino acids activate GluR0 gating we solved the structure of the binding site complex with L-serine. This revealed solvent molecules acting as surrogate ligand atoms, such that the serine OH group makes solvent-mediated hydrogen bonds with Asn51. The structure of a ligand-free, closed-cleft conformation revealed an extensive hydrogen bond network mediated by solvent molecules. Equilibrium centrifugation analysis revealed dimerization of the GluR0 ligand binding core with a dissociation constant of 0.8 microM. In the crystal, a symmetrical dimer involving residues in domain 1 occurs along a crystallographic 2-fold axis and suggests that tetrameric glutamate receptor ion channels are assembled from dimers of dimers. We propose that ligand-induced conformational changes cause the ion channel to open as a result of an increase in domain 2 separation relative to the dimer interface.
 
  Selected figure(s)  
 
Figure 9.
Figure 9. Molecular surface properties of GluR dimer interfaces. (a) Dimer surface of a GluR0 subunit (left) showing in yellow atoms making van der Waals contacts with the partner subunit; main-chain carbonyl and side-chain oxygen atoms making hydrogen-bond contacts are red; the side-chain amide groups of Gln127, Asn349 and Gln353 are colored cyan; the NZ atom of Lys345 is blue; (right) surface view colored by electrostatic surface potential which changes smoothly from red ( -10 kT) through white (neutral) to blue (+10 kT). The calculation was performed in the absence of the dimer partner assuming an ionic strength equivalent to 150 mM NaCl, and dielectric constants of 2 and 80 for protein and solvent. (b) Surface properties of the GluR2 dimer interface colored using the same scheme as for GluR0. (c) Structure-based alignments of the dimer interface contact regions for GluR0 and GluR2 plus the corresponding sequence for GlnBP, LAOBP and HisBP; residues boxed in purple make van der Waals contacts in the dimer interface; cyan indicates residues making hydrogen-bond contacts; asterisks denote hydrophobic side-chains in GluR0 and GluR2, which are replaced by Gly or by polar residues in GlnBP.
Figure 10.
Figure 10. Gating models for GluR activation and desensitization. Cyan and bronze rods indicate domains 1 and 2 of the ligand binding core; green rods indicate membrane spanning helices. At rest the ligand binding domains are relaxed and the ion channel is closed. Binding of agonists promotes domain closure; due to the dimer interface contacts made by domain 1, agonists produce an increase in separation of the domain 2 protomers; this scissors-like movement opens the ion channel by causing rotation and translation of the transmembrane helices. During desensitization the ligand binding domains remain closed; we speculate that movement of the dimer interface reduces the separation between domain 2 protomers and allows the channel to enter a non-conducting state.
 
  The above figures are reprinted by permission from Elsevier: J Mol Biol (2001, 311, 815-836) copyright 2001.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20163115 A.H.Ahmed, and R.E.Oswald (2010).
Piracetam defines a new binding site for allosteric modulators of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors.
  J Med Chem, 53, 2197-2203.
PDB codes: 3lsf 3lsl 3lsw 3lsx
20581843 H.Janovjak, S.Szobota, C.Wyart, D.Trauner, and E.Y.Isacoff (2010).
A light-gated, potassium-selective glutamate receptor for the optical inhibition of neuronal firing.
  Nat Neurosci, 13, 1027-1032.  
20949136 M.F.Ger, G.Rendon, J.L.Tilson, and E.Jakobsson (2010).
Domain-based identification and analysis of glutamate receptor ion channels and their relatives in prokaryotes.
  PLoS One, 5, e12827.  
20856958 R.Vijayan, M.A.Sahai, T.Czajkowski, and P.C.Biggin (2010).
A comparative analysis of the role of water in the binding pockets of ionotropic glutamate receptors.
  Phys Chem Chem Phys, 12, 14057-14066.  
21080238 T.Nakagawa (2010).
The biochemistry, ultrastructure, and subunit assembly mechanism of AMPA receptors.
  Mol Neurobiol, 42, 161-184.  
19003990 A.H.Ahmed, Q.Wang, H.Sondermann, and R.E.Oswald (2009).
Structure of the S1S2 glutamate binding domain of GLuR3.
  Proteins, 75, 628-637.
PDB codes: 3dln 3dp4 3dp6
19617541 C.Chaudhry, A.J.Plested, P.Schuck, and M.L.Mayer (2009).
Energetics of glutamate receptor ligand binding domain dimer assembly are modulated by allosteric ions.
  Proc Natl Acad Sci U S A, 106, 12329-12334.  
19339989 C.Chaudhry, M.C.Weston, P.Schuck, C.Rosenmund, and M.L.Mayer (2009).
Stability of ligand-binding domain dimer assembly controls kainate receptor desensitization.
  EMBO J, 28, 1518-1530.
PDB codes: 3g3f 3g3g 3g3h 3g3i 3g3j 3g3k
19544572 J.Cheung, M.Le-Khac, and W.A.Hendrickson (2009).
Crystal structure of a histidine kinase sensor domain with similarity to periplasmic binding proteins.
  Proteins, 77, 235-241.
PDB code: 3h7m
19205024 K.Speranskiy, and M.G.Kurnikova (2009).
Modeling of peptides connecting the ligand-binding and transmembrane domains in the GluR2 glutamate receptor.
  Proteins, 76, 271-280.  
  18923187 B.Martinac, Y.Saimi, and C.Kung (2008).
Ion channels in microbes.
  Physiol Rev, 88, 1449-1490.  
18384072 D.M.Standley, H.Toh, and H.Nakamura (2008).
Functional annotation by sequence-weighted structure alignments: statistical analysis and case studies from the Protein 3000 structural genomics project in Japan.
  Proteins, 72, 1333-1351.  
19019243 M.J.Cuneo, L.S.Beese, and H.W.Hellinga (2008).
Ligand-induced conformational changes in a thermophilic ribose-binding protein.
  BMC Struct Biol, 8, 50.
PDB codes: 2fn8 2fn9
18823129 T.Mamonova, M.J.Yonkunas, and M.G.Kurnikova (2008).
Energetics of the cleft closing transition and the role of electrostatic interactions in conformational rearrangements of the glutamate receptor ligand binding domain.
  Biochemistry, 47, 11077-11085.  
19014388 X.Han, H.Tomitori, S.Mizuno, K.Higashi, C.Füll, T.Fukiwake, Y.Terui, P.Leewanich, K.Nishimura, T.Toida, K.Williams, K.Kashiwagi, and K.Igarashi (2008).
Binding of spermine and ifenprodil to a purified, soluble regulatory domain of the N-methyl-D-aspartate receptor.
  J Neurochem, 107, 1566-1577.  
18636091 Y.Yao, C.B.Harrison, P.L.Freddolino, K.Schulten, and M.L.Mayer (2008).
Molecular mechanism of ligand recognition by NR3 subtype glutamate receptors.
  EMBO J, 27, 2158-2170.
PDB codes: 2rc7 2rc8 2rc9 2rca 2rcb
17629578 I.H.Greger, E.B.Ziff, and A.C.Penn (2007).
Molecular determinants of AMPA receptor subunit assembly.
  Trends Neurosci, 30, 407-416.  
17287352 M.M.Kuo, K.A.Baker, L.Wong, and S.Choe (2007).
Dynamic oligomeric conversions of the cytoplasmic RCK domains mediate MthK potassium channel activity.
  Proc Natl Acad Sci U S A, 104, 2151-2156.
PDB code: 2ogu
16402101 D.Colquhoun (2006).
Agonist-activated ion channels.
  Br J Pharmacol, 147, S17-S26.  
17057341 I.Huvent, H.Belrhali, R.Antoine, C.Bompard, C.Locht, F.Jacob-Dubuisson, and V.Villeret (2006).
Structural analysis of Bordetella pertussis BugE solute receptor in a bound conformation.
  Acta Crystallogr D Biol Crystallogr, 62, 1375-1381.
PDB code: 2dvz
17115050 M.C.Weston, P.Schuck, A.Ghosal, C.Rosenmund, and M.L.Mayer (2006).
Conformational restriction blocks glutamate receptor desensitization.
  Nat Struct Mol Biol, 13, 1120-1127.
PDB codes: 2i0b 2i0c
16554805 M.L.Mayer (2006).
Glutamate receptors at atomic resolution.
  Nature, 440, 456-462.  
15996549 A.Inanobe, H.Furukawa, and E.Gouaux (2005).
Mechanism of partial agonist action at the NR1 subunit of NMDA receptors.
  Neuron, 47, 71-84.
PDB codes: 1y1m 1y1z 1y20
16231327 A.Pang, Y.Arinaminpathy, M.S.Sansom, and P.C.Biggin (2005).
Comparative molecular dynamics--similar folds and similar motions?
  Proteins, 61, 809-822.  
15755731 D.R.Madden, N.Armstrong, D.Svergun, J.Pérez, and P.Vachette (2005).
Solution X-ray scattering evidence for agonist- and antagonist-induced modulation of cleft closure in a glutamate receptor ligand-binding domain.
  J Biol Chem, 280, 23637-23642.  
15592450 H.Hirai, T.Miyazaki, W.Kakegawa, S.Matsuda, M.Mishina, M.Watanabe, and M.Yuzaki (2005).
Rescue of abnormal phenotypes of the delta2 glutamate receptor-null mice by mutant delta2 transgenes.
  EMBO Rep, 6, 90-95.  
15721240 M.L.Mayer (2005).
Crystal structures of the GluR5 and GluR6 ligand binding cores: molecular mechanisms underlying kainate receptor selectivity.
  Neuron, 45, 539-552.
PDB codes: 1s50 1s7y 1s9t 1sd3 1tt1 1txf
16099829 M.M.Holm, M.L.Lunn, S.F.Traynelis, J.S.Kastrup, and J.Egebjerg (2005).
Structural determinants of agonist-specific kinetics at the ionotropic glutamate receptor 2.
  Proc Natl Acad Sci U S A, 102, 12053-12058.  
16026885 M.M.Kuo, W.J.Haynes, S.H.Loukin, C.Kung, and Y.Saimi (2005).
Prokaryotic K(+) channels: from crystal structures to diversity.
  FEMS Microbiol Rev, 29, 961-985.  
16118665 Q.Ren, and I.T.Paulsen (2005).
Comparative analyses of fundamental differences in membrane transport capabilities in prokaryotes and eukaryotes.
  PLoS Comput Biol, 1, e27.  
  15897296 S.H.Loukin, M.M.Kuo, X.L.Zhou, W.J.Haynes, C.Kung, and Y.Saimi (2005).
Microbial K+ channels.
  J Gen Physiol, 125, 521-527.  
15749783 S.Haider, A.Grottesi, B.A.Hall, F.M.Ashcroft, and M.S.Sansom (2005).
Conformational dynamics of the ligand-binding domain of inward rectifier K channels as revealed by molecular dynamics simulations: toward an understanding of Kir channel gating.
  Biophys J, 88, 3310-3320.  
14766176 A.I.Sobolevsky, M.V.Yelshansky, and L.P.Wollmuth (2004).
The outer pore of the glutamate receptor channel has 2-fold rotational symmetry.
  Neuron, 41, 367-378.  
15228520 C.Kung, and P.Blount (2004).
Channels in microbes: so many holes to fill.
  Mol Microbiol, 53, 373-380.  
15388932 H.Takahashi, E.Inagaki, C.Kuroishi, and T.H.Tahirov (2004).
Structure of the Thermus thermophilus putative periplasmic glutamate/glutamine-binding protein.
  Acta Crystallogr D Biol Crystallogr, 60, 1846-1854.
PDB codes: 1us4 1us5
  15111647 J.A.Lundbaek, P.Birn, A.J.Hansen, R.Søgaard, C.Nielsen, J.Girshman, M.J.Bruno, S.E.Tape, J.Egebjerg, D.V.Greathouse, G.L.Mattice, R.E.Koeppe, and O.S.Andersen (2004).
Regulation of sodium channel function by bilayer elasticity: the importance of hydrophobic coupling. Effects of Micelle-forming amphiphiles and cholesterol.
  J Gen Physiol, 123, 599-621.  
15229875 M.Kubo, and E.Ito (2004).
Structural dynamics of an ionotropic glutamate receptor.
  Proteins, 56, 411-419.  
14977400 M.L.Mayer, and N.Armstrong (2004).
Structure and function of glutamate receptor ion channels.
  Annu Rev Physiol, 66, 161-181.  
14766177 M.S.Horning, and M.L.Mayer (2004).
Regulation of AMPA receptor gating by ligand binding core dimers.
  Neuron, 41, 379-388.  
14567698 G.Li, R.E.Oswald, and L.Niu (2003).
Channel-opening kinetics of GluR6 kainate receptor.
  Biochemistry, 42, 12367-12375.  
12805203 H.Furukawa, and E.Gouaux (2003).
Mechanisms of activation, inhibition and specificity: crystal structures of the NMDA receptor NR1 ligand-binding core.
  EMBO J, 22, 2873-2885.
PDB codes: 1pb7 1pb8 1pb9 1pbq
12524445 M.L.He, H.Zemkova, and S.S.Stojilkovic (2003).
Dependence of purinergic P2X receptor activity on ectodomain structure.
  J Biol Chem, 278, 10182-10188.  
12511575 Y.Cho, V.Sharma, and J.C.Sacchettini (2003).
Crystal structure of ATP phosphoribosyltransferase from Mycobacterium tuberculosis.
  J Biol Chem, 278, 8333-8339.
PDB codes: 1nh7 1nh8
12393905 A.Pasternack, S.K.Coleman, A.Jouppila, D.G.Mottershead, M.Lindfors, M.Pasternack, and K.Keinänen (2002).
Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor channels lacking the N-terminal domain.
  J Biol Chem, 277, 49662-49667.  
12162741 D.L.Beene, G.S.Brandt, W.Zhong, N.M.Zacharias, H.A.Lester, and D.A.Dougherty (2002).
Cation-pi interactions in ligand recognition by serotonergic (5-HT3A) and nicotinic acetylcholine receptors: the anomalous binding properties of nicotine.
  Biochemistry, 41, 10262-10269.  
11814354 Q.Cheng, S.Thiran, D.Yernool, E.Gouaux, and V.Jayaraman (2002).
A vibrational spectroscopic investigation of interactions of agonists with GluR0, a prokaryotic glutamate receptor.
  Biochemistry, 41, 1602-1608.  
12384697 R.Iyer, T.M.Iverson, A.Accardi, and C.Miller (2002).
A biological role for prokaryotic ClC chloride channels.
  Nature, 419, 715-718.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer