spacer
spacer

PDBsum entry 1ffr

Go to PDB code: 
protein ligands links
Hydrolase PDB id
1ffr

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
540 a.a. *
Ligands
NAG-NAG-NAG-NAG-
NAG-NAG-NAG
Waters ×773
* Residue conservation analysis
PDB id:
1ffr
Name: Hydrolase
Title: Crystal structure of chitinase a mutant y390f complexed with hexa-n- acetylchitohexaose (NAG)6
Structure: Chitinase a. Chain: a. Engineered: yes. Mutation: yes
Source: Serratia marcescens. Organism_taxid: 615. Strain: 2170. Expressed in: escherichia coli. Expression_system_taxid: 562.
Biol. unit: Dimer (from PQS)
Resolution:
1.80Å     R-factor:   0.186     R-free:   0.229
Authors: Y.Papanikolau,G.Prag,G.Tavlas,C.E.Vorgias,A.B.Oppenheim,K.Petratos
Key ref:
Y.Papanikolau et al. (2001). High resolution structural analyses of mutant chitinase A complexes with substrates provide new insight into the mechanism of catalysis. Biochemistry, 40, 11338-11343. PubMed id: 11560481 DOI: 10.1021/bi010505h
Date:
26-Jul-00     Release date:   26-Sep-01    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P07254  (CHIA_SERMA) -  Chitinase A from Serratia marcescens
Seq:
Struc:
 
Seq:
Struc:
563 a.a.
540 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 7 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class: E.C.3.2.1.14  - chitinase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Hydrolysis of the 1,4-beta-linkages of N-acetyl-D-glucosamine polymers of chitin.

 

 
DOI no: 10.1021/bi010505h Biochemistry 40:11338-11343 (2001)
PubMed id: 11560481  
 
 
High resolution structural analyses of mutant chitinase A complexes with substrates provide new insight into the mechanism of catalysis.
Y.Papanikolau, G.Prag, G.Tavlas, C.E.Vorgias, A.B.Oppenheim, K.Petratos.
 
  ABSTRACT  
 
Chitinase A (ChiA) from the bacterium Serratia marcescens is a hydrolytic enzyme, which cleaves beta-1,4-glycosidic bonds of the natural biopolymer chitin to generate di-N-acetyl-chitobiose. The refined structure of ChiA at 1.55 A shows that residue Asp313, which is located near the catalytic proton donor residue Glu315, is found in two alternative conformations of equal occupancy. In addition, the structures of the cocrystallized mutant proteins D313A, E315Q, Y390F, and D391A with octa- or hexa-N-acetyl-glucosamine have been refined at high resolution and the interactions with the substrate have been characterized. The obtained results clearly show that the active site is a semiclosed tunnel. Upon binding, the enzyme bends and rotates the substrate in the vicinity of the scissile bond. Furthermore, the enzyme imposes a critical "chair" to "boat" conformational change on the sugar residue bound to the -1 subsite. According to our results, we suggest that residues Asp313 and Tyr390 along with Glu315 play a central role in the catalysis. We propose that after the protonation of the substrate glycosidic bond, Asp313 that interacts with Asp311 flips to its alternative position where it interacts with Glu315 thus forcing the substrate acetamido group of -1 sugar to rotate around the C2-N2 bond. As a result of these structural changes, the water molecule that is hydrogen-bonded to Tyr390 and the NH of the acetamido group is displaced to a position that allows the completion of hydrolysis. The presented results suggest a mechanism for ChiA that modifies the earlier proposed "substrate assisted" catalysis.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
21299880 E.A.Vasconcelos, C.G.Santana, C.V.Godoy, C.D.Seixas, M.S.Silva, L.R.Moreira, O.B.Oliveira-Neto, D.Price, E.Fitches, E.X.Filho, A.Mehta, J.A.Gatehouse, and M.F.Grossi-De-Sa (2011).
A new chitinase-like xylanase inhibitor protein (XIP) from coffee (Coffea arabica) affects Soybean Asian rust (Phakopsora pachyrhizi) spore germination.
  BMC Biotechnol, 11, 14.  
20084296 H.Li, and L.H.Greene (2010).
Sequence and structural analysis of the chitinase insertion domain reveals two conserved motifs involved in chitin-binding.
  PLoS One, 5, e8654.  
20553502 H.Tsuji, S.Nishimura, T.Inui, Y.Kado, K.Ishikawa, T.Nakamura, and K.Uegaki (2010).
Kinetic and crystallographic analyses of the catalytic domain of chitinase from Pyrococcus furiosus- the role of conserved residues in the active site.
  FEBS J, 277, 2683-2695.
PDB codes: 3a4w 3a4x 3afb
19244232 H.Zakariassen, B.B.Aam, S.J.Horn, K.M.Vårum, M.Sørlie, and V.G.Eijsink (2009).
Aromatic Residues in the Catalytic Center of Chitinase A from Serratia marcescens Affect Processivity, Enzyme Activity, and Biomass Converting Efficiency.
  J Biol Chem, 284, 10610-10617.  
19596709 M.Lienemann, H.Boer, A.Paananen, S.Cottaz, and A.Koivula (2009).
Toward understanding of carbohydrate binding and substrate specificity of a glycosyl hydrolase 18 family (GH-18) chitinase from Trichoderma harzianum.
  Glycobiology, 19, 1116-1126.  
18323665 B.Synstad, G.Vaaje-Kolstad, F.H.Cederkvist, S.F.Saua, S.J.Horn, V.G.Eijsink, and M.Sørlie (2008).
Expression and characterization of endochitinase C from Serratia marcescens BJL200 and its purification by a one-step general chitinase purification method.
  Biosci Biotechnol Biochem, 72, 715-723.  
18783954 C.Li, W.Huang, and L.X.Wang (2008).
Chemoenzymatic synthesis of N-linked neoglycoproteins through a chitinase-catalyzed transglycosylation.
  Bioorg Med Chem, 16, 8366-8372.  
18368288 E.Stefanidi, and C.E.Vorgias (2008).
Molecular analysis of the gene encoding a new chitinase from the marine psychrophilic bacterium Moritella marina and biochemical characterization of the recombinant enzyme.
  Extremophiles, 12, 541-552.  
17225927 M.Lian, S.Lin, and R.Zeng (2007).
Chitinase gene diversity at a deep sea station of the east Pacific nodule province.
  Extremophiles, 11, 463-467.  
17705309 M.Ohmae, K.Sakaguchi, T.Kaneto, S.Fujikawa, and S.Kobayashi (2007).
Keratanase II-catalyzed synthesis of keratan sulfate oligomers by using sugar oxazolines as transition-state analogue substrate monomers: a novel insight into the enzymatic catalysis mechanism.
  Chembiochem, 8, 1710-1720.  
17524989 R.Hurtado-Guerrero, and D.M.van Aalten (2007).
Structure of Saccharomyces cerevisiae chitinase 1 and screening-based discovery of potent inhibitors.
  Chem Biol, 14, 589-599.
PDB codes: 2uy2 2uy3 2uy4 2uy5
17294188 S.K.Park, C.W.Kim, H.Kim, J.S.Jung, and G.E.Harman (2007).
Cloning and high-level production of a chitinase from Chromobacterium sp. and the role of conserved or nonconserved residues on its catalytic activity.
  Appl Microbiol Biotechnol, 74, 791-804.  
16526080 F.H.Cederkvist, A.D.Zamfir, S.Bahrke, V.G.Eijsink, M.Sørlie, J.Peter-Katalinić, and M.G.Peter (2006).
Identification of a high-affinity-binding oligosaccharide by (+) nanoelectrospray quadrupole time-of-flight tandem mass spectrometry of a noncovalent enzyme-ligand complex.
  Angew Chem Int Ed Engl, 45, 2429-2434.  
16172888 H.Bach, and D.L.Gutnick (2006).
Novel polysaccharide-protein-based amphipathic formulations.
  Appl Microbiol Biotechnol, 71, 34-38.  
16704970 H.F.Bigg, R.Wait, A.D.Rowan, and T.E.Cawston (2006).
The mammalian chitinase-like lectin, YKL-40, binds specifically to type I collagen and modulates the rate of type I collagen fibril formation.
  J Biol Chem, 281, 21082-21095.  
16428843 N.N.Aronson, B.A.Halloran, M.F.Alexeyev, X.E.Zhou, Y.Wang, E.J.Meehan, and L.Chen (2006).
Mutation of a conserved tryptophan in the chitin-binding cleft of Serratia marcescens chitinase A enhances transglycosylation.
  Biosci Biotechnol Biochem, 70, 243-251.
PDB code: 1rd6
16420473 S.J.Horn, A.Sørbotten, B.Synstad, P.Sikorski, M.Sørlie, K.M.Vårum, and V.G.Eijsink (2006).
Endo/exo mechanism and processivity of family 18 chitinases produced by Serratia marcescens.
  FEBS J, 273, 491-503.  
16685709 S.Pyrpassopoulos, M.Vlassi, A.Tsortos, Y.Papanikolau, K.Petratos, C.E.Vorgias, and G.Nounesis (2006).
Equilibrium heat-induced denaturation of chitinase 40 from Streptomyces thermoviolaceus.
  Proteins, 64, 513-523.  
16183021 F.V.Rao, O.A.Andersen, K.A.Vora, J.A.Demartino, and D.M.van Aalten (2005).
Methylxanthine drugs are chitinase inhibitors: investigation of inhibition and binding modes.
  Chem Biol, 12, 973-980.
PDB codes: 2a3a 2a3b 2a3c 2a3e
16193156 O.A.Andersen, M.J.Dixon, I.M.Eggleston, and D.M.van Aalten (2005).
Natural product family 18 chitinase inhibitors.
  Nat Prod Rep, 22, 563-579.  
15978043 W.Suginta, A.Vongsuwan, C.Songsiriritthigul, J.Svasti, and H.Prinz (2005).
Enzymatic properties of wild-type and active site mutants of chitinase A from Vibrio carchariae, as revealed by HPLC-MS.
  FEBS J, 272, 3376-3386.  
14717693 B.Synstad, S.Gåseidnes, D.M.Van Aalten, G.Vriend, J.E.Nielsen, and V.G.Eijsink (2004).
Mutational and computational analysis of the role of conserved residues in the active site of a family 18 chitinase.
  Eur J Biochem, 271, 253-262.  
15574890 G.R.LeCleir, A.Buchan, and J.T.Hollibaugh (2004).
Chitinase gene sequences retrieved from diverse aquatic habitats reveal environment-specific distributions.
  Appl Environ Microbiol, 70, 6977-6983.  
14597633 M.Hrmova, R.De Gori, B.J.Smith, A.Vasella, J.N.Varghese, and G.B.Fincher (2004).
Three-dimensional structure of the barley beta-D-glucan glucohydrolase in complex with a transition state mimic.
  J Biol Chem, 279, 4970-4980.
PDB code: 1lq2
15502313 T.Matsui, T.Kumasaka, K.Endo, T.Sato, S.Nakamura, and N.Tanaka (2004).
Crystallization and preliminary X-ray crystallographic analysis of chitinase F1 (ChiF1) from the alkaliphilic Nocardiopsis sp. strain F96.
  Acta Crystallogr D Biol Crystallogr, 60, 2016-2018.  
12775711 D.R.Houston, A.D.Recklies, J.C.Krupa, and D.M.van Aalten (2003).
Structure and ligand-induced conformational change of the 39-kDa glycoprotein from human articular chondrocytes.
  J Biol Chem, 278, 30206-30212.
PDB codes: 1hjv 1hjw 1hjx
12851408 F.Fusetti, T.Pijning, K.H.Kalk, E.Bos, and B.W.Dijkstra (2003).
Crystal structure and carbohydrate-binding properties of the human cartilage glycoprotein-39.
  J Biol Chem, 278, 37753-37760.
PDB codes: 1nwr 1nws 1nwt 1nwu
12554965 Y.Papanikolau, G.Tavlas, C.E.Vorgias, and K.Petratos (2003).
De novo purification scheme and crystallization conditions yield high-resolution structures of chitinase A and its complex with the inhibitor allosamidin.
  Acta Crystallogr D Biol Crystallogr, 59, 400-403.
PDB codes: 1edq 1ffq
12413546 A.Vasella, G.J.Davies, and M.Böhm (2002).
Glycosidase mechanisms.
  Curr Opin Chem Biol, 6, 619-629.  
12093900 D.R.Houston, K.Shiomi, N.Arai, S.Omura, M.G.Peter, A.Turberg, B.Synstad, V.G.Eijsink, and D.M.van Aalten (2002).
High-resolution structures of a chitinase complexed with natural product cyclopentapeptide inhibitors: mimicry of carbohydrate substrate.
  Proc Natl Acad Sci U S A, 99, 9127-9132.
PDB codes: 1h0g 1h0i
11960986 F.Fusetti, H.von Moeller, D.Houston, H.J.Rozeboom, B.W.Dijkstra, R.G.Boot, J.M.Aerts, and D.M.van Aalten (2002).
Structure of human chitotriosidase. Implications for specific inhibitor design and function of mammalian chitinase-like lectins.
  J Biol Chem, 277, 25537-25544.
PDB codes: 1guv 1lg1 1lg2 1lq0
12171933 S.J.Williams, B.L.Mark, D.J.Vocadlo, M.N.James, and S.G.Withers (2002).
Aspartate 313 in the Streptomyces plicatus hexosaminidase plays a critical role in substrate-assisted catalysis by orienting the 2-acetamido group and stabilizing the transition state.
  J Biol Chem, 277, 40055-40065.
PDB codes: 1m01 1m03 1m04
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer