|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
 |
|
|
 |
 |
 |
 |
Enzyme class 2:
|
 |
Chain A:
E.C.5.2.1.8
- peptidylprolyl isomerase.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
[protein]-peptidylproline (omega=180) = [protein]-peptidylproline (omega=0)
|
 |
 |
 |
 |
 |
Peptidylproline (omega=180)
|
=
|
peptidylproline (omega=0)
|
|
 |
 |
 |
 |
 |
 |
 |
 |
Enzyme class 3:
|
 |
Chain B:
E.C.2.7.11.1
- non-specific serine/threonine protein kinase.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
|
1.
|
L-seryl-[protein] + ATP = O-phospho-L-seryl-[protein] + ADP + H+
|
|
2.
|
L-threonyl-[protein] + ATP = O-phospho-L-threonyl-[protein] + ADP + H+
|
|
 |
 |
 |
 |
 |
L-seryl-[protein]
|
+
|
ATP
|
=
|
O-phospho-L-seryl-[protein]
|
+
|
ADP
|
+
|
H(+)
|
|
 |
 |
 |
 |
 |
L-threonyl-[protein]
|
+
|
ATP
|
=
|
O-phospho-L-threonyl-[protein]
|
+
|
ADP
|
+
|
H(+)
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Note, where more than one E.C. class is given (as above), each may
correspond to a different protein domain or, in the case of polyprotein
precursors, to a different mature protein.
|
|
 |
|
Molecule diagrams generated from .mol files obtained from the
KEGG ftp site
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
|
| |
|
DOI no:
|
Science
273:239-242
(1996)
|
|
PubMed id:
|
|
|
|
|
| |
|
Structure of the FKBP12-rapamycin complex interacting with the binding domain of human FRAP.
|
|
J.Choi,
J.Chen,
S.L.Schreiber,
J.Clardy.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
Rapamycin, a potent immunosuppressive agent, binds two proteins: the
FK506-binding protein (FKBP12) and the FKBP-rapamycin-associated protein (FRAP).
A crystal structure of the ternary complex of human FKBP12, rapamycin, and the
FKBP12-rapamycin-binding (FRB) domain of human FRAP at a resolution of 2.7
angstroms revealed the two proteins bound together as a result of the ability of
rapamycin to occupy two different hydrophobic binding pockets simultaneously.
The structure shows extensive interactions between rapamycin and both proteins,
but fewer interactions between the proteins. The structure of the FRB domain of
FRAP clarifies both rapamycin-independent and -dependent effects observed for
mutants of FRAP and its homologs in the family of proteins related to the
ataxia-telangiectasia mutant gene product, and it illustrates how a small
cell-permeable molecule can mediate protein dimerization.
|
|
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
Y.Pommier,
and
C.Marchand
(2012).
Interfacial inhibitors: targeting macromolecular complexes.
|
| |
Nat Rev Drug Discov,
11,
25-36.
|
 |
|
|
|
|
 |
A.Fasolo,
and
C.Sessa
(2011).
Current and future directions in mammalian target of rapamycin inhibitors development.
|
| |
Expert Opin Investig Drugs,
20,
381-394.
|
 |
|
|
|
|
 |
C.Garcia-Echeverria
(2011).
Blocking the mTOR pathway: a drug discovery perspective.
|
| |
Biochem Soc Trans,
39,
451-455.
|
 |
|
|
|
|
 |
D.Benjamin,
M.Colombi,
C.Moroni,
and
M.N.Hall
(2011).
Rapamycin passes the torch: a new generation of mTOR inhibitors.
|
| |
Nat Rev Drug Discov,
10,
868-880.
|
 |
|
|
|
|
 |
J.S.Carew,
K.R.Kelly,
and
S.T.Nawrocki
(2011).
Mechanisms of mTOR inhibitor resistance in cancer therapy.
|
| |
Target Oncol,
6,
17-27.
|
 |
|
|
|
|
 |
L.Wang,
Y.Zhan,
E.Song,
Y.Yu,
Y.Jiu,
W.Du,
J.Lu,
P.Liu,
P.Xu,
and
T.Xu
(2011).
HID-1 is a peripheral membrane protein primarily associated with the medial- and trans- Golgi apparatus.
|
| |
Protein Cell,
2,
74-85.
|
 |
|
|
|
|
 |
A.S.Kristof
(2010).
mTOR signaling in lymphangioleiomyomatosis.
|
| |
Lymphat Res Biol,
8,
33-42.
|
 |
|
|
|
|
 |
B.A.Knutson
(2010).
Insights into the domain and repeat architecture of target of rapamycin.
|
| |
J Struct Biol,
170,
354-363.
|
 |
|
|
|
|
 |
C.A.Shertz,
R.J.Bastidas,
W.Li,
J.Heitman,
and
M.E.Cardenas
(2010).
Conservation, duplication, and loss of the Tor signaling pathway in the fungal kingdom.
|
| |
BMC Genomics,
11,
510.
|
 |
|
|
|
|
 |
C.Coppin
(2010).
Everolimus: the first approved product for patients with advanced renal cell cancer after sunitinib and/or sorafenib.
|
| |
Biologics,
4,
91.
|
 |
|
|
|
|
 |
C.K.Yip,
K.Murata,
T.Walz,
D.M.Sabatini,
and
S.A.Kang
(2010).
Structure of the human mTOR complex I and its implications for rapamycin inhibition.
|
| |
Mol Cell,
38,
768-774.
|
 |
|
|
|
|
 |
D.Varma,
A.Dawn,
A.Ghosh-Roy,
S.J.Weil,
K.M.Ori-McKenney,
Y.Zhao,
J.Keen,
R.B.Vallee,
and
J.C.Williams
(2010).
Development and application of in vivo molecular traps reveals that dynein light chain occupancy differentially affects dynein-mediated processes.
|
| |
Proc Natl Acad Sci U S A,
107,
3493-3498.
|
 |
|
|
|
|
 |
G.A.Soliman,
H.A.Acosta-Jaquez,
E.A.Dunlop,
B.Ekim,
N.E.Maj,
A.R.Tee,
and
D.C.Fingar
(2010).
mTOR Ser-2481 autophosphorylation monitors mTORC-specific catalytic activity and clarifies rapamycin mechanism of action.
|
| |
J Biol Chem,
285,
7866-7879.
|
 |
|
|
|
|
 |
H.Zhou,
and
S.Huang
(2010).
mTOR Signaling in cancer cell motility and tumor metastasis.
|
| |
Crit Rev Eukaryot Gene Expr,
20,
1.
|
 |
|
|
|
|
 |
L.Madeira da Silva,
and
S.M.Beverley
(2010).
Expansion of the target of rapamycin (TOR) kinase family and function in Leishmania shows that TOR3 is required for acidocalcisome biogenesis and animal infectivity.
|
| |
Proc Natl Acad Sci U S A,
107,
11965-11970.
|
 |
|
|
|
|
 |
N.Chapuis,
J.Tamburini,
A.S.Green,
L.Willems,
V.Bardet,
S.Park,
C.Lacombe,
P.Mayeux,
and
D.Bouscary
(2010).
Perspectives on inhibiting mTOR as a future treatment strategy for hematological malignancies.
|
| |
Leukemia,
24,
1686-1699.
|
 |
|
|
|
|
 |
N.J.Moorman,
and
T.Shenk
(2010).
Rapamycin-resistant mTORC1 kinase activity is required for herpesvirus replication.
|
| |
J Virol,
84,
5260-5269.
|
 |
|
|
|
|
 |
T.N.Lombana,
N.Echols,
M.C.Good,
N.D.Thomsen,
H.L.Ng,
A.E.Greenstein,
A.M.Falick,
D.S.King,
and
T.Alber
(2010).
Allosteric activation mechanism of the Mycobacterium tuberculosis receptor Ser/Thr protein kinase, PknB.
|
| |
Structure,
18,
1667-1677.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
T.Shida,
T.Kishimoto,
M.Furuya,
T.Nikaido,
K.Koda,
S.Takano,
F.Kimura,
H.Shimizu,
H.Yoshidome,
M.Ohtsuka,
T.Tanizawa,
Y.Nakatani,
and
M.Miyazaki
(2010).
Expression of an activated mammalian target of rapamycin (mTOR) in gastroenteropancreatic neuroendocrine tumors.
|
| |
Cancer Chemother Pharmacol,
65,
889-893.
|
 |
|
|
|
|
 |
T.Unger,
O.Dym,
S.Albeck,
Y.Jacobovitch,
R.Bernehim,
D.Marom,
O.Pisanty,
and
A.Breiman
(2010).
Crystal structure of the three FK506 binding protein domains of wheat FKBP73: evidence for a unique wFK73_2 domain.
|
| |
J Struct Funct Genomics,
11,
113-123.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.C.Evans,
D.A.Longbottom,
M.Matsuoka,
J.E.Davies,
R.Turner,
V.Franckevicius,
and
S.V.Ley
(2009).
Highly diastereoselective desymmetrisation of cyclic meso-anhydrides and derivatisation for use in natural product synthesis.
|
| |
Org Biomol Chem,
7,
747-760.
|
 |
|
|
|
|
 |
C.C.Thoreen,
S.A.Kang,
J.W.Chang,
Q.Liu,
J.Zhang,
Y.Gao,
L.J.Reichling,
T.Sim,
D.M.Sabatini,
and
N.S.Gray
(2009).
An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1.
|
| |
J Biol Chem,
284,
8023-8032.
|
 |
|
|
|
|
 |
C.R.Geest,
F.J.Zwartkruis,
E.Vellenga,
P.J.Coffer,
and
M.Buitenhuis
(2009).
Mammalian target of rapamycin activity is required for expansion of CD34+ hematopoietic progenitor cells.
|
| |
Haematologica,
94,
901-910.
|
 |
|
|
|
|
 |
E.I.Graziani
(2009).
Recent advances in the chemistry, biosynthesis and pharmacology of rapamycin analogs.
|
| |
Nat Prod Rep,
26,
602-609.
|
 |
|
|
|
|
 |
H.A.Acosta-Jaquez,
J.A.Keller,
K.G.Foster,
B.Ekim,
G.A.Soliman,
E.P.Feener,
B.A.Ballif,
and
D.C.Fingar
(2009).
Site-specific mTOR phosphorylation promotes mTORC1-mediated signaling and cell growth.
|
| |
Mol Cell Biol,
29,
4308-4324.
|
 |
|
|
|
|
 |
H.Lempiäinen,
and
T.D.Halazonetis
(2009).
Emerging common themes in regulation of PIKKs and PI3Ks.
|
| |
EMBO J,
28,
3067-3073.
|
 |
|
|
|
|
 |
J.Avruch,
X.Long,
S.Ortiz-Vega,
J.Rapley,
A.Papageorgiou,
and
N.Dai
(2009).
Amino acid regulation of TOR complex 1.
|
| |
Am J Physiol Endocrinol Metab,
296,
E592-E602.
|
 |
|
|
|
|
 |
J.H.Davis,
T.A.Baker,
and
R.T.Sauer
(2009).
Engineering synthetic adaptors and substrates for controlled ClpXP degradation.
|
| |
J Biol Chem,
284,
21848-21855.
|
 |
|
|
|
|
 |
J.T.Heeres,
S.H.Kim,
B.J.Leslie,
E.A.Lidstone,
B.T.Cunningham,
and
P.J.Hergenrother
(2009).
Identifying modulators of protein-protein interactions using photonic crystal biosensors.
|
| |
J Am Chem Soc,
131,
18202-18203.
|
 |
|
|
|
|
 |
L.N.Johnson
(2009).
Protein kinase inhibitors: contributions from structure to clinical compounds.
|
| |
Q Rev Biophys,
42,
1.
|
 |
|
|
|
|
 |
R.J.Dowling,
M.Pollak,
and
N.Sonenberg
(2009).
Current status and challenges associated with targeting mTOR for cancer therapy.
|
| |
BioDrugs,
23,
77-91.
|
 |
|
|
|
|
 |
S.Zimnik,
M.Gaestel,
and
R.Niedenthal
(2009).
Mutually exclusive STAT1 modifications identified by Ubc9/substrate dimerization-dependent SUMOylation.
|
| |
Nucleic Acids Res,
37,
e30.
|
 |
|
|
|
|
 |
A.Fasolo,
and
C.Sessa
(2008).
mTOR inhibitors in the treatment of cancer.
|
| |
Expert Opin Investig Drugs,
17,
1717-1734.
|
 |
|
|
|
|
 |
B.Ruan,
K.Pong,
F.Jow,
M.Bowlby,
R.A.Crozier,
D.Liu,
S.Liang,
Y.Chen,
M.L.Mercado,
X.Feng,
F.Bennett,
D.von Schack,
L.McDonald,
M.M.Zaleska,
A.Wood,
P.H.Reinhart,
R.L.Magolda,
J.Skotnicki,
M.N.Pangalos,
F.E.Koehn,
G.T.Carter,
M.Abou-Gharbia,
and
E.I.Graziani
(2008).
Binding of rapamycin analogs to calcium channels and FKBP52 contributes to their neuroprotective activities.
|
| |
Proc Natl Acad Sci U S A,
105,
33-38.
|
 |
|
|
|
|
 |
E.M.Driggers,
S.P.Hale,
J.Lee,
and
N.K.Terrett
(2008).
The exploration of macrocycles for drug discovery--an underexploited structural class.
|
| |
Nat Rev Drug Discov,
7,
608-624.
|
 |
|
|
|
|
 |
H.Baruah,
S.Puthenveetil,
Y.A.Choi,
S.Shah,
and
A.Y.Ting
(2008).
An engineered aryl azide ligase for site-specific mapping of protein-protein interactions through photo-cross-linking.
|
| |
Angew Chem Int Ed Engl,
47,
7018-7021.
|
 |
|
|
|
|
 |
J.L.Czlapinski,
M.W.Schelle,
L.W.Miller,
S.T.Laughlin,
J.J.Kohler,
V.W.Cornish,
and
C.R.Bertozzi
(2008).
Conditional glycosylation in eukaryotic cells using a biocompatible chemical inducer of dimerization.
|
| |
J Am Chem Soc,
130,
13186-13187.
|
 |
|
|
|
|
 |
J.Y.Cho,
and
J.Park
(2008).
Contribution of Natural Inhibitors to the Understanding of the PI3K/PDK1/PKB Pathway in the Insulin-mediated Intracellular Signaling Cascade.
|
| |
Int J Mol Sci,
9,
2217-2230.
|
 |
|
|
|
|
 |
L.M.Ballou,
and
R.Z.Lin
(2008).
Rapamycin and mTOR kinase inhibitors.
|
| |
J Chem Biol,
1,
27-36.
|
 |
|
|
|
|
 |
M.A.Fischbach,
C.T.Walsh,
and
J.Clardy
(2008).
The evolution of gene collectives: How natural selection drives chemical innovation.
|
| |
Proc Natl Acad Sci U S A,
105,
4601-4608.
|
 |
|
|
|
|
 |
M.Fernández-Suárez,
T.S.Chen,
and
A.Y.Ting
(2008).
Protein-protein interaction detection in vitro and in cells by proximity biotinylation.
|
| |
J Am Chem Soc,
130,
9251-9253.
|
 |
|
|
|
|
 |
R.T.Abraham,
and
C.H.Eng
(2008).
Mammalian target of rapamycin as a therapeutic target in oncology.
|
| |
Expert Opin Ther Targets,
12,
209-222.
|
 |
|
|
|
|
 |
T.Sato,
A.Umetsu,
and
F.Tamanoi
(2008).
Characterization of the Rheb-mTOR signaling pathway in mammalian cells: constitutive active mutants of Rheb and mTOR.
|
| |
Methods Enzymol,
438,
307-320.
|
 |
|
|
|
|
 |
V.Veverka,
T.Crabbe,
I.Bird,
G.Lennie,
F.W.Muskett,
R.J.Taylor,
and
M.D.Carr
(2008).
Structural characterization of the interaction of mTOR with phosphatidic acid and a novel class of inhibitor: compelling evidence for a central role of the FRB domain in small molecule-mediated regulation of mTOR.
|
| |
Oncogene,
27,
585-595.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.Adami,
B.García-Alvarez,
E.Arias-Palomo,
D.Barford,
and
O.Llorca
(2007).
Structure of TOR and its complex with KOG1.
|
| |
Mol Cell,
27,
509-516.
|
 |
|
|
|
|
 |
C.K.Tsang,
H.Qi,
L.F.Liu,
and
X.F.Zheng
(2007).
Targeting mammalian target of rapamycin (mTOR) for health and diseases.
|
| |
Drug Discov Today,
12,
112-124.
|
 |
|
|
|
|
 |
C.Schultz
(2007).
Molecular tools for cell and systems biology.
|
| |
HFSP J,
1,
230-248.
|
 |
|
|
|
|
 |
E.S.Carlson,
J.D.Stead,
C.R.Neal,
A.Petryk,
and
M.K.Georgieff
(2007).
Perinatal iron deficiency results in altered developmental expression of genes mediating energy metabolism and neuronal morphogenesis in hippocampus.
|
| |
Hippocampus,
17,
679-691.
|
 |
|
|
|
|
 |
G.Gossrau,
J.Thiele,
R.Konang,
T.Schmandt,
and
O.Brüstle
(2007).
Bone morphogenetic protein-mediated modulation of lineage diversification during neural differentiation of embryonic stem cells.
|
| |
Stem Cells,
25,
939-949.
|
 |
|
|
|
|
 |
J.Albanell,
A.Dalmases,
A.Rovira,
and
F.Rojo
(2007).
mTOR signalling in human cancer.
|
| |
Clin Transl Oncol,
9,
484-493.
|
 |
|
|
|
|
 |
K.C.Slep,
and
R.D.Vale
(2007).
Structural basis of microtubule plus end tracking by XMAP215, CLIP-170, and EB1.
|
| |
Mol Cell,
27,
976-991.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
K.Stankunas,
and
G.R.Crabtree
(2007).
Exploiting protein destruction for constructive use.
|
| |
Proc Natl Acad Sci U S A,
104,
11511-11512.
|
 |
|
|
|
|
 |
K.Stankunas,
J.H.Bayle,
J.J.Havranek,
T.J.Wandless,
D.Baker,
G.R.Crabtree,
and
J.E.Gestwicki
(2007).
Rescue of degradation-prone mutants of the FK506-rapamycin binding (FRB) protein with chemical ligands.
|
| |
Chembiochem,
8,
1162-1169.
|
 |
|
|
|
|
 |
L.T.Agredano-Moreno,
H.Reyes de la Cruz,
L.P.Martínez-Castilla,
and
E.Sánchez de Jiménez
(2007).
Distinctive expression and functional regulation of the maize (Zea mays L.) TOR kinase ortholog.
|
| |
Mol Biosyst,
3,
794-802.
|
 |
|
|
|
|
 |
M.A.Fischbach,
and
J.Clardy
(2007).
One pathway, many products.
|
| |
Nat Chem Biol,
3,
353-355.
|
 |
|
|
|
|
 |
M.R.Pratt,
E.C.Schwartz,
and
T.W.Muir
(2007).
Small-molecule-mediated rescue of protein function by an inducible proteolytic shunt.
|
| |
Proc Natl Acad Sci U S A,
104,
11209-11214.
|
 |
|
|
|
|
 |
P.Block,
N.Weskamp,
A.Wolf,
and
G.Klebe
(2007).
Strategies to search and design stabilizers of protein-protein interactions: a feasibility study.
|
| |
Proteins,
68,
170-186.
|
 |
|
|
|
|
 |
R.A.Miller,
B.F.Binkowski,
and
P.J.Belshaw
(2007).
Ligand-regulated peptide aptamers that inhibit the 5'-AMP-activated protein kinase.
|
| |
J Mol Biol,
365,
945-957.
|
 |
|
|
|
|
 |
R.Sormani,
L.Yao,
B.Menand,
N.Ennar,
C.Lecampion,
C.Meyer,
and
C.Robaglia
(2007).
Saccharomyces cerevisiae FKBP12 binds Arabidopsis thaliana TOR and its expression in plants leads to rapamycin susceptibility.
|
| |
BMC Plant Biol,
7,
26.
|
 |
|
|
|
|
 |
V.Villalobos,
S.Naik,
and
D.Piwnica-Worms
(2007).
Current state of imaging protein-protein interactions in vivo with genetically encoded reporters.
|
| |
Annu Rev Biomed Eng,
9,
321-349.
|
 |
|
|
|
|
 |
Y.W.Chen,
M.L.Smith,
M.Sheets,
S.Ballaron,
J.M.Trevillyan,
S.E.Burke,
T.Rosenberg,
C.Henry,
R.Wagner,
J.Bauch,
K.Marsh,
T.A.Fey,
G.Hsieh,
D.Gauvin,
K.W.Mollison,
G.W.Carter,
and
S.W.Djuric
(2007).
Zotarolimus, a novel sirolimus analogue with potent anti-proliferative activity on coronary smooth muscle cells and reduced potential for systemic immunosuppression.
|
| |
J Cardiovasc Pharmacol,
49,
228-235.
|
 |
|
|
|
|
 |
A.L.Drayer,
S.G.Olthof,
and
E.Vellenga
(2006).
Mammalian target of rapamycin is required for thrombopoietin-induced proliferation of megakaryocyte progenitors.
|
| |
Stem Cells,
24,
105-114.
|
 |
|
|
|
|
 |
B.Pinan-Lucarré,
I.Iraqui,
and
C.Clavé
(2006).
Podospora anserina target of rapamycin.
|
| |
Curr Genet,
50,
23-31.
|
 |
|
|
|
|
 |
C.H.Chuang,
A.E.Carpenter,
B.Fuchsova,
T.Johnson,
P.de Lanerolle,
and
A.S.Belmont
(2006).
Long-range directional movement of an interphase chromosome site.
|
| |
Curr Biol,
16,
825-831.
|
 |
|
|
|
|
 |
C.Marchand,
S.Antony,
K.W.Kohn,
M.Cushman,
A.Ioanoviciu,
B.L.Staker,
A.B.Burgin,
L.Stewart,
and
Y.Pommier
(2006).
A novel norindenoisoquinoline structure reveals a common interfacial inhibitor paradigm for ternary trapping of the topoisomerase I-DNA covalent complex.
|
| |
Mol Cancer Ther,
5,
287-295.
|
 |
|
|
|
|
 |
E.Thervet
(2006).
Sirolimus therapy following early cyclosporine withdrawal in transplant patients: mechanisms of action and clinical results.
|
| |
Int J Nanomedicine,
1,
269-281.
|
 |
|
|
|
|
 |
H.Funabashi,
Y.Tanaka,
Y.Imamura,
M.Mie,
T.Manabe,
H.Tanaka,
T.Takahashi,
H.Handa,
M.Aizawa,
and
E.Kobatake
(2006).
Glucose oxidase assisted homogeneous electrochemical receptor binding assay for drug screening.
|
| |
Biosens Bioelectron,
21,
1675-1683.
|
 |
|
|
|
|
 |
J.Avruch,
K.Hara,
Y.Lin,
M.Liu,
X.Long,
S.Ortiz-Vega,
and
K.Yonezawa
(2006).
Insulin and amino-acid regulation of mTOR signaling and kinase activity through the Rheb GTPase.
|
| |
Oncogene,
25,
6361-6372.
|
 |
|
|
|
|
 |
J.B.Easton,
and
P.J.Houghton
(2006).
mTOR and cancer therapy.
|
| |
Oncogene,
25,
6436-6446.
|
 |
|
|
|
|
 |
J.R.Silvius,
P.Bhagatji,
R.Leventis,
and
D.Terrone
(2006).
K-ras4B and prenylated proteins lacking "second signals" associate dynamically with cellular membranes.
|
| |
Mol Biol Cell,
17,
192-202.
|
 |
|
|
|
|
 |
M.He
(2006).
Pipecolic acid in microbes: biosynthetic routes and enzymes.
|
| |
J Ind Microbiol Biotechnol,
33,
401-407.
|
 |
|
|
|
|
 |
S.Teichert,
M.Wottawa,
B.Schönig,
and
B.Tudzynski
(2006).
Role of the Fusarium fujikuroi TOR kinase in nitrogen regulation and secondary metabolism.
|
| |
Eukaryot Cell,
5,
1807-1819.
|
 |
|
|
|
|
 |
A.D.Levin,
M.Jonas,
C.W.Hwang,
and
E.R.Edelman
(2005).
Local and systemic drug competition in drug-eluting stent tissue deposition properties.
|
| |
J Control Release,
109,
236-243.
|
 |
|
|
|
|
 |
A.G.Bader,
S.Kang,
L.Zhao,
and
P.K.Vogt
(2005).
Oncogenic PI3K deregulates transcription and translation.
|
| |
Nat Rev Cancer,
5,
921-929.
|
 |
|
|
|
|
 |
A.Reayi,
and
P.Arya
(2005).
Natural product-like chemical space: search for chemical dissectors of macromolecular interactions.
|
| |
Curr Opin Chem Biol,
9,
240-247.
|
 |
|
|
|
|
 |
E.G.Hatzivassiliou,
T.Tsichritzis,
and
G.Mosialos
(2005).
Induction of apoptosis by rewiring the signal transduction of Epstein-Barr virus oncoprotein LMP1 toward caspase activation.
|
| |
J Virol,
79,
5215-5219.
|
 |
|
|
|
|
 |
F.V.Ritacco,
E.I.Graziani,
M.Y.Summers,
T.M.Zabriskie,
K.Yu,
V.S.Bernan,
G.T.Carter,
and
M.Greenstein
(2005).
Production of novel rapamycin analogs by precursor-directed biosynthesis.
|
| |
Appl Environ Microbiol,
71,
1971-1976.
|
 |
|
|
|
|
 |
J.A.Kritzer,
and
N.W.Luedtke
(2005).
Chemical biology: innovative solutions for diverse challenges.
|
| |
Chem Biol,
12,
617-620.
|
 |
|
|
|
|
 |
J.Perry
(2005).
Weighing in on a Timeless controversy.
|
| |
Proteins,
61,
699-703.
|
 |
|
|
|
|
 |
T.Inoue,
W.D.Heo,
J.S.Grimley,
T.J.Wandless,
and
T.Meyer
(2005).
An inducible translocation strategy to rapidly activate and inhibit small GTPase signaling pathways.
|
| |
Nat Methods,
2,
415-418.
|
 |
|
|
|
|
 |
Y.Pommier,
and
J.Cherfils
(2005).
Interfacial inhibition of macromolecular interactions: nature's paradigm for drug discovery.
|
| |
Trends Pharmacol Sci,
26,
138-145.
|
 |
|
|
|
|
 |
Z.A.Knight,
and
K.M.Shokat
(2005).
Features of selective kinase inhibitors.
|
| |
Chem Biol,
12,
621-637.
|
 |
|
|
|
|
 |
A.D.Levin,
N.Vukmirovic,
C.W.Hwang,
and
E.R.Edelman
(2004).
Specific binding to intracellular proteins determines arterial transport properties for rapamycin and paclitaxel.
|
| |
Proc Natl Acad Sci U S A,
101,
9463-9467.
|
 |
|
|
|
|
 |
J.B.Easton,
and
P.J.Houghton
(2004).
Therapeutic potential of target of rapamycin inhibitors.
|
| |
Expert Opin Ther Targets,
8,
551-564.
|
 |
|
|
|
|
 |
J.Clardy,
and
C.Walsh
(2004).
Lessons from natural molecules.
|
| |
Nature,
432,
829-837.
|
 |
|
|
|
|
 |
J.J.Zimmerman
(2004).
Exposure-response relationships and drug interactions of sirolimus.
|
| |
AAPS J,
6,
e28.
|
 |
|
|
|
|
 |
N.Oshiro,
K.Yoshino,
S.Hidayat,
C.Tokunaga,
K.Hara,
S.Eguchi,
J.Avruch,
and
K.Yonezawa
(2004).
Dissociation of raptor from mTOR is a mechanism of rapamycin-induced inhibition of mTOR function.
|
| |
Genes Cells,
9,
359-366.
|
 |
|
|
|
|
 |
C.W.So,
M.Lin,
P.M.Ayton,
E.H.Chen,
and
M.L.Cleary
(2003).
Dimerization contributes to oncogenic activation of MLL chimeras in acute leukemias.
|
| |
Cancer Cell,
4,
99.
|
 |
|
|
|
|
 |
F.Sun,
P.Li,
Y.Ding,
L.Wang,
M.Bartlam,
C.Shu,
B.Shen,
H.Jiang,
S.Li,
and
Z.Rao
(2003).
Design and structure-based study of new potential FKBP12 inhibitors.
|
| |
Biophys J,
85,
3194-3201.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.Gomez-Cambronero
(2003).
Rapamycin inhibits GM-CSF-induced neutrophil migration.
|
| |
FEBS Lett,
550,
94.
|
 |
|
|
|
|
 |
J.J.Kohler,
and
C.R.Bertozzi
(2003).
Regulating cell surface glycosylation by small molecule control of enzyme localization.
|
| |
Chem Biol,
10,
1303-1311.
|
 |
|
|
|
|
 |
J.Perry,
and
N.Kleckner
(2003).
The ATRs, ATMs, and TORs are giant HEAT repeat proteins.
|
| |
Cell,
112,
151-155.
|
 |
|
|
|
|
 |
K.Stankunas,
J.H.Bayle,
J.E.Gestwicki,
Y.M.Lin,
T.J.Wandless,
and
G.R.Crabtree
(2003).
Conditional protein alleles using knockin mice and a chemical inducer of dimerization.
|
| |
Mol Cell,
12,
1615-1624.
|
 |
|
|
|
|
 |
L.Renault,
B.Guibert,
and
J.Cherfils
(2003).
Structural snapshots of the mechanism and inhibition of a guanine nucleotide exchange factor.
|
| |
Nature,
426,
525-530.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.Würtele,
C.Jelich-Ottmann,
A.Wittinghofer,
and
C.Oecking
(2003).
Structural view of a fungal toxin acting on a 14-3-3 regulatory complex.
|
| |
EMBO J,
22,
987-994.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
P.Rajan,
D.M.Panchision,
L.F.Newell,
and
R.D.McKay
(2003).
BMPs signal alternately through a SMAD or FRAP-STAT pathway to regulate fate choice in CNS stem cells.
|
| |
J Cell Biol,
161,
911-921.
|
 |
|
|
|
|
 |
S.Schlatter,
C.Senn,
and
M.Fussenegger
(2003).
Modulation of translation-initiation in CHO-K1 cells by rapamycin-induced heterodimerization of engineered eIF4G fusion proteins.
|
| |
Biotechnol Bioeng,
83,
210-225.
|
 |
|
|
|
|
 |
B.Menand,
T.Desnos,
L.Nussaume,
F.Berger,
D.Bouchez,
C.Meyer,
and
C.Robaglia
(2002).
Expression and disruption of the Arabidopsis TOR (target of rapamycin) gene.
|
| |
Proc Natl Acad Sci U S A,
99,
6422-6427.
|
 |
|
|
|
|
 |
D.C.Fingar,
S.Salama,
C.Tsou,
E.Harlow,
and
J.Blenis
(2002).
Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E.
|
| |
Genes Dev,
16,
1472-1487.
|
 |
|
|
|
|
 |
I.Harvey,
P.Garneau,
and
J.Pelletier
(2002).
Forced engagement of a RNA/protein complex by a chemical inducer of dimerization to modulate gene expression.
|
| |
Proc Natl Acad Sci U S A,
99,
1882-1887.
|
 |
|
|
|
|
 |
J.L.Crespo,
and
M.N.Hall
(2002).
Elucidating TOR signaling and rapamycin action: lessons from Saccharomyces cerevisiae.
|
| |
Microbiol Mol Biol Rev,
66,
579.
|
 |
|
|
|
|
 |
P.J.Pereira,
M.C.Vega,
E.González-Rey,
R.Fernández-Carazo,
S.Macedo-Ribeiro,
F.X.Gomis-Rüth,
A.González,
and
M.Coll
(2002).
Trypanosoma cruzi macrophage infectivity potentiator has a rotamase core and a highly exposed alpha-helix.
|
| |
EMBO Rep,
3,
88-94.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
T.Wehrman,
B.Kleaveland,
J.H.Her,
R.F.Balint,
and
H.M.Blau
(2002).
Protein-protein interactions monitored in mammalian cells via complementation of beta -lactamase enzyme fragments.
|
| |
Proc Natl Acad Sci U S A,
99,
3469-3474.
|
 |
|
|
|
|
 |
M.C.Cruz,
A.L.Goldstein,
J.Blankenship,
M.Del Poeta,
J.R.Perfect,
J.H.McCusker,
Y.L.Bennani,
M.E.Cardenas,
and
J.Heitman
(2001).
Rapamycin and less immunosuppressive analogs are toxic to Candida albicans and Cryptococcus neoformans via FKBP12-dependent inhibition of TOR.
|
| |
Antimicrob Agents Chemother,
45,
3162-3170.
|
 |
|
|
|
|
 |
T.Lechler,
G.A.Jonsdottir,
S.K.Klee,
D.Pellman,
and
R.Li
(2001).
A two-tiered mechanism by which Cdc42 controls the localization and activation of an Arp2/3-activating motor complex in yeast.
|
| |
J Cell Biol,
155,
261-270.
|
 |
|
|
|
|
 |
A.F.Shamji,
F.G.Kuruvilla,
and
S.L.Schreiber
(2000).
Partitioning the transcriptional program induced by rapamycin among the effectors of the Tor proteins.
|
| |
Curr Biol,
10,
1574-1581.
|
 |
|
|
|
|
 |
C.C.Deivanayagam,
M.Carson,
A.Thotakura,
S.V.Narayana,
and
R.S.Chodavarapu
(2000).
Structure of FKBP12.6 in complex with rapamycin.
|
| |
Acta Crystallogr D Biol Crystallogr,
56,
266-271.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.T.Ivery
(2000).
Immunophilins: switched on protein binding domains?
|
| |
Med Res Rev,
20,
452-484.
|
 |
|
|
|
|
 |
T.Schmelzle,
and
M.N.Hall
(2000).
TOR, a central controller of cell growth.
|
| |
Cell,
103,
253-262.
|
 |
|
|
|
|
 |
C.M.Alarcon,
J.Heitman,
and
M.E.Cardenas
(1999).
Protein kinase activity and identification of a toxic effector domain of the target of rapamycin TOR proteins in yeast.
|
| |
Mol Biol Cell,
10,
2531-2546.
|
 |
|
|
|
|
 |
F.C.Nelson,
S.J.Stachel,
C.P.Eng,
and
S.N.Sehgal
(1999).
Manipulation of the C(22)-C(27) region of rapamycin: stability issues and biological implications.
|
| |
Bioorg Med Chem Lett,
9,
295-300.
|
 |
|
|
|
|
 |
F.G.Kuruvilla,
and
S.L.Schreiber
(1999).
The PIK-related kinases intercept conventional signaling pathways.
|
| |
Chem Biol,
6,
R129-R136.
|
 |
|
|
|
|
 |
I.Remy,
and
S.W.Michnick
(1999).
Clonal selection and in vivo quantitation of protein interactions with protein-fragment complementation assays.
|
| |
Proc Natl Acad Sci U S A,
96,
5394-5399.
|
 |
|
|
|
|
 |
J.Liang,
J.Choi,
and
J.Clardy
(1999).
Refined structure of the FKBP12-rapamycin-FRB ternary complex at 2.2 A resolution.
|
| |
Acta Crystallogr D Biol Crystallogr,
55,
736-744.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.C.Cruz,
L.M.Cavallo,
J.M.Görlach,
G.Cox,
J.R.Perfect,
M.E.Cardenas,
and
J.Heitman
(1999).
Rapamycin antifungal action is mediated via conserved complexes with FKBP12 and TOR kinase homologs in Cryptococcus neoformans.
|
| |
Mol Cell Biol,
19,
4101-4112.
|
 |
|
|
|
|
 |
M.E.Cardenas,
M.C.Cruz,
M.Del Poeta,
N.Chung,
J.R.Perfect,
and
J.Heitman
(1999).
Antifungal activities of antineoplastic agents: Saccharomyces cerevisiae as a model system to study drug action.
|
| |
Clin Microbiol Rev,
12,
583-611.
|
 |
|
|
|
|
 |
R.Briesewitz,
G.T.Ray,
T.J.Wandless,
and
G.R.Crabtree
(1999).
Affinity modulation of small-molecule ligands by borrowing endogenous protein surfaces.
|
| |
Proc Natl Acad Sci U S A,
96,
1953-1958.
|
 |
|
|
|
|
 |
R.Sedrani,
L.H.Jones,
A.M.Jutzi-Eme,
W.Schuler,
and
S.Cottens
(1999).
Cleavage of the cyclohexyl-subunit of rapamycin results in loss of immunosuppressive activity.
|
| |
Bioorg Med Chem Lett,
9,
459-462.
|
 |
|
|
|
|
 |
J.N.Pelletier,
F.X.Campbell-Valois,
and
S.W.Michnick
(1998).
Oligomerization domain-directed reassembly of active dihydrofolate reductase from rationally designed fragments.
|
| |
Proc Natl Acad Sci U S A,
95,
12141-12146.
|
 |
|
|
|
|
 |
S.N.Sehgal
(1998).
Rapamune (RAPA, rapamycin, sirolimus): mechanism of action immunosuppressive effect results from blockade of signal transduction and inhibition of cell cycle progression.
|
| |
Clin Biochem,
31,
335-340.
|
 |
|
|
|
|
 |
F.Rossi,
C.A.Charlton,
and
H.M.Blau
(1997).
Monitoring protein-protein interactions in intact eukaryotic cells by beta-galactosidase complementation.
|
| |
Proc Natl Acad Sci U S A,
94,
8405-8410.
|
 |
|
|
|
|
 |
I.A.Graef,
L.J.Holsinger,
S.Diver,
S.L.Schreiber,
and
G.R.Crabtree
(1997).
Proximity and orientation underlie signaling by the non-receptor tyrosine kinase ZAP70.
|
| |
EMBO J,
16,
5618-5628.
|
 |
|
|
|
|
 |
S.D.Liberles,
S.T.Diver,
D.J.Austin,
and
S.L.Schreiber
(1997).
Inducible gene expression and protein translocation using nontoxic ligands identified by a mammalian three-hybrid screen.
|
| |
Proc Natl Acad Sci U S A,
94,
7825-7830.
|
 |
|
|
|
|
 |
S.Pedersen,
J.E.Celis,
J.Nielsen,
J.Christiansen,
and
F.C.Nielsen
(1997).
Distinct repression of translation by wortmannin and rapamycin.
|
| |
Eur J Biochem,
247,
449-456.
|
 |
|
|
|
|
 |
B.L.Stoddard,
and
K.E.Flick
(1996).
Calcineurin-immunosuppressor complexes.
|
| |
Curr Opin Struct Biol,
6,
770-775.
|
 |
|
|
|
|
 |
M.A.Navia
(1996).
Protein-drug complexes important for immunoregulation and organ transplantation.
|
| |
Curr Opin Struct Biol,
6,
838-847.
|
 |
|
|
|
|
 |
V.M.Rivera,
T.Clackson,
S.Natesan,
R.Pollock,
J.F.Amara,
T.Keenan,
S.R.Magari,
T.Phillips,
N.L.Courage,
F.Cerasoli,
D.A.Holt,
and
M.Gilman
(1996).
A humanized system for pharmacologic control of gene expression.
|
| |
Nat Med,
2,
1028-1032.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
 |