 |
PDBsum entry 1e8c
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
 |
|
|
 |
 |
 |
 |
Enzyme class:
|
 |
E.C.6.3.2.13
- UDP-N-acetylmuramoyl-L-alanyl-D-glutamate--2,6-diaminopimelate ligase.
|
|
 |
 |
 |
 |
 |

Pathway:
|
 |
Peptidoglycan Biosynthesis (Part 1)
|
 |
 |
 |
 |
 |
Reaction:
|
 |
UDP-N-acetyl-alpha-D-muramoyl-L-alanyl-D-glutamate + meso-2,6- diaminopimelate + ATP = UDP-N-acetyl-alpha-D-muramoyl-L-alanyl-gamma-D- glutamyl-meso-2,6-diaminopimelate + ADP + phosphate + H+
|
 |
 |
 |
 |
 |
UDP-N-acetyl-alpha-D-muramoyl-L-alanyl-D-glutamate
|
+
|
meso-2,6- diaminopimelate
Bound ligand (Het Group name = )
corresponds exactly
|
+
|
ATP
|
=
|
UDP-N-acetyl-alpha-D-muramoyl-L-alanyl-gamma-D- glutamyl-meso-2,6-diaminopimelate
|
+
|
ADP
|
+
|
phosphate
|
+
|
H(+)
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Molecule diagrams generated from .mol files obtained from the
KEGG ftp site
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
|
| |
|
DOI no:
|
J Biol Chem
276:10999-11006
(2001)
|
|
PubMed id:
|
|
|
|
|
| |
|
Crystal structure of UDP-N-acetylmuramoyl-L-alanyl-D-glutamate: meso-diaminopimelate ligase from Escherichia coli.
|
|
E.Gordon,
B.Flouret,
L.Chantalat,
J.van Heijenoort,
D.Mengin-Lecreulx,
O.Dideberg.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
UDP-N-acetylmuramoyl-l-alanyl-d-glutamate:meso-diaminopimelate ligase is a
cytoplasmic enzyme that catalyzes the addition of meso-diaminopimelic acid to
nucleotide precursor UDP-N-acetylmuramoyl-l-alanyl-d-glutamate in the
biosynthesis of bacterial cell-wall peptidoglycan. The crystal structure of the
Escherichia coli enzyme in the presence of the final product of the enzymatic
reaction, UDP-MurNAc-l-Ala-gamma-d-Glu-meso-A(2)pm, has been solved to 2.0 A
resolution. Phase information was obtained by multiwavelength anomalous
dispersion using the K shell edge of selenium. The protein consists of three
domains, two of which have a topology reminiscent of the equivalent domain found
in the already established three-dimensional structure of the
UDP-N-acetylmuramoyl-l-alanine: D-glutamate-ligase (MurD) ligase, which
catalyzes the immediate previous step of incorporation of d-glutamic acid in the
biosynthesis of the peptidoglycan precursor. The refined model reveals the
binding site for UDP-MurNAc-l-Ala-gamma-d-Glu-meso-A(2)pm, and comparison with
the six known MurD structures allowed the identification of residues involved in
the enzymatic mechanism. Interestingly, during refinement, an excess of electron
density was observed, leading to the conclusion that, as in MurD, a carbamylated
lysine residue is present in the active site. In addition, the structural
determinant responsible for the selection of the amino acid to be added to the
nucleotide precursor was identified.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 5.
Fig. 5. Schematic drawing of the UMT binding in molecule
B. For clarity, only hydrogen bond interactions are shown.
|
 |
Figure 8.
Fig. 8. Interaction of the A[2]pm moiety of UMT with
MurE. Only side chains involved in hydrogen bonds are shown. The
green line represents the loop between 19 and 14.
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from the ASBMB:
J Biol Chem
(2001,
276,
10999-11006)
copyright 2001.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
C.Basavannacharya,
P.R.Moody,
T.Munshi,
N.Cronin,
N.H.Keep,
and
S.Bhakta
(2010).
Essential residues for the enzyme activity of ATP-dependent MurE ligase from Mycobacterium tuberculosis.
|
| |
Protein Cell,
1,
1011-1022.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
T.C.Terwilliger
(2010).
Rapid model building of alpha-helices in electron-density maps.
|
| |
Acta Crystallogr D Biol Crystallogr,
66,
268-275.
|
 |
|
|
|
|
 |
T.C.Terwilliger
(2010).
Rapid model building of beta-sheets in electron-density maps.
|
| |
Acta Crystallogr D Biol Crystallogr,
66,
276-284.
|
 |
|
|
|
|
 |
T.C.Terwilliger
(2010).
Rapid chain tracing of polypeptide backbones in electron-density maps.
|
| |
Acta Crystallogr D Biol Crystallogr,
66,
285-294.
|
 |
|
|
|
|
 |
T.Tomasić,
N.Zidar,
A.Kovac,
S.Turk,
M.Simcic,
D.Blanot,
M.Müller-Premru,
M.Filipic,
S.G.Grdadolnik,
A.Zega,
M.Anderluh,
S.Gobec,
D.Kikelj,
and
L.Peterlin Masic
(2010).
5-Benzylidenethiazolidin-4-ones as multitarget inhibitors of bacterial Mur ligases.
|
| |
ChemMedChem,
5,
286-295.
|
 |
|
|
|
|
 |
W.Zhao,
Y.Zhong,
H.Yuan,
J.Wang,
H.Zheng,
Y.Wang,
X.Cen,
F.Xu,
J.Bai,
X.Han,
G.Lu,
Y.Zhu,
Z.Shao,
H.Yan,
C.Li,
N.Peng,
Z.Zhang,
Y.Zhang,
W.Lin,
Y.Fan,
Z.Qin,
Y.Hu,
B.Zhu,
S.Wang,
X.Ding,
and
G.P.Zhao
(2010).
Complete genome sequence of the rifamycin SV-producing Amycolatopsis mediterranei U32 revealed its genetic characteristics in phylogeny and metabolism.
|
| |
Cell Res,
20,
1096-1108.
|
 |
|
|
|
|
 |
C.Paradis-Bleau,
A.Lloyd,
F.Sanschagrin,
H.Maaroufi,
T.Clarke,
A.Blewett,
C.Dowson,
D.I.Roper,
T.D.Bugg,
and
R.C.Levesque
(2009).
Pseudomonas aeruginosa MurE amide ligase: enzyme kinetics and peptide inhibitor.
|
| |
Biochem J,
421,
263-272.
|
 |
|
|
|
|
 |
D.Patin,
J.Bostock,
D.Blanot,
D.Mengin-Lecreulx,
and
I.Chopra
(2009).
Functional and biochemical analysis of the Chlamydia trachomatis ligase MurE.
|
| |
J Bacteriol,
191,
7430-7435.
|
 |
|
|
|
|
 |
T.C.Terwilliger,
P.D.Adams,
R.J.Read,
A.J.McCoy,
N.W.Moriarty,
R.W.Grosse-Kunstleve,
P.V.Afonine,
P.H.Zwart,
and
L.W.Hung
(2009).
Decision-making in structure solution using Bayesian estimates of map quality: the PHENIX AutoSol wizard.
|
| |
Acta Crystallogr D Biol Crystallogr,
65,
582-601.
|
 |
|
|
|
|
 |
H.Barreteau,
A.Kovac,
A.Boniface,
M.Sova,
S.Gobec,
and
D.Blanot
(2008).
Cytoplasmic steps of peptidoglycan biosynthesis.
|
| |
FEMS Microbiol Rev,
32,
168-207.
|
 |
|
|
|
|
 |
L.E.Zawadzke,
M.Norcia,
C.R.Desbonnet,
H.Wang,
K.Freeman-Cook,
and
T.J.Dougherty
(2008).
Identification of an inhibitor of the MurC enzyme, which catalyzes an essential step in the peptidoglycan precursor synthesis pathway.
|
| |
Assay Drug Dev Technol,
6,
95.
|
 |
|
|
|
|
 |
M.Garcia,
F.Myouga,
K.Takechi,
H.Sato,
K.Nabeshima,
N.Nagata,
S.Takio,
K.Shinozaki,
and
H.Takano
(2008).
An Arabidopsis homolog of the bacterial peptidoglycan synthesis enzyme MurE has an essential role in chloroplast development.
|
| |
Plant J,
53,
924-934.
|
 |
|
|
|
|
 |
A.Perdih,
M.Kotnik,
M.Hodoscek,
and
T.Solmajer
(2007).
Targeted molecular dynamics simulation studies of binding and conformational changes in E. coli MurD.
|
| |
Proteins,
68,
243-254.
|
 |
|
|
|
|
 |
G.Füser,
and
A.Steinbüchel
(2007).
Analysis of genome sequences for genes of cyanophycin metabolism: identifying putative cyanophycin metabolizing prokaryotes.
|
| |
Macromol Biosci,
7,
278-296.
|
 |
|
|
|
|
 |
K.Strancar,
A.Boniface,
D.Blanot,
and
S.Gobec
(2007).
Phosphinate inhibitors of UDP-N-acetylmuramoyl-L-alanyl-D-glutamate: L-lysine ligase (MurE).
|
| |
Arch Pharm (Weinheim),
340,
127-134.
|
 |
|
|
|
|
 |
M.Hervé,
A.Boniface,
S.Gobec,
D.Blanot,
and
D.Mengin-Lecreulx
(2007).
Biochemical characterization and physiological properties of Escherichia coli UDP-N-acetylmuramate:L-alanyl-gamma-D-glutamyl-meso-diaminopimelate ligase.
|
| |
J Bacteriol,
189,
3987-3995.
|
 |
|
|
|
|
 |
M.K.Kim,
M.K.Cho,
H.E.Song,
D.Kim,
B.H.Park,
J.H.Lee,
G.B.Kang,
S.H.Kim,
Y.J.Im,
D.S.Lee,
and
S.H.Eom
(2007).
Crystal structure of UDP-N-acetylenolpyruvylglucosamine reductase (MurB) from Thermus caldophilus.
|
| |
Proteins,
66,
751-754.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
G.F.Stamper,
K.L.Longenecker,
E.H.Fry,
C.G.Jakob,
A.S.Florjancic,
Y.G.Gu,
D.D.Anderson,
C.S.Cooper,
T.Zhang,
R.F.Clark,
Y.Cia,
C.L.Black-Schaefer,
J.Owen McCall,
C.G.Lerner,
P.J.Hajduk,
B.A.Beutel,
and
V.S.Stoll
(2006).
Structure-based optimization of MurF inhibitors.
|
| |
Chem Biol Drug Des,
67,
58-65.
|
 |
|
|
|
|
 |
J.Deutscher,
C.Francke,
and
P.W.Postma
(2006).
How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria.
|
| |
Microbiol Mol Biol Rev,
70,
939.
|
 |
|
|
|
|
 |
T.Deva,
E.N.Baker,
C.J.Squire,
and
C.A.Smith
(2006).
Structure of Escherichia coli UDP-N-acetylmuramoyl:L-alanine ligase (MurC).
|
| |
Acta Crystallogr D Biol Crystallogr,
62,
1466-1474.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
K.L.Longenecker,
G.F.Stamper,
P.J.Hajduk,
E.H.Fry,
C.G.Jakob,
J.E.Harlan,
R.Edalji,
D.M.Bartley,
K.A.Walter,
L.R.Solomon,
T.F.Holzman,
Y.G.Gu,
C.G.Lerner,
B.A.Beutel,
and
V.S.Stoll
(2005).
Structure of MurF from Streptococcus pneumoniae co-crystallized with a small molecule inhibitor exhibits interdomain closure.
|
| |
Protein Sci,
14,
3039-3047.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
K.M.Mayer,
S.R.McCorkle,
and
J.Shanklin
(2005).
Linking enzyme sequence to function using Conserved Property Difference Locator to identify and annotate positions likely to control specific functionality.
|
| |
BMC Bioinformatics,
6,
284.
|
 |
|
|
|
|
 |
A.M.Blewett,
A.J.Lloyd,
A.Echalier,
V.Fülöp,
C.G.Dowson,
T.D.Bugg,
and
D.I.Roper
(2004).
Expression, purification, crystallization and preliminary characterization of uridine 5'-diphospho-N-acetylmuramoyl L-alanyl-D-glutamate:lysine ligase (MurE) from Streptococcus pneumoniae 110K/70.
|
| |
Acta Crystallogr D Biol Crystallogr,
60,
359-361.
|
 |
|
|
|
|
 |
S.Biarrotte-Sorin,
A.P.Maillard,
J.Delettré,
W.Sougakoff,
M.Arthur,
and
C.Mayer
(2004).
Crystal structures of Weissella viridescens FemX and its complex with UDP-MurNAc-pentapeptide: insights into FemABX family substrates recognition.
|
| |
Structure,
12,
257-267.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.El Zoeiby,
F.Sanschagrin,
and
R.C.Levesque
(2003).
Structure and function of the Mur enzymes: development of novel inhibitors.
|
| |
Mol Microbiol,
47,
1.
|
 |
|
|
|
|
 |
C.D.Mol,
A.Brooun,
D.R.Dougan,
M.T.Hilgers,
L.W.Tari,
R.A.Wijnands,
M.W.Knuth,
D.E.McRee,
and
R.V.Swanson
(2003).
Crystal structures of active fully assembled substrate- and product-bound complexes of UDP-N-acetylmuramic acid:L-alanine ligase (MurC) from Haemophilus influenzae.
|
| |
J Bacteriol,
185,
4152-4162.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.Nessler,
S.Fieulaine,
S.Poncet,
A.Galinier,
J.Deutscher,
and
J.Janin
(2003).
HPr kinase/phosphorylase, the sensor enzyme of catabolite repression in Gram-positive bacteria: structural aspects of the enzyme and the complex with its protein substrate.
|
| |
J Bacteriol,
185,
4003-4010.
|
 |
|
|
|
|
 |
T.C.Terwilliger
(2003).
Improving macromolecular atomic models at moderate resolution by automated iterative model building, statistical density modification and refinement.
|
| |
Acta Crystallogr D Biol Crystallogr,
59,
1174-1182.
|
 |
|
|
|
|
 |
T.C.Terwilliger
(2003).
Statistical density modification using local pattern matching.
|
| |
Acta Crystallogr D Biol Crystallogr,
59,
1688-1701.
|
 |
|
|
|
|
 |
T.Deva,
K.D.Pryor,
B.Leiting,
E.N.Baker,
and
C.A.Smith
(2003).
Purification, crystallization and preliminary X-ray analysis of Escherichia coli UDP-N-acetylmuramoyl:L-alanine ligase (MurC).
|
| |
Acta Crystallogr D Biol Crystallogr,
59,
1510-1513.
|
 |
|
|
|
|
 |
D.W.Green
(2002).
The bacterial cell wall as a source of antibacterial targets.
|
| |
Expert Opin Ther Targets,
6,
1.
|
 |
|
|
|
|
 |
I.Chopra,
L.Hesse,
and
A.J.O'Neill
(2002).
Exploiting current understanding of antibiotic action for discovery of new drugs.
|
| |
J Appl Microbiol,
92,
4S.
|
 |
|
|
|
|
 |
S.Dementin,
A.Bouhss,
G.Auger,
C.Parquet,
D.Mengin-Lecreulx,
O.Dideberg,
J.van Heijenoort,
and
D.Blanot
(2001).
Evidence of a functional requirement for a carbamoylated lysine residue in MurD, MurE and MurF synthetases as established by chemical rescue experiments.
|
| |
Eur J Biochem,
268,
5800-5807.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
code is
shown on the right.
|
');
}
}
 |