spacer
spacer

PDBsum entry 1e5s

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
Oxygenase PDB id
1e5s

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
260 a.a. *
243 a.a. *
Ligands
SO4
Metals
FE2 ×2
Waters ×216
* Residue conservation analysis
PDB id:
1e5s
Name: Oxygenase
Title: Proline 3-hydroxylase (type ii) - iron form
Structure: Proline oxidase. Chain: a, b
Source: Streptomyces sp.. Organism_taxid: 60871. Strain: th1
Biol. unit: Homo-Dimer (from PDB file)
Resolution:
2.40Å     R-factor:   0.216     R-free:   0.271
Authors: I.J.Clifton,L.C.Hsueh,J.E.Baldwin,C.J.Schofield,K.Harlos
Key ref:
I.J.Clifton et al. (2001). Structure of proline 3-hydroxylase. Evolution of the family of 2-oxoglutarate dependent oxygenases. Eur J Biochem, 268, 6625-6636. PubMed id: 11737217 DOI: 10.1046/j.0014-2956.2001.02617.x
Date:
28-Jul-00     Release date:   26-Jul-01    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
O09345  (P3H2_STRSQ) -  L-proline cis-3-hydroxylase 2 from Streptomyces sp
Seq:
Struc:
290 a.a.
260 a.a.
Protein chain
Pfam   ArchSchema ?
O09345  (P3H2_STRSQ) -  L-proline cis-3-hydroxylase 2 from Streptomyces sp
Seq:
Struc:
290 a.a.
243 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: Chains A, B: E.C.1.14.11.28  - proline 3-hydroxylase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: L-proline + 2-oxoglutarate + O2 = cis-3-hydroxy-L-proline + succinate + CO2
L-proline
+ 2-oxoglutarate
+ O2
= cis-3-hydroxy-L-proline
+ succinate
+ CO2
      Cofactor: Fe(2+)
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1046/j.0014-2956.2001.02617.x Eur J Biochem 268:6625-6636 (2001)
PubMed id: 11737217  
 
 
Structure of proline 3-hydroxylase. Evolution of the family of 2-oxoglutarate dependent oxygenases.
I.J.Clifton, L.C.Hsueh, J.E.Baldwin, K.Harlos, C.J.Schofield.
 
  ABSTRACT  
 
Iron (II)/2-oxoglutarate (2-OG)-dependent oxygenases catalyse oxidative reactions in a range of metabolic processes including the hydroxylation of proline and lysine residues during the post-translational modification of collagen. 2-OG oxygenases commonly require ascorbate for full activity. In the vitamin C deficient disease, scurvy, reduced activity of 2-OG oxygenases results in impaired formation of collagen. Here we report the crystal structure of bacterial proline 3-hydroxylase from Streptomyces sp., an enzyme which hydroxylates proline at position 3, the first of a 2-OG oxygenase catalysing oxidation of a free alpha-amino acid. Structures were obtained for the enzyme in the absence of iron (to 2.3A resolution, R=20.2%, Rfree=25.3%) and that complexed to iron (II) (to 2.4A resolution, R=19.8%, Rfree=22.6%). The structure contains conserved motifs present in other 2-OG oxygenases including a 'jelly roll' beta strand core and residues binding iron and 2-oxoglutarate, consistent with divergent evolution within the extended family. The structure differs significantly from many other 2-OG oxygenases in possessing a discrete C-terminal helical domain. Analysis of the structure suggests a model for proline binding and a mechanism for uncoupling of proline and 2-OG turnover.
 
  Selected figure(s)  
 
Figure 1.
Fig. 1 Reaction summary. Reactions catalysed by mononuclear nonhaem iron oxygenases (A) proline 3-hydroxylase (P-3-H) (B) proline-4-hydroxylase (C) one of the reactions catalysed by deacetoxycephalosporin C synthase (DAOCS) (D) isopenicillin N synthase (IPNS) (E) clavaminic acid synthase (CAS) (F) p-hydroxyphenylpyruvate dioxygenase (HPPD).
Figure 4.
Fig. 4 View of the P-3-H active site. The active site of the enzyme (molecule A) cocrystallized with iron(II) sulfate. The -barrel core is in green, the iron binding ligands in purple, the iron in orange and the N-terminal region and C-terminal domain in magenta. The ferrous iron is ligated by the side chains of His107, Asp109 and His158. Note: (a) Arg168, Ser170 and His135 which are probably involved in binding 2-OG; (b) Arg95, Arg97, Arg122 and His43 which may bind the proline carboxylate; (c) the disordered loop (in orange) containing six sequential acidic residues, which may bind the imino group of proline.
 
  The above figures are reprinted by permission from the Federation of European Biochemical Societies: Eur J Biochem (2001, 268, 6625-6636) copyright 2001.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20199358 K.L.Gorres, and R.T.Raines (2010).
Prolyl 4-hydroxylase.
  Crit Rev Biochem Mol Biol, 45, 106-124.  
20059399 L.M.Blank, B.E.Ebert, K.Buehler, and B.Bühler (2010).
Redox biocatalysis and metabolism: molecular mechanisms and metabolic network analysis.
  Antioxid Redox Signal, 13, 349-394.  
19947658 M.A.Culpepper, E.E.Scott, and J.Limburg (2010).
Crystal structure of prolyl 4-hydroxylase from Bacillus anthracis.
  Biochemistry, 49, 124-133.
PDB code: 3itq
  19411852 L.M.Iyer, M.Tahiliani, A.Rao, and L.Aravind (2009).
Prediction of novel families of enzymes involved in oxidative and other complex modifications of bases in nucleic acids.
  Cell Cycle, 8, 1698-1710.  
19217895 M.P.Dunn, and A.Di Gregorio (2009).
The evolutionarily conserved leprecan gene: its regulation by Brachyury and its role in the developing Ciona notochord.
  Dev Biol, 328, 561-574.  
19604478 R.Chowdhury, M.A.McDonough, J.Mecinović, C.Loenarz, E.Flashman, K.S.Hewitson, C.Domene, and C.J.Schofield (2009).
Structural basis for binding of hypoxia-inducible factor to the oxygen-sensing prolyl hydroxylases.
  Structure, 17, 981-989.
PDB codes: 3hqr 3hqu
18391407 B.Lohkamp, and D.Dobritzsch (2008).
A mixture of fortunes: the curious determination of the structure of Escherichia coli BL21 Gab protein.
  Acta Crystallogr D Biol Crystallogr, 64, 407-415.
PDB code: 2r6s
18277980 E.G.Kovaleva, and J.D.Lipscomb (2008).
Versatility of biological non-heme Fe(II) centers in oxygen activation reactions.
  Nat Chem Biol, 4, 186-193.  
17940281 M.K.Koski, R.Hieta, C.Böllner, K.I.Kivirikko, J.Myllyharju, and R.K.Wierenga (2007).
The active site of an algal prolyl 4-hydroxylase has a large structural plasticity.
  J Biol Chem, 282, 37112-37123.
PDB codes: 2jig 2jij 2v4a
17431691 V.Purpero, and G.R.Moran (2007).
The diverse and pervasive chemistries of the alpha-keto acid dependent enzymes.
  J Biol Inorg Chem, 12, 587-601.  
16444759 A.Daruzzaman, I.J.Clifton, R.M.Adlington, J.E.Baldwin, and P.J.Rutledge (2006).
Unexpected oxidation of a depsipeptide substrate analogue in crystalline isopenicillin N synthase.
  Chembiochem, 7, 351-358.
PDB codes: 1w3v 1w3x
16320009 K.D.Koehntop, S.Marimanikkuppam, M.J.Ryle, R.P.Hausinger, and L.Que (2006).
Self-hydroxylation of taurine/alpha-ketoglutarate dioxygenase: evidence for more than one oxygen activation mechanism.
  J Biol Inorg Chem, 11, 63-72.  
16782814 M.A.McDonough, V.Li, E.Flashman, R.Chowdhury, C.Mohr, B.M.Liénard, J.Zondlo, N.J.Oldham, I.J.Clifton, J.Lewis, L.A.McNeill, R.J.Kurzeja, K.S.Hewitson, E.Yang, S.Jordan, R.S.Syed, and C.J.Schofield (2006).
Cellular oxygen sensing: Crystal structure of hypoxia-inducible factor prolyl hydroxylase (PHD2).
  Proc Natl Acad Sci U S A, 103, 9814-9819.
PDB codes: 2g19 2g1m
16857720 R.D.Guzy, and P.T.Schumacker (2006).
Oxygen sensing by mitochondria at complex III: the paradox of increased reactive oxygen species during hypoxia.
  Exp Physiol, 91, 807-819.  
16731970 T.A.Müller, M.I.Zavodszky, M.Feig, L.A.Kuhn, and R.P.Hausinger (2006).
Structural basis for the enantiospecificities of R- and S-specific phenoxypropionate/alpha-ketoglutarate dioxygenases.
  Protein Sci, 15, 1356-1368.  
16880998 L.A.McNeill, E.Flashman, M.R.Buck, K.S.Hewitson, I.J.Clifton, G.Jeschke, T.D.Claridge, D.Ehrismann, N.J.Oldham, and C.J.Schofield (2005).
Hypoxia-inducible factor prolyl hydroxylase 2 has a high affinity for ferrous iron and 2-oxoglutarate.
  Mol Biosyst, 1, 321-324.  
16186124 M.A.McDonough, K.L.Kavanagh, D.Butler, T.Searls, U.Oppermann, and C.J.Schofield (2005).
Structure of human phytanoyl-CoA 2-hydroxylase identifies molecular mechanisms of Refsum disease.
  J Biol Chem, 280, 41101-41110.
PDB code: 2a1x
15716432 T.Hansen, B.Schlichting, M.Felgendreher, and P.Schönheit (2005).
Cupin-type phosphoglucose isomerases (Cupin-PGIs) constitute a novel metal-dependent PGI family representing a convergent line of PGI evolution.
  J Bacteriol, 187, 1621-1631.  
15466573 J.S.Hsu, Y.B.Yang, C.H.Deng, C.L.Wei, S.H.Liaw, and Y.C.Tsai (2004).
Family shuffling of expandase genes to enhance substrate specificity for penicillin G.
  Appl Environ Microbiol, 70, 6257-6263.  
14718929 K.Valegård, A.C.Terwisscha van Scheltinga, A.Dubus, G.Ranghino, L.M.Oster, J.Hajdu, and I.Andersson (2004).
The structural basis of cephalosporin formation in a mononuclear ferrous enzyme.
  Nat Struct Mol Biol, 11, 95.
PDB codes: 1unb 1uo9 1uob 1uof 1uog
12482756 C.Lee, S.J.Kim, D.G.Jeong, S.M.Lee, and S.E.Ryu (2003).
Structure of human FIH-1 reveals a unique active site pocket and interaction sites for HIF-1 and von Hippel-Lindau.
  J Biol Chem, 278, 7558-7563.
PDB code: 1iz3
12611886 I.J.Clifton, L.X.Doan, M.C.Sleeman, M.Topf, H.Suzuki, R.C.Wilmouth, and C.J.Schofield (2003).
Crystal structure of carbapenem synthase (CarC).
  J Biol Chem, 278, 20843-20850.
PDB codes: 1nx4 1nx8 1nxa
12814641 M.Mukherji, C.J.Schofield, A.S.Wierzbicki, G.A.Jansen, R.J.Wanders, and M.D.Lloyd (2003).
The chemical biology of branched-chain lipid metabolism.
  Prog Lipid Res, 42, 359-376.  
12432100 C.E.Dann, R.K.Bruick, and J.Deisenhofer (2002).
Structure of factor-inhibiting hypoxia-inducible factor 1: An asparaginyl hydroxylase involved in the hypoxic response pathway.
  Proc Natl Acad Sci U S A, 99, 15351-15356.
PDB codes: 1mze 1mzf
12080085 D.Lando, D.J.Peet, J.J.Gorman, D.A.Whelan, M.L.Whitelaw, and R.K.Bruick (2002).
FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor.
  Genes Dev, 16, 1466-1471.  
12146944 J.C.Dunning Hotopp, and R.P.Hausinger (2002).
Probing the 2,4-dichlorophenoxyacetate/alpha-ketoglutarate dioxygenase substrate-binding site by site-directed mutagenesis and mechanism-based inactivation.
  Biochemistry, 41, 9787-9794.  
12004076 J.H.Min, H.Yang, M.Ivan, F.Gertler, W.G.Kaelin, and N.P.Pavletich (2002).
Structure of an HIF-1alpha -pVHL complex: hydroxyproline recognition in signaling.
  Science, 296, 1886-1889.
PDB code: 1lm8
12039004 M.J.Ryle, and R.P.Hausinger (2002).
Non-heme iron oxygenases.
  Curr Opin Chem Biol, 6, 193-201.  
12056897 R.Anand, P.C.Dorrestein, C.Kinsland, T.P.Begley, and S.E.Ealick (2002).
Structure of oxalate decarboxylase from Bacillus subtilis at 1.75 A resolution.
  Biochemistry, 41, 7659-7669.
PDB codes: 1j58 1l3j
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer