7nvg Citations

Molecular structure of the intact bacterial flagellar basal body.

Nat Microbiol 6 712-721 (2021)
Related entries: 7bgl, 7bhq, 7bin, 7bj2, 7bk0

Cited: 30 times
EuropePMC logo PMID: 33931760

Abstract

The bacterial flagellum is a macromolecular protein complex that enables motility in many species. Bacterial flagella self-assemble a strong, multicomponent drive shaft that couples rotation in the inner membrane to the micrometre-long flagellar filament that powers bacterial swimming in viscous fluids1-3. Here, we present structures of the intact Salmonella flagellar basal body4, encompassing the inner membrane rotor, drive shaft and outer-membrane bushing, solved using cryo-electron microscopy to resolutions of 2.2-3.7 Å. The structures reveal molecular details of how 173 protein molecules of 13 different types assemble into a complex spanning two membranes and a cell wall. The helical drive shaft at one end is intricately interwoven with the rotor component with both the export gate complex and the proximal rod forming interactions with the MS-ring. At the other end, the drive shaft distal rod passes through the LP-ring bushing complex, which functions as a molecular bearing anchored in the outer membrane through interactions with the lipopolysaccharide. The in situ structure of a protein complex capping the drive shaft provides molecular insights into the assembly process of this molecular machine.

Articles - 7nvg mentioned but not cited (2)

  1. Molecular structure of the intact bacterial flagellar basal body. Johnson S, Furlong EJ, Deme JC, Nord AL, Caesar JJE, Chevance FFV, Berry RM, Hughes KT, Lea SM. Nat Microbiol 6 712-721 (2021)
  2. Genetic Analysis of the Salmonella FliE Protein That Forms the Base of the Flagellar Axial Structure. Hendriksen JJ, Lee HJ, Bradshaw AJ, Namba K, Chevance FFV, Minamino T, Hughes KT. mBio 12 e0239221 (2021)


Reviews citing this publication (7)

  1. Bacterial motility: machinery and mechanisms. Wadhwa N, Berg HC. Nat Rev Microbiol 20 161-173 (2022)
  2. Insight Into Distinct Functional Roles of the Flagellar ATPase Complex for Flagellar Assembly in Salmonella. Minamino T, Kinoshita M, Namba K. Front Microbiol 13 864178 (2022)
  3. A new class of biological ion-driven rotary molecular motors with 5:2 symmetry. Rieu M, Krutyholowa R, Taylor NMI, Berry RM. Front Microbiol 13 948383 (2022)
  4. Dynamic Hybrid Flagellar Motors-Fuel Switch and More. Thormann KM. Front Microbiol 13 863804 (2022)
  5. Force-Generation by the Trans-Envelope Tol-Pal System. Webby MN, Williams-Jones DP, Press C, Kleanthous C. Front Microbiol 13 852176 (2022)
  6. Structure and Assembly of the Bacterial Flagellum. Al-Otaibi NS, Bergeron JRC. Subcell Biochem 99 395-420 (2022)
  7. Swimming Using a Unidirectionally Rotating, Single Stopping Flagellum in the Alpha Proteobacterium Rhodobacter sphaeroides. Armitage JP. Front Microbiol 13 893524 (2022)

Articles citing this publication (21)

  1. Critical assessment of methods of protein structure prediction (CASP)-Round XIV. Kryshtafovych A, Schwede T, Topf M, Fidelis K, Moult J. Proteins 89 1607-1617 (2021)
  2. Novel transient cytoplasmic rings stabilize assembling bacterial flagellar motors. Kaplan M, Oikonomou CM, Wood CR, Chreifi G, Subramanian P, Ortega DR, Chang YW, Beeby M, Shaffer CL, Jensen GJ. EMBO J 41 e109523 (2022)
  3. Improved AlphaFold modeling with implicit experimental information. Terwilliger TC, Poon BK, Afonine PV, Schlicksup CJ, Croll TI, Millán C, Richardson JS, Read RJ, Adams PD. Nat Methods 19 1376-1382 (2022)
  4. FliL and its paralog MotF have distinct roles in the stator activity of the Sinorhizobium meliloti flagellar motor. Sobe RC, Gilbert C, Vo L, Alexandre G, Scharf BE. Mol Microbiol 118 223-243 (2022)
  5. A multi-state dynamic process confers mechano-adaptation to a biological nanomachine. Wadhwa N, Sassi A, Berg HC, Tu Y. Nat Commun 13 5327 (2022)
  6. An unbroken network of interactions connecting flagellin domains is required for motility in viscous environments. Nedeljković M, Kreutzberger MAB, Postel S, Bonsor D, Xing Y, Jacob N, Schuler WJ, Egelman EH, Sundberg EJ. PLoS Pathog 19 e1010979 (2023)
  7. Cryo-EM targets in CASP14. Cragnolini T, Kryshtafovych A, Topf M. Proteins 89 1949-1958 (2021)
  8. Targeting early proximal-rod component substrate FlgB to FlhB for flagellar-type III secretion in Salmonella. Qu D, Jiang M, Duffin C, Hughes KT, Chevance FFV. PLoS Genet 18 e1010313 (2022)
  9. Historical Article 2021 in review. Nat Microbiol 6 1467-1468 (2021)
  10. Activation mechanism of the bacterial flagellar dual-fuel protein export engine. Minamino T, Kinoshita M, Morimoto YV, Namba K. Biophys Physicobiol 19 e190046 (2022)
  11. Control of the flagellation pattern in Helicobacter pylori by FlhF and FlhG. Gibson KH, Botting JM, Al-Otaibi N, Maitre K, Bergeron J, Starai VJ, Hoover TR. J Bacteriol 205 e0011023 (2023)
  12. CryoEM structure of a post-assembly MS-ring reveals plasticity in stoichiometry and conformation. Singh PK, Cecchini G, Nakagawa T, Iverson TM. PLoS One 18 e0285343 (2023)
  13. Dynamic stiffening of the flagellar hook. Nord AL, Biquet-Bisquert A, Abkarian M, Pigaglio T, Seduk F, Magalon A, Pedaci F. Nat Commun 13 2925 (2022)
  14. Flagellar polymorphism-dependent bacterial swimming motility in a structured environment. Kinosita Y, Sowa Y. Biophys Physicobiol 20 e200024 (2023)
  15. Ion selectivity and rotor coupling of the Vibrio flagellar sodium-driven stator unit. Hu H, Popp PF, Santiveri M, Roa-Eguiara A, Yan Y, Martin FJO, Liu Z, Wadhwa N, Wang Y, Erhardt M, Taylor NMI. Nat Commun 14 4411 (2023)
  16. Microbiome-based enrichment pattern mining has enabled a deeper understanding of the biome-species-function relationship. Yang P, Zhu X, Ning K. Commun Biol 6 391 (2023)
  17. Oligomerization of the FliF Domains Suggests a Coordinated Assembly of the Bacterial Flagellum MS Ring. Mariano G, Faba-Rodriguez R, Bui S, Zhao W, Ross J, Tzokov SB, Bergeron JRC. Front Microbiol 12 781960 (2021)
  18. Purification of the Transmembrane Polypeptide Channel Complex of the Salmonella Flagellar Type III Secretion System. Kinoshita M, Namba K, Minamino T. Methods Mol Biol 2646 3-15 (2023)
  19. Structural and Functional Analysis of SsaV Cytoplasmic Domain and Variable Linker States in the Context of the InvA-SsaV Chimeric Protein. Xu J, Wang J, Liu A, Zhang Y, Gao X. Microbiol Spectr 9 e0125121 (2021)
  20. The common origin and degenerative evolution of flagella in Actinobacteria. Zhu S, Sun X, Li Y, Feng X, Gao B. mBio e0252623 (2023)
  21. Viscosity-dependent determinants of Campylobacter jejuni impacting the velocity of flagellar motility. Ribardo DA, Johnson JJ, Hendrixson DR. mBio 15 e0254423 (2024)