7icn Citations

A structural basis for metal ion mutagenicity and nucleotide selectivity in human DNA polymerase beta.

Biochemistry 35 12762-77 (1996)

Abstract

When crystals of human DNA polymerase beta (pol beta) complexed with DNA [Pelletier, H., Sawaya, M. R., Wolfle, W., Wilson, S. H., & Kraut, J. (1996) Biochemistry 35, 12742-12761] are soaked in the presence of dATP and Mn2+, X-ray structural analysis shows that nucleotidyl transfer to the primer 3'-OH takes place directly in the crystals, even though the DNA is blunt-ended at the active site. Under similar crystal-soaking conditions, there is no evidence for a reaction when Mn2+ is replaced by Mg2+, which is thought to be the divalent metal ion utilized by most polymerases in vivo. These results suggest that one way Mn2+ may manifest its mutagenic effect on polymerases is by promoting greater reactivity than Mg2+ at the catalytic site, thereby allowing the nucleotidyl transfer reaction to take place with little or no regard to instructions from a template. Non-template-directed nucleotidyl transfer is also observed when pol beta-DNA cocrystals are soaked in the presence of dATP and Zn2+, but the reaction products differ in that the sugar moiety of the incorporated nucleotide appears distorted or otherwise cleaved, in agreement with reports that Zn2+ may act as a polymerase inhibitor rather than as a mutagen [Sirover, M. A., & Loeb, L. A. (1976) Science 194, 1434-1436]. Although no reaction is observed when crystals are soaked in the presence of dATP and other metal ions such as Ca2+, Co2+, Cr3+, or Ni2+, X-ray structural analyses show that these metal ions coordinate the triphosphate moiety of the nucleotide in a manner that differs from that observed with Mg2+. In addition, all metal ions tested, with the exception of Mg2+, promote a change in the side-chain position of aspartic acid 192, which is one of three highly conserved active-site carboxylate residues. Soaking experiments with nucleotides other than dATP (namely, dCTP, dGTP, dTTP, ATP, ddATP, ddCTP, AZT-TP, and dATP alpha S) reveal a non-base-specific binding site on pol beta for the triphosphate and sugar moieties of a nucleotide, suggesting a possible mechanism for nucleotide selectivity whereby triphosphate-sugar binding precedes a check for correct base pairing with the template.

Articles - 7icn mentioned but not cited (1)

  1. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins. Chakraborty S, Rendón-Ramírez A, Ásgeirsson B, Dutta M, Ghosh AS, Oda M, Venkatramani R, Rao BJ, Dandekar AM, Goñi FM. F1000Res 2 286 (2013)


Reviews citing this publication (16)

  1. Structural and functional insights provided by crystal structures of DNA polymerases and their substrate complexes. Brautigam CA, Steitz TA. Curr Opin Struct Biol 8 54-63 (1998)
  2. Nucleoside 5'-triphosphates: self-association, acid-base, and metal ion-binding properties in solution. Sigel H, Griesser R. Chem Soc Rev 34 875-900 (2005)
  3. The kinetic and chemical mechanism of high-fidelity DNA polymerases. Johnson KA. Biochim Biophys Acta 1804 1041-1048 (2010)
  4. Structure and function of argonaute proteins. Hall TM. Structure 13 1403-1408 (2005)
  5. Base excision repair enzyme family portrait: integrating the structure and chemistry of an entire DNA repair pathway. Parikh SS, Mol CD, Tainer JA. Structure 5 1543-1550 (1997)
  6. Mechanism of genome transcription in segmented dsRNA viruses. Lawton JA, Estes MK, Prasad BV. Adv Virus Res 55 185-229 (2000)
  7. DNA polymerase mu, a candidate hypermutase? Ruiz JF, Domínguez O, Laín de Lera T, Garcia-Díaz M, Bernad A, Blanco L. Philos Trans R Soc Lond B Biol Sci 356 99-109 (2001)
  8. Different Divalent Cations Alter the Kinetics and Fidelity of DNA Polymerases. Vashishtha AK, Wang J, Konigsberg WH. J Biol Chem 291 20869-20875 (2016)
  9. PrimPol-Prime Time to Reprime. Guilliam TA, Doherty AJ. Genes (Basel) 8 E20 (2017)
  10. Base excision repair and design of small molecule inhibitors of human DNA polymerase β. Wilson SH, Beard WA, Shock DD, Batra VK, Cavanaugh NA, Prasad R, Hou EW, Liu Y, Asagoshi K, Horton JK, Stefanick DF, Kedar PS, Carrozza MJ, Masaoka A, Heacock ML. Cell Mol Life Sci 67 3633-3647 (2010)
  11. HIV-1 integrase: the next target for AIDS therapy? d'Angelo J, Mouscadet JF, Desmaële D, Zouhiri F, Leh H. Pathol Biol (Paris) 49 237-246 (2001)
  12. DNA polymerases β and λ and their roles in cell. Belousova EA, Lavrik OI. DNA Repair (Amst) 29 112-126 (2015)
  13. New structural snapshots provide molecular insights into the mechanism of high fidelity DNA synthesis. Freudenthal BD, Beard WA, Wilson SH. DNA Repair (Amst) 32 3-9 (2015)
  14. Comparison of the π-stacking properties of purine versus pyrimidine residues. Some generalizations regarding selectivity. Sigel A, Operschall BP, Sigel H. J Biol Inorg Chem 19 691-703 (2014)
  15. Beyond history and "on a roll": The list of the most well-studied human protein structures and overall trends in the protein data bank. Li ZL, Buck M. Protein Sci 30 745-760 (2021)
  16. For the Better or for the Worse? The Effect of Manganese on the Activity of Eukaryotic DNA Polymerases. Balint E, Unk I. Int J Mol Sci 25 363 (2023)

Articles citing this publication (70)

  1. DNA polymerase mu (Pol mu), homologous to TdT, could act as a DNA mutator in eukaryotic cells. Domínguez O, Ruiz JF, Laín de Lera T, García-Díaz M, González MA, Kirchhoff T, Martínez-A C, Bernad A, Blanco L. EMBO J 19 1731-1742 (2000)
  2. Efficient RNA polyuridylation by noncanonical poly(A) polymerases. Rissland OS, Mikulasova A, Norbury CJ. Mol Cell Biol 27 3612-3624 (2007)
  3. Cadmium induces conformational modifications of wild-type p53 and suppresses p53 response to DNA damage in cultured cells. Méplan C, Mann K, Hainaut P. J Biol Chem 274 31663-31670 (1999)
  4. Crystal structures of a template-independent DNA polymerase: murine terminal deoxynucleotidyltransferase. Delarue M, Boulé JB, Lescar J, Expert-Bezançon N, Jourdan N, Sukumar N, Rougeon F, Papanicolaou C. EMBO J 21 427-439 (2002)
  5. Structural principles for the inhibition of the 3'-5' exonuclease activity of Escherichia coli DNA polymerase I by phosphorothioates. Brautigam CA, Steitz TA. J Mol Biol 277 363-377 (1998)
  6. Crystal structures of Bacillus stearothermophilus adenylate kinase with bound Ap5A, Mg2+ Ap5A, and Mn2+ Ap5A reveal an intermediate lid position and six coordinate octahedral geometry for bound Mg2+ and Mn2+. Berry MB, Phillips GN. Proteins 32 276-288 (1998)
  7. Poliovirus RNA-dependent RNA polymerase (3Dpol): pre-steady-state kinetic analysis of ribonucleotide incorporation in the presence of Mn2+. Arnold JJ, Gohara DW, Cameron CE. Biochemistry 43 5138-5148 (2004)
  8. The hepatitis B virus ribonuclease H is sensitive to inhibitors of the human immunodeficiency virus ribonuclease H and integrase enzymes. Tavis JE, Cheng X, Hu Y, Totten M, Cao F, Michailidis E, Aurora R, Meyers MJ, Jacobsen EJ, Parniak MA, Sarafianos SG. PLoS Pathog 9 e1003125 (2013)
  9. Molecular dissection of the domain architecture and catalytic activities of human PrimPol. Keen BA, Jozwiakowski SK, Bailey LJ, Bianchi J, Doherty AJ. Nucleic Acids Res 42 5830-5845 (2014)
  10. Characterization of an African swine fever virus 20-kDa DNA polymerase involved in DNA repair. Oliveros M, Yáñez RJ, Salas ML, Salas J, Viñuela E, Blanco L. J Biol Chem 272 30899-30910 (1997)
  11. Structural insights into DNA polymerase beta deterrents for misincorporation support an induced-fit mechanism for fidelity. Krahn JM, Beard WA, Wilson SH. Structure 12 1823-1832 (2004)
  12. The active site of Serratia endonuclease contains a conserved magnesium-water cluster. Miller MD, Cai J, Krause KL. J Mol Biol 288 975-987 (1999)
  13. Computer simulations of protein functions: searching for the molecular origin of the replication fidelity of DNA polymerases. Florián J, Goodman MF, Warshel A. Proc Natl Acad Sci U S A 102 6819-6824 (2005)
  14. Human DNA polymerase lambda possesses terminal deoxyribonucleotidyl transferase activity and can elongate RNA primers: implications for novel functions. Ramadan K, Maga G, Shevelev IV, Villani G, Blanco L, Hübscher U. J Mol Biol 328 63-72 (2003)
  15. Polymerase beta simulations suggest that Arg258 rotation is a slow step rather than large subdomain motions per se. Yang L, Beard WA, Wilson SH, Broyde S, Schlick T. J Mol Biol 317 651-671 (2002)
  16. Oxidation state of the XRCC1 N-terminal domain regulates DNA polymerase beta binding affinity. Cuneo MJ, London RE. Proc Natl Acad Sci U S A 107 6805-6810 (2010)
  17. DNA polymerase beta substrate specificity: side chain modulation of the "A-rule". Beard WA, Shock DD, Batra VK, Pedersen LC, Wilson SH. J Biol Chem 284 31680-31689 (2009)
  18. Ribonucleotides and manganese ions improve non-homologous end joining by human Polμ. Martin MJ, Martin MJ, Garcia-Ortiz MV, Esteban V, Blanco L. Nucleic Acids Res 41 2428-2436 (2013)
  19. Mechanism of HIV reverse transcriptase inhibition by zinc: formation of a highly stable enzyme-(primer-template) complex with profoundly diminished catalytic activity. Fenstermacher KJ, DeStefano JJ. J Biol Chem 286 40433-40442 (2011)
  20. Telomerase can act as a template- and RNA-independent terminal transferase. Lue NF, Bosoy D, Moriarty TJ, Autexier C, Altman B, Leng S. Proc Natl Acad Sci U S A 102 9778-9783 (2005)
  21. Viewing Human DNA Polymerase β Faithfully and Unfaithfully Bypass an Oxidative Lesion by Time-Dependent Crystallography. Vyas R, Reed AJ, Tokarsky EJ, Suo Z. J Am Chem Soc 137 5225-5230 (2015)
  22. The inhibitory effect of novel triterpenoid compounds, fomitellic acids, on DNA polymerase beta. Mizushina Y, Tanaka N, Kitamura A, Tamai K, Ikeda M, Takemura M, Sugawara F, Arai T, Matsukage A, Yoshida S, Sakaguchi K. Biochem J 330 ( Pt 3) 1325-1332 (1998)
  23. Structural insights into complete metal ion coordination from ternary complexes of B family RB69 DNA polymerase. Xia S, Wang M, Blaha G, Konigsberg WH, Wang J. Biochemistry 50 9114-9124 (2011)
  24. Distinct roles of the active-site Mg2+ ligands, Asp882 and Asp705, of DNA polymerase I (Klenow fragment) during the prechemistry conformational transitions. Bermek O, Grindley ND, Joyce CM. J Biol Chem 286 3755-3766 (2011)
  25. Highly organized but pliant active site of DNA polymerase beta: compensatory mechanisms in mutant enzymes revealed by dynamics simulations and energy analyses. Yang L, Beard WA, Wilson SH, Broyde S, Schlick T. Biophys J 86 3392-3408 (2004)
  26. Platinum nanoparticles induce damage to DNA and inhibit DNA replication. Nejdl L, Kudr J, Moulick A, Hegerova D, Ruttkay-Nedecky B, Gumulec J, Cihalova K, Smerkova K, Dostalova S, Krizkova S, Novotna M, Kopel P, Adam V. PLoS One 12 e0180798 (2017)
  27. Metal-induced DNA translocation leads to DNA polymerase conformational activation. Kirby TW, DeRose EF, Cavanaugh NA, Beard WA, Shock DD, Mueller GA, Wilson SH, London RE. Nucleic Acids Res 40 2974-2983 (2012)
  28. Transition between different binding modes in rat DNA polymerase beta-ssDNA complexes. Jezewska MJ, Rajendran S, Bujalowski W. J Mol Biol 284 1113-1131 (1998)
  29. Conferring a template-dependent polymerase activity to terminal deoxynucleotidyltransferase by mutations in the Loop1 region. Romain F, Barbosa I, Gouge J, Rougeon F, Delarue M. Nucleic Acids Res 37 4642-4656 (2009)
  30. Mutagenesis of human DNA polymerase lambda: essential roles of Tyr505 and Phe506 for both DNA polymerase and terminal transferase activities. Shevelev I, Blanca G, Villani G, Ramadan K, Spadari S, Hübscher U, Maga G. Nucleic Acids Res 31 6916-6925 (2003)
  31. Effect of manganese on in vitro replication of damaged DNA catalyzed by the herpes simplex virus type-1 DNA polymerase. Villani G, Tanguy Le Gac N, Wasungu L, Burnouf D, Fuchs RP, Boehmer PE. Nucleic Acids Res 30 3323-3332 (2002)
  32. Evading the proofreading machinery of a replicative DNA polymerase: induction of a mutation by an environmental carcinogen. Perlow RA, Broyde S. J Mol Biol 309 519-536 (2001)
  33. Mechanisms of metal ion action in Tn10 transposition. Allingham JS, Haniford DB. J Mol Biol 319 53-65 (2002)
  34. Characterization of the active site of DNA polymerase beta by molecular dynamics and quantum chemical calculation. Rittenhouse RC, Apostoluk WK, Miller JH, Straatsma TP. Proteins 53 667-682 (2003)
  35. DNA polymerase X from African swine fever virus: quantitative analysis of the enzyme-ssDNA interactions and the functional structure of the complex. Jezewska MJ, Marcinowicz A, Lucius AL, Bujalowski W. J Mol Biol 356 121-141 (2006)
  36. Functional and structural dynamics of hepadnavirus reverse transcriptase during protein-primed initiation of reverse transcription: effects of metal ions. Lin L, Wan F, Hu J. J Virol 82 5703-5714 (2008)
  37. Recognition of template-primer and gapped DNA substrates by the human DNA polymerase beta. Rajendran S, Jezewska MJ, Bujalowski W. J Mol Biol 308 477-500 (2001)
  38. Structural homology between DNA binding sites of DNA polymerase beta and DNA topoisomerase II. Mizushina Y, Sugawara F, Iida A, Sakaguchi K. J Mol Biol 304 385-395 (2000)
  39. Effect of N2-guanyl modifications on early steps in catalysis of polymerization by Sulfolobus solfataricus P2 DNA polymerase Dpo4 T239W. Zhang H, Guengerich FP. J Mol Biol 395 1007-1018 (2010)
  40. Incorporation of non-nucleoside triphosphate analogues opposite to an abasic site by human DNA polymerases beta and lambda. Crespan E, Zanoli S, Khandazhinskaya A, Shevelev I, Jasko M, Alexandrova L, Kukhanova M, Blanca G, Villani G, Hübscher U, Spadari S, Maga G. Nucleic Acids Res 33 4117-4127 (2005)
  41. Utilization of a deoxynucleoside diphosphate substrate by HIV reverse transcriptase. Garforth SJ, Parniak MA, Prasad VR. PLoS One 3 e2074 (2008)
  42. Induced Fit in the Selection of Correct versus Incorrect Nucleotides by DNA Polymerase β. Moscato B, Swain M, Loria JP. Biochemistry 55 382-395 (2016)
  43. Catalytic efficiency and sequence selectivity of a restriction endonuclease modulated by a distal manganese ion binding site. Sam MD, Horton NC, Nissan TA, Perona JJ. J Mol Biol 306 851-861 (2001)
  44. Effect of Different Divalent Cations on the Kinetics and Fidelity of RB69 DNA Polymerase. Vashishtha AK, Konigsberg WH. Biochemistry 55 2661-2670 (2016)
  45. Significant impact of divalent metal ions on the fidelity, sugar selectivity, and drug incorporation efficiency of human PrimPol. Tokarsky EJ, Wallenmeyer PC, Phi KK, Suo Z. DNA Repair (Amst) 49 51-59 (2017)
  46. Correlation between electron localization and metal ion mutagenicity in DNA synthesis from QM/MM calculations. Chaudret R, Piquemal JP, Cisneros GA. Phys Chem Chem Phys 13 11239-11247 (2011)
  47. The biochemical mode of inhibition of DNA polymerase beta by alpha-rubromycin. Mizushina Y, Ueno T, Oda M, Yamaguchi T, Saneyoshi M, Sakaguchi K. Biochim Biophys Acta 1523 172-181 (2000)
  48. Computational Simulations of DNA Polymerases: Detailed Insights on Structure/Function/Mechanism from Native Proteins to Cancer Variants. Walker AR, Cisneros GA. Chem Res Toxicol 30 1922-1935 (2017)
  49. Enzymatic properties of rat DNA polymerase beta mutants obtained by randomized mutagenesis. Skandalis A, Loeb LA. Nucleic Acids Res 29 2418-2426 (2001)
  50. Template-dependent incorporation of 8-N3AMP into RNA with bacteriophage T7 RNA polymerase. Gopalakrishna S, Gusti V, Nair S, Sahar S, Gaur RK. RNA 10 1820-1830 (2004)
  51. Human DNA polymerases catalyze lesion bypass across benzo[a]pyrene-derived DNA adduct clustered with an abasic site. Starostenko LV, Rechkunova NI, Lebedeva NA, Kolbanovskiy A, Geacintov NE, Lavrik OI. DNA Repair (Amst) 24 1-9 (2014)
  52. Kinetic mechanisms of rat polymerase beta-ssDNA interactions. Quantitative fluorescence stopped-flow analysis of the formation of the (Pol beta)(16) and (Pol beta)(5) ssDNA binding mode. Jezewska MJ, Rajendran S, Galletto R, Bujalowski W. J Mol Biol 313 977-1002 (2001)
  53. Pol μ ribonucleotide insertion opposite 8-oxodG facilitates the ligation of premutagenic DNA repair intermediate. Çağlayan M. Sci Rep 10 940 (2020)
  54. Structures of a DNA Polymerase Inserting Therapeutic Nucleotide Analogues. Schaich MA, Smith MR, Cloud AS, Holloran SM, Freudenthal BD. Chem Res Toxicol 30 1993-2001 (2017)
  55. A model for the dynamics of mammalian family X DNA polymerases. Xie P. J Theor Biol 277 111-122 (2011)
  56. Analysis of interactions of DNA polymerase beta and reverse transcriptases of human immunodeficiency and mouse leukemia viruses with dNTP analogs containing a modified sugar residue. Lebedeva NA, Seredina TA, Silnikov VN, Abramova TV, Levina AS, Khodyreva SN, Rechkunova NI, Lavrik OI. Biochemistry (Mosc) 70 1-7 (2005)
  57. Quantification of isomeric equilibria formed by metal ion complexes of 8-[2-(phosphonomethoxy)ethyl]-8-azaadenine (8,8aPMEA) and 9-[2-(phosphonomethoxy)ethyl]-8-azaadenine (9,8aPMEA). Derivatives of the antiviral nucleotide analogue 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA). Gómez-Coca RB, Kapinos LE, Holý A, Vilaplana RA, González-Vílchez F, Sigel H. J Biol Inorg Chem 9 961-972 (2004)
  58. Site-directed mutational analysis of structural interactions of low molecule compounds binding to the N-terminal 8 kDa domain of DNA polymerase beta. Murakami S, Kamisuki S, Takata K, Kasai N, Kimura S, Mizushina Y, Ohta K, Sugawara F, Sakaguchi K. Biochem Biophys Res Commun 350 7-16 (2006)
  59. The effect of different divalent cations on the kinetics and fidelity of Bacillus stearothermophilus DNA polymerase. Vashishtha AK, Konigsberg WH. AIMS Biophys 5 125-143 (2018)
  60. Differential impact of ionic and coordinate covalent chromium (Cr)-DNA binding on DNA replication. Fornsaglio JL, O'Brien TJ, Patierno SR. Mol Cell Biochem 279 149-155 (2005)
  61. Extent of intramolecular π-stacks in aqueous solution in mixed-ligand copper(II) complexes formed by heteroaromatic amines and several 2-aminopurine derivatives of the antivirally active nucleotide analog 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA). Gómez-Coca RB, Blindauer CA, Sigel A, Operschall BP, Holý A, Sigel H. Chem Biodivers 9 2008-2034 (2012)
  62. Gene structure, purification and characterization of DNA polymerase beta from Xiphophorus maculatus. Oehlers LP, Heater SJ, Rains JD, Wells MC, David WM, Walter RB. Comp Biochem Physiol C Toxicol Pharmacol 138 311-324 (2004)
  63. Metal ion-binding properties of 9-[(2-phosphonomethoxy)ethyl]-2-aminopurine (PME2AP), an isomer of the antiviral nucleotide analogue 9-[(2-phosphonomethoxy)ethyl]adenine (PMEA). Steric guiding of metal ion-coordination by the purine-amino group. Fernández-Botello A, Operschall BP, Holy A, Moreno V, Sigel H. Dalton Trans 39 6344-6354 (2010)
  64. Selective Metal Ion Utilization Contributes to the Transformation of the Activity of Yeast Polymerase η from DNA Polymerization toward RNA Polymerization. Balint E, Unk I. Int J Mol Sci 21 E8248 (2020)
  65. DNA polymerase beta mRNA and protein expression in Xiphophorus fish. Heater SJ, Oehlers LP, Rains JD, Walter RB. Comp Biochem Physiol C Toxicol Pharmacol 138 325-334 (2004)
  66. Manganese Is a Strong Specific Activator of the RNA Synthetic Activity of Human Polη. Balint E, Unk I. Int J Mol Sci 23 230 (2021)
  67. Modulation of RNA primer formation by Mn(II)-substituted T7 DNA primase. Ilic S, Akabayov SR, Froimovici R, Meiry R, Vilenchik D, Hernandez A, Arthanari H, Akabayov B. Sci Rep 7 5797 (2017)
  68. Mechanism of Deoxyguanosine Diphosphate Insertion by Human DNA Polymerase β. Varela FA, Freudenthal BD. Biochemistry 60 373-380 (2021)
  69. Protein classification using comparative molecular interaction profile analysis system. Hayashi Y, Kobayashi M, Sakaguchi K, Iwata N, Kobayashi M, Kikuchi Y, Takahashi Y. J Bioinform Comput Biol 2 497-510 (2004)
  70. RNA-Dependent RNA Polymerase from Heterobasidion RNA Virus 6 Is an Active Replicase In Vitro. Levanova AA, Vainio EJ, Hantula J, Poranen MM. Viruses 13 1738 (2021)


Related citations provided by authors (7)

  1. Crystal Structures of Human DNA Polymerase Beta Complexed with Nicked and Gapped DNA Substrates. Sawaya MR, Rawson T, Wilson SH, Kraut J, Pelletier H To be Published -
  2. The Role of Thumb Movement and Template Bending in Polymerase Fidelity. Pelletier H To be Published -
  3. Crystal Structures of Human DNA Polymerase Beta Complexed with DNA; Implications for Catalytic Mechanism, Processivity, and Fidelity. Pelletier H, Sawaya MR, Wolfle W, Wilson SH, Kraut J Biochemistry 35 12742- (1996)
  4. Characterization of the Metal Ion-Binding HHH Motifs in Human DNA Polymerase Beta by X-Ray Structural Analysis. Pelletier H, Sawaya MR Biochemistry 35 12778- (1996)
  5. Polymerase Structures and Mechanism. Pelletier H Science 266 2025- (1994)
  6. Structures of Ternary Complexes of Rat DNA Polymerase Beta, a DNA Template- Primer, and ddCTP. Pelletier H, Sawaya MR, Kumar A, Wilson SH, Kraut J Science 264 1891- (1994)
  7. Crystal structure of rat DNA polymerase beta: evidence for a common polymerase mechanism.. Sawaya MR, Pelletier H, Kumar A, Wilson SH, Kraut J Science 264 1930-5 (1994)