7e82 Citations

Structural basis of assembly and torque transmission of the bacterial flagellar motor.

Cell 184 2665-2679.e19 (2021)
Related entries: 7cbl, 7cbm, 7cg0, 7cg4, 7cg7, 7cgb, 7cgo, 7e80, 7e81

Cited: 34 times
EuropePMC logo PMID: 33882274

Abstract

The bacterial flagellar motor is a supramolecular protein machine that drives rotation of the flagellum for motility, which is essential for bacterial survival in different environments and a key determinant of pathogenicity. The detailed structure of the flagellar motor remains unknown. Here we present an atomic-resolution cryoelectron microscopy (cryo-EM) structure of the bacterial flagellar motor complexed with the hook, consisting of 175 subunits with a molecular mass of approximately 6.3 MDa. The structure reveals that 10 peptides protruding from the MS ring with the FlgB and FliE subunits mediate torque transmission from the MS ring to the rod and overcome the symmetry mismatch between the rotational and helical structures in the motor. The LP ring contacts the distal rod and applies electrostatic forces to support its rotation and torque transmission to the hook. This work provides detailed molecular insights into the structure, assembly, and torque transmission mechanisms of the flagellar motor.

Reviews citing this publication (8)

  1. Bacterial motility: machinery and mechanisms. Wadhwa N, Berg HC. Nat Rev Microbiol 20 161-173 (2022)
  2. Insight Into Distinct Functional Roles of the Flagellar ATPase Complex for Flagellar Assembly in Salmonella. Minamino T, Kinoshita M, Namba K. Front Microbiol 13 864178 (2022)
  3. Structure and Assembly of the Bacterial Flagellum. Al-Otaibi NS, Bergeron JRC. Subcell Biochem 99 395-420 (2022)
  4. Helicobacter pylori infection: a dynamic process from diagnosis to treatment. Sun Q, Yuan C, Zhou S, Lu J, Zeng M, Cai X, Song H. Front Cell Infect Microbiol 13 1257817 (2023)
  5. Dynamic Hybrid Flagellar Motors-Fuel Switch and More. Thormann KM. Front Microbiol 13 863804 (2022)
  6. Geometric basis of action potential of skeletal muscle cells and neurons. Li Q. Open Life Sci 17 1191-1199 (2022)
  7. Microbial Primer: The bacterial flagellum - how bacteria swim. Armitage JP. Microbiology (Reading) 170 (2024)
  8. Swimming Using a Unidirectionally Rotating, Single Stopping Flagellum in the Alpha Proteobacterium Rhodobacter sphaeroides. Armitage JP. Front Microbiol 13 893524 (2022)

Articles citing this publication (26)

  1. Assessment of the CASP14 assembly predictions. Ozden B, Kryshtafovych A, Karaca E. Proteins 89 1787-1799 (2021)
  2. Novel transient cytoplasmic rings stabilize assembling bacterial flagellar motors. Kaplan M, Oikonomou CM, Wood CR, Chreifi G, Subramanian P, Ortega DR, Chang YW, Beeby M, Shaffer CL, Jensen GJ. EMBO J 41 e109523 (2022)
  3. A multi-state dynamic process confers mechano-adaptation to a biological nanomachine. Wadhwa N, Sassi A, Berg HC, Tu Y. Nat Commun 13 5327 (2022)
  4. Genetic Analysis of the Salmonella FliE Protein That Forms the Base of the Flagellar Axial Structure. Hendriksen JJ, Lee HJ, Bradshaw AJ, Namba K, Chevance FFV, Minamino T, Hughes KT. mBio 12 e0239221 (2021)
  5. Structural and Functional Analysis of SsaV Cytoplasmic Domain and Variable Linker States in the Context of the InvA-SsaV Chimeric Protein. Xu J, Wang J, Liu A, Zhang Y, Gao X. Microbiol Spectr 9 e0125121 (2021)
  6. Ion selectivity and rotor coupling of the Vibrio flagellar sodium-driven stator unit. Hu H, Popp PF, Santiveri M, Roa-Eguiara A, Yan Y, Martin FJO, Liu Z, Wadhwa N, Wang Y, Erhardt M, Taylor NMI. Nat Commun 14 4411 (2023)
  7. Activation mechanism of the bacterial flagellar dual-fuel protein export engine. Minamino T, Kinoshita M, Morimoto YV, Namba K. Biophys Physicobiol 19 e190046 (2022)
  8. Direct Measurement of the Stall Torque of the Flagellar Motor in Escherichia coli with Magnetic Tweezers. Wang B, Yue G, Zhang R, Yuan J. mBio 13 e0078222 (2022)
  9. Exploring protein symmetry at the RCSB Protein Data Bank. Duarte JM, Dutta S, Goodsell DS, Burley SK. Emerg Top Life Sci 6 231-243 (2022)
  10. Loss of the Bacterial Flagellar Motor Switch Complex upon Cell Lysis. Kaplan M, Tocheva EI, Briegel A, Dobro MJ, Chang YW, Subramanian P, McDowall AW, Beeby M, Jensen GJ. mBio 12 e0029821 (2021)
  11. Ring-stacked capsids of white spot syndrome virus and structural transitions with genome ejection. Sun M, Liu M, Shan H, Li K, Wang P, Guo H, Zhao Y, Wang R, Tao Y, Yang L, Zhang Y, Su X, Liu Y, Li C, Lin J, Chen XL, Zhang YZ, Shen QT. Sci Adv 9 eadd2796 (2023)
  12. Dynamic stiffening of the flagellar hook. Nord AL, Biquet-Bisquert A, Abkarian M, Pigaglio T, Seduk F, Magalon A, Pedaci F. Nat Commun 13 2925 (2022)
  13. Flagellar brake protein YcgR interacts with motor proteins MotA and FliG to regulate the flagellar rotation speed and direction. Han Q, Wang SF, Qian XX, Guo L, Shi YF, He R, Yuan JH, Hou YJ, Li DF. Front Microbiol 14 1159974 (2023)
  14. FlgV forms a flagellar motor ring that is required for optimal motility of Helicobacter pylori. Botting JM, Tachiyama S, Gibson KH, Liu J, Starai VJ, Hoover TR. PLoS One 18 e0287514 (2023)
  15. Loss of Flagella-Related Genes Enables a Nonflagellated, Fungal-Predating Bacterium To Strengthen the Synthesis of an Antifungal Weapon. Xiong D, Yang Z, He X, He W, Shen D, Wang L, Lin L, Murero A, Minamino T, Shao X, Qian G. Microbiol Spectr 11 e0414922 (2023)
  16. Control of the flagellation pattern in Helicobacter pylori by FlhF and FlhG. Gibson KH, Botting JM, Al-Otaibi N, Maitre K, Bergeron J, Starai VJ, Hoover TR. J Bacteriol 205 e0011023 (2023)
  17. CryoEM structure of a post-assembly MS-ring reveals plasticity in stoichiometry and conformation. Singh PK, Cecchini G, Nakagawa T, Iverson TM. PLoS One 18 e0285343 (2023)
  18. Design and Motion Analysis of a Soft-Limb Robot Inspired by Bacterial Flagella. Ye C, Liu Z, Yu S, Fan Z, Wang Y. Biomimetics (Basel) 8 271 (2023)
  19. Flagellar motor remodeling during swarming requires FliL. Partridge JD, Dufour Y, Hwang Y, Harshey RM. Mol Microbiol 120 670-683 (2023)
  20. In Situ Structure Determination of Bacterial Surface Nanomachines Using Cryo-Electron Tomography. Lai L, Cheung YW, Martinez M, Kixmoeller K, Palao L, Steimle S, Ho MC, Black BE, Lai EM, Chang YW. Methods Mol Biol 2646 211-248 (2023)
  21. Long-Time Dynamics of Selected Molecular-Motor Components Using a Physics-Based Coarse-Grained Approach. Liwo A, Pyrka M, Czaplewski C, Peng X, Niemi AJ. Biomolecules 13 941 (2023)
  22. Recent Advances in Modeling Membrane β-Barrel Proteins Using Molecular Dynamics Simulations: From Their Lipid Environments to Their Assemblies. Duncan AL, Gao Y, Haanappel E, Im W, Chavent M. Methods Mol Biol 2778 311-330 (2024)
  23. Response mechanisms to acid stress promote LF82 replication in macrophages. Yao T, Huang Y, Huai Z, Liu X, Liu X, Liu Y, Sun H, Pang Y. Front Cell Infect Microbiol 13 1255083 (2023)
  24. The Name Is Barrel, β-Barrel. Hayashi S, Buchanan SK, Botos I. Methods Mol Biol 2778 1-30 (2024)
  25. The common origin and degenerative evolution of flagella in Actinobacteria. Zhu S, Sun X, Li Y, Feng X, Gao B. mBio e0252623 (2023)
  26. The protein interactome of the citrus Huanglongbing pathogen Candidatus Liberibacter asiaticus. Carter EW, Peraza OG, Wang N. Nat Commun 14 7838 (2023)