7bro Citations

Both Boceprevir and GC376 efficaciously inhibit SARS-CoV-2 by targeting its main protease.

Nat Commun 11 4417 (2020)
Related entries: 7brp, 7c6s, 7c6u, 7d1m

Cited: 252 times
EuropePMC logo PMID: 32887884

Abstract

COVID-19 was declared a pandemic on March 11 by WHO, due to its great threat to global public health. The coronavirus main protease (Mpro, also called 3CLpro) is essential for processing and maturation of the viral polyprotein, therefore recognized as an attractive drug target. Here we show that a clinically approved anti-HCV drug, Boceprevir, and a pre-clinical inhibitor against feline infectious peritonitis (corona) virus (FIPV), GC376, both efficaciously inhibit SARS-CoV-2 in Vero cells by targeting Mpro. Moreover, combined application of GC376 with Remdesivir, a nucleotide analogue that inhibits viral RNA dependent RNA polymerase (RdRp), results in sterilizing additive effect. Further structural analysis reveals binding of both inhibitors to the catalytically active side of SARS-CoV-2 protease Mpro as main mechanism of inhibition. Our findings may provide critical information for the optimization and design of more potent inhibitors against the emerging SARS-CoV-2 virus.

Reviews - 7bro mentioned but not cited (3)

  1. Genomics insights of SARS-CoV-2 (COVID-19) into target-based drug discovery. Chellapandi P, Saranya S. Med Chem Res 29 1777-1791 (2020)
  2. Co-crystallization and structure determination: An effective direction for anti-SARS-CoV-2 drug discovery. Wang Z, Yang L, Zhao XE. Comput Struct Biotechnol J 19 4684-4701 (2021)
  3. Biflavonoid as potential 3-chymotrypsin-like protease (3CLpro) inhibitor of SARS-Coronavirus. Hartini Y, Saputra B, Wahono B, Auw Z, Indayani F, Adelya L, Namba G, Hariono M. Results Chem 3 100087 (2021)

Articles - 7bro mentioned but not cited (13)

  1. Crystallographic models of SARS-CoV-2 3CLpro: in-depth assessment of structure quality and validation. Jaskolski M, Dauter Z, Shabalin IG, Gilski M, Brzezinski D, Kowiel M, Rupp B, Wlodawer A. IUCrJ 8 238-256 (2021)
  2. Protein structural heterogeneity: A hypothesis for the basis of proteolytic recognition by the main protease of SARS-CoV and SARS-CoV-2. Behnam MAM. Biochimie 182 177-184 (2021)
  3. Allosteric Regulation of 3CL Protease of SARS-CoV-2 and SARS-CoV Observed in the Crystal Structure Ensemble. Kidera A, Moritsugu K, Ekimoto T, Ikeguchi M. J Mol Biol 433 167324 (2021)
  4. Chitosan derivatives: A suggestive evaluation for novel inhibitor discovery against wild type and variants of SARS-CoV-2 virus. Modak C, Jha A, Sharma N, Kumar A. Int J Biol Macromol 187 492-512 (2021)
  5. Heparin interacts with the main protease of SARS-CoV-2 and inhibits its activity. Li J, Zhang Y, Pang H, Li SJ. Spectrochim Acta A Mol Biomol Spectrosc 267 120595 (2022)
  6. DINC-COVID: A webserver for ensemble docking with flexible SARS-CoV-2 proteins. Hall-Swan S, Devaurs D, Rigo MM, Antunes DA, Kavraki LE, Zanatta G. Comput Biol Med 139 104943 (2021)
  7. Investigation of structural analogs of hydroxychloroquine for SARS-CoV-2 main protease (Mpro): A computational drug discovery study. Reyaz S, Tasneem A, Rai GP, Bairagya HR. J Mol Graph Model 109 108021 (2021)
  8. Andrographolide induces anti-SARS-CoV-2 response through host-directed mechanism: an in silico study. Das BS, Das NC, Swain SS, Mukherjee S, Bhattacharya D. Future Virol (2022)
  9. Microsecond molecular dynamics suggest that a non-synonymous mutation, frequently observed in patients with mild symptoms in Tokyo, alters dynamics of the SARS-CoV-2 main protease. Kuroda D, Tsumoto K. Biophys Physicobiol 18 215-222 (2021)
  10. Solanaceae Family Phytochemicals as Inhibitors of 3C-Like Protease of SARS-CoV-2: An In Silico Analysis. Mahmood RA, Hasan A, Rahmatullah M, Paul AK, Jahan R, Jannat K, Bondhon TA, Mahboob T, Nissapatorn V, de Lourdes Pereira M, Paul TK, Rumi OH, Wiart C, Wilairatana P. Molecules 27 4739 (2022)
  11. Optimization of the expression of the main protease from SARS-CoV-2. Rong Y, Zhang C, Gao WC, Zhao C. Protein Expr Purif 203 106208 (2023)
  12. QSAR, homology modeling, and docking simulation on SARS-CoV-2 and pseudomonas aeruginosa inhibitors, ADMET, and molecular dynamic simulations to find a possible oral lead candidate. Edache EI, Uzairu A, Mamza PA, Shallangwa GA. J Genet Eng Biotechnol 20 88 (2022)
  13. [Virtual screening of active ingredients of traditional Chinese medicine in treating COVID-19 based on molecular docking and molecular dynamic simulation]. Liu M, Faez IK, Xiao Y, Wang X, Hu Z, Lai D. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 39 1005-1014 (2022)


Reviews citing this publication (40)

  1. Structural Basis of Potential Inhibitors Targeting SARS-CoV-2 Main Protease. Mengist HM, Dilnessa T, Jin T. Front Chem 9 622898 (2021)
  2. Structural biology of SARS-CoV-2 and implications for therapeutic development. Yang H, Rao Z. Nat Rev Microbiol 19 685-700 (2021)
  3. Targeting SARS-CoV-2 Proteases and Polymerase for COVID-19 Treatment: State of the Art and Future Opportunities. Cannalire R, Cerchia C, Beccari AR, Di Leva FS, Summa V. J Med Chem 65 2716-2746 (2022)
  4. SARS-CoV-2 RNA-dependent RNA polymerase as a therapeutic target for COVID-19. Vicenti I, Zazzi M, Saladini F. Expert Opin Ther Pat 31 325-337 (2021)
  5. SARS-CoV-2 Antiviral Therapy. Tao K, Tzou PL, Nouhin J, Bonilla H, Jagannathan P, Shafer RW. Clin Microbiol Rev 34 e0010921 (2021)
  6. Recent advances in developing small-molecule inhibitors against SARS-CoV-2. Xiang R, Yu Z, Wang Y, Wang L, Huo S, Li Y, Liang R, Hao Q, Ying T, Gao Y, Yu F, Jiang S. Acta Pharm Sin B 12 1591-1623 (2022)
  7. A Comprehensive Review about the Molecular Structure of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): Insights into Natural Products against COVID-19. Saied EM, El-Maradny YA, Osman AA, Darwish AMG, Abo Nahas HH, Niedbała G, Piekutowska M, Abdel-Rahman MA, Balbool BA, Abdel-Azeem AM. Pharmaceutics 13 1759 (2021)
  8. Evolutionary and Structural Insights about Potential SARS-CoV-2 Evasion of Nirmatrelvir. Yang KS, Leeuwon SZ, Xu S, Liu WR. J Med Chem 65 8686-8698 (2022)
  9. Structure genomics of SARS-CoV-2 and its Omicron variant: drug design templates for COVID-19. Wu CR, Yin WC, Jiang Y, Xu HE. Acta Pharmacol Sin 43 3021-3033 (2022)
  10. Improved SARS-CoV-2 Mpro inhibitors based on feline antiviral drug GC376: Structural enhancements, increased solubility, and micellar studies. Vuong W, Fischer C, Khan MB, van Belkum MJ, Lamer T, Willoughby KD, Lu J, Arutyunova E, Joyce MA, Saffran HA, Shields JA, Young HS, Nieman JA, Tyrrell DL, Lemieux MJ, Vederas JC. Eur J Med Chem 222 113584 (2021)
  11. Drug Combinations as a First Line of Defense against Coronaviruses and Other Emerging Viruses. White JM, Schiffer JT, Bender Ignacio RA, Xu S, Kainov D, Ianevski A, Aittokallio T, Frieman M, Olinger GG, Polyak SJ. mBio 12 e0334721 (2021)
  12. Targeting SARS-CoV-2 Proteases for COVID-19 Antiviral Development. Lv Z, Cano KE, Jia L, Drag M, Huang TT, Olsen SK. Front Chem 9 819165 (2021)
  13. Haste makes waste: A critical review of docking-based virtual screening in drug repurposing for SARS-CoV-2 main protease (M-pro) inhibition. Macip G, Garcia-Segura P, Mestres-Truyol J, Saldivar-Espinoza B, Ojeda-Montes MJ, Gimeno A, Cereto-Massagué A, Garcia-Vallvé S, Pujadas G. Med Res Rev 42 744-769 (2022)
  14. Inhibition of the main protease of SARS-CoV-2 (Mpro) by repurposing/designing drug-like substances and utilizing nature's toolbox of bioactive compounds. Antonopoulou I, Sapountzaki E, Rova U, Christakopoulos P. Comput Struct Biotechnol J 20 1306-1344 (2022)
  15. A Crystallographic Snapshot of SARS-CoV-2 Main Protease Maturation Process. Noske GD, Nakamura AM, Gawriljuk VO, Fernandes RS, Lima GMA, Rosa HVD, Pereira HD, Zeri ACM, Nascimento AFZ, Freire MCLC, Fearon D, Douangamath A, von Delft F, Oliva G, Godoy AS. J Mol Biol 433 167118 (2021)
  16. Small molecules in the treatment of COVID-19. Lei S, Chen X, Wu J, Duan X, Men K. Signal Transduct Target Ther 7 387 (2022)
  17. The history, mechanism, and perspectives of nirmatrelvir (PF-07321332): an orally bioavailable main protease inhibitor used in combination with ritonavir to reduce COVID-19-related hospitalizations. Joyce RP, Hu VW, Wang J. Med Chem Res 31 1637-1646 (2022)
  18. Repurposing Approved Drugs for Guiding COVID-19 Prophylaxis: A Systematic Review. Andrade BS, Rangel FS, Santos NO, Freitas ADS, Soares WRA, Siqueira S, Barh D, Góes-Neto A, Birbrair A, Azevedo VAC. Front Pharmacol 11 590598 (2020)
  19. A Review of the Current Landscape of SARS-CoV-2 Main Protease Inhibitors: Have We Hit the Bullseye Yet? Macip G, Garcia-Segura P, Mestres-Truyol J, Saldivar-Espinoza B, Pujadas G, Garcia-Vallvé S. Int J Mol Sci 23 259 (2021)
  20. Progress and pitfalls of a year of drug repurposing screens against COVID-19. Sourimant J, Aggarwal M, Plemper RK. Curr Opin Virol 49 183-193 (2021)
  21. The main protease and RNA-dependent RNA polymerase are two prime targets for SARS-CoV-2. Jin Z, Wang H, Duan Y, Yang H. Biochem Biophys Res Commun 538 63-71 (2021)
  22. Current treatment strategies for COVID‑19 (Review). Han F, Liu Y, Mo M, Chen J, Wang C, Yang Y, Wu J. Mol Med Rep 24 858 (2021)
  23. Progress on SARS-CoV-2 3CLpro Inhibitors: Inspiration from SARS-CoV 3CLpro Peptidomimetics and Small-Molecule Anti-Inflammatory Compounds. Zhu J, Zhang H, Lin Q, Lyu J, Lu L, Chen H, Zhang X, Zhang Y, Chen K. Drug Des Devel Ther 16 1067-1082 (2022)
  24. DrugDevCovid19: An Atlas of Anti-COVID-19 Compounds Derived by Computer-Aided Drug Design. Liu Y, Gan J, Wang R, Yang X, Xiao Z, Cao Y. Molecules 27 683 (2022)
  25. Beyond the vaccines: a glance at the small molecule and peptide-based anti-COVID19 arsenal. Nepali K, Sharma R, Sharma S, Thakur A, Liou JP. J Biomed Sci 29 65 (2022)
  26. Insights into SARS-CoV-2: Medicinal Chemistry Approaches to Combat Its Structural and Functional Biology. Zhuo LS, Wang MS, Yang JF, Xu HC, Huang W, Shang LQ, Yang GF. Top Curr Chem (Cham) 379 23 (2021)
  27. The Natural Products Withaferin A and Withanone from the Medicinal Herb Withania somnifera Are Covalent Inhibitors of the SARS-CoV-2 Main Protease. Chakraborty S, Mallick D, Goswami M, Guengerich FP, Chakrabarty A, Chowdhury G. J Nat Prod 85 2340-2350 (2022)
  28. Viral proteases as therapeutic targets. Majerová T, Konvalinka J. Mol Aspects Med 88 101159 (2022)
  29. A Review of Potential Therapeutic Strategies for COVID-19. Meng J, Li R, Zhang Z, Wang J, Huang Q, Nie D, Fan K, Guo W, Zhao Z, Han Z. Viruses 14 2346 (2022)
  30. Immunopathogenesis of Different Emerging Viral Infections: Evasion, Fatal Mechanism, and Prevention. Yang B, Yang KD. Front Immunol 12 690976 (2021)
  31. New Insights Into Drug Repurposing for COVID-19 Using Deep Learning. Lee CY, Chen YP. IEEE Trans Neural Netw Learn Syst 32 4770-4780 (2021)
  32. Current state-of-the-art and potential future therapeutic drugs against COVID-19. Sha A, Liu Y, Hao H. Front Cell Dev Biol 11 1238027 (2023)
  33. Peptide-based inhibitors hold great promise as the broad-spectrum agents against coronavirus. Tang M, Zhang X, Huang Y, Cheng W, Qu J, Gui S, Li L, Li S. Front Microbiol 13 1093646 (2022)
  34. Recent challenges facing patients with preexisting chronic liver disease in the era of the COVID-19 pandemic. Mani I, Alexopoulou A. Ann Gastroenterol 34 625-633 (2021)
  35. Roles of host proteases in the entry of SARS-CoV-2. Zabiegala A, Kim Y, Chang KO. Anim Dis 3 12 (2023)
  36. Drug development targeting SARS-CoV-2 main protease. Bulut H. Glob Health Med 4 296-300 (2022)
  37. Mpro-targeted anti-SARS-CoV-2 inhibitor-based drugs. She Z, Yao Y, Wang C, Li Y, Xiong X, Liu Y. J Chem Res 47 17475198231184799 (2023)
  38. SARS-CoV-2 proteins structural studies using synchrotron radiation. Kosenko M, Onkhonova G, Susloparov I, Ryzhikov A. Biophys Rev 15 1185-1194 (2023)
  39. Structure and function of SARS-CoV and SARS-CoV-2 main proteases and their inhibition: A comprehensive review. Li X, Song Y. Eur J Med Chem 260 115772 (2023)
  40. The research progress of SARS-CoV-2 main protease inhibitors from 2020 to 2022. Pang X, Xu W, Liu Y, Li H, Chen L. Eur J Med Chem 257 115491 (2023)

Articles citing this publication (196)

  1. Letter Crystal structure of SARS-CoV-2 main protease in complex with protease inhibitor PF-07321332. Zhao Y, Fang C, Zhang Q, Zhang R, Zhao X, Duan Y, Wang H, Zhu Y, Feng L, Zhao J, Shao M, Yang X, Zhang L, Peng C, Yang K, Ma D, Rao Z, Yang H. Protein Cell 13 689-693 (2022)
  2. Identification of SARS-CoV-2 inhibitors targeting Mpro and PLpro using in-cell-protease assay. Narayanan A, Narwal M, Majowicz SA, Varricchio C, Toner SA, Ballatore C, Brancale A, Murakami KS, Jose J. Commun Biol 5 169 (2022)
  3. Boceprevir, Calpain Inhibitors II and XII, and GC-376 Have Broad-Spectrum Antiviral Activity against Coronaviruses. Hu Y, Ma C, Szeto T, Hurst B, Tarbet B, Wang J. ACS Infect Dis 7 586-597 (2021)
  4. Hepatitis C virus drugs that inhibit SARS-CoV-2 papain-like protease synergize with remdesivir to suppress viral replication in cell culture. Bafna K, White K, Harish B, Rosales R, Ramelot TA, Acton TB, Moreno E, Kehrer T, Miorin L, Royer CA, García-Sastre A, Krug RM, Montelione GT. Cell Rep 35 109133 (2021)
  5. Postinfection treatment with a protease inhibitor increases survival of mice with a fatal SARS-CoV-2 infection. Dampalla CS, Zheng J, Perera KD, Wong LR, Meyerholz DK, Nguyen HN, Kashipathy MM, Battaile KP, Lovell S, Kim Y, Perlman S, Groutas WC, Chang KO. Proc Natl Acad Sci U S A 118 e2101555118 (2021)
  6. Covalent narlaprevir- and boceprevir-derived hybrid inhibitors of SARS-CoV-2 main protease. Kneller DW, Li H, Phillips G, Weiss KL, Zhang Q, Arnould MA, Jonsson CB, Surendranathan S, Parvathareddy J, Blakeley MP, Coates L, Louis JM, Bonnesen PV, Kovalevsky A. Nat Commun 13 2268 (2022)
  7. Generation of SARS-CoV-2 reporter replicon for high-throughput antiviral screening and testing. He X, Quan S, Xu M, Rodriguez S, Goh SL, Wei J, Fridman A, Koeplinger KA, Carroll SS, Grobler JA, Espeseth AS, Olsen DB, Hazuda DJ, Wang D. Proc Natl Acad Sci U S A 118 e2025866118 (2021)
  8. Identification of Inhibitors of SARS-CoV-2 3CL-Pro Enzymatic Activity Using a Small Molecule in Vitro Repurposing Screen. Kuzikov M, Costanzi E, Reinshagen J, Esposito F, Vangeel L, Wolf M, Ellinger B, Claussen C, Geisslinger G, Corona A, Iaconis D, Talarico C, Manelfi C, Cannalire R, Rossetti G, Gossen J, Albani S, Musiani F, Herzog K, Ye Y, Giabbai B, Demitri N, Jochmans D, Jonghe S, Rymenants J, Summa V, Tramontano E, Beccari AR, Leyssen P, Storici P, Neyts J, Gribbon P, Zaliani A. ACS Pharmacol Transl Sci 4 1096-1110 (2021)
  9. Rational Design of Hybrid SARS-CoV-2 Main Protease Inhibitors Guided by the Superimposed Cocrystal Structures with the Peptidomimetic Inhibitors GC-376, Telaprevir, and Boceprevir. Xia Z, Sacco M, Hu Y, Ma C, Meng X, Zhang F, Szeto T, Xiang Y, Chen Y, Wang J. ACS Pharmacol Transl Sci 4 1408-1421 (2021)
  10. Efficacy of GC-376 against SARS-CoV-2 virus infection in the K18 hACE2 transgenic mouse model. Cáceres CJ, Cardenas-Garcia S, Carnaccini S, Seibert B, Rajao DS, Wang J, Perez DR. Sci Rep 11 9609 (2021)
  11. Perspectives on SARS-CoV-2 Main Protease Inhibitors. Gao K, Wang R, Chen J, Tepe JJ, Huang F, Wei GW. J Med Chem 64 16922-16955 (2021)
  12. Validation and invalidation of SARS-CoV-2 main protease inhibitors using the Flip-GFP and Protease-Glo luciferase assays. Ma C, Tan H, Choza J, Wang Y, Wang J. Acta Pharm Sin B 12 1636-1651 (2022)
  13. Structural basis for replicase polyprotein cleavage and substrate specificity of main protease from SARS-CoV-2. Zhao Y, Zhu Y, Liu X, Jin Z, Duan Y, Zhang Q, Wu C, Feng L, Du X, Zhao J, Shao M, Zhang B, Yang X, Wu L, Ji X, Guddat LW, Yang K, Rao Z, Yang H. Proc Natl Acad Sci U S A 119 e2117142119 (2022)
  14. MPI8 is Potent against SARS-CoV-2 by Inhibiting Dually and Selectively the SARS-CoV-2 Main Protease and the Host Cathepsin L. Ma XR, Alugubelli YR, Ma Y, Vatansever EC, Scott DA, Qiao Y, Yu G, Xu S, Liu WR. ChemMedChem 17 e202100456 (2022)
  15. Telaprevir is a potential drug for repurposing against SARS-CoV-2: computational and in vitro studies. Mahmoud A, Mostafa A, Al-Karmalawy AA, Zidan A, Abulkhair HS, Mahmoud SH, Shehata M, Elhefnawi MM, Ali MA. Heliyon 7 e07962 (2021)
  16. Repurposing the HCV NS3-4A protease drug boceprevir as COVID-19 therapeutics. Oerlemans R, Ruiz-Moreno AJ, Cong Y, Dinesh Kumar N, Velasco-Velazquez MA, Neochoritis CG, Smith J, Reggiori F, Groves MR, Dömling A. RSC Med Chem 12 370-379 (2020)
  17. Development of a Cell-Based Luciferase Complementation Assay for Identification of SARS-CoV-2 3CLpro Inhibitors. Rawson JMO, Duchon A, Nikolaitchik OA, Pathak VK, Hu WS. Viruses 13 173 (2021)
  18. Discovery and Mechanism of SARS-CoV-2 Main Protease Inhibitors. Huff S, Kummetha IR, Tiwari SK, Huante MB, Clark AE, Wang S, Bray W, Smith D, Carlin AF, Endsley M, Rana TM. J Med Chem 65 2866-2879 (2022)
  19. Research Support, Non-U.S. Gov't Phenotype, Susceptibility, Autoimmunity, and Immunotherapy Between Kawasaki Disease and Coronavirus Disease-19 Associated Multisystem Inflammatory Syndrome in Children. Chen MR, Kuo HC, Lee YJ, Chi H, Li SC, Lee HC, Yang KD. Front Immunol 12 632890 (2021)
  20. Viral polymerase binding and broad-spectrum antiviral activity of molnupiravir against human seasonal coronaviruses. Wang Y, Li P, Solanki K, Li Y, Ma Z, Peppelenbosch MP, Baig MS, Pan Q. Virology 564 33-38 (2021)
  21. Mortality is not increased in SARS-CoV-2 infected persons with hepatitis C virus infection. Butt AA, Yan P, Chotani RA, Shaikh OS. Liver Int 41 1824-1831 (2021)
  22. The preclinical inhibitor GS441524 in combination with GC376 efficaciously inhibited the proliferation of SARS-CoV-2 in the mouse respiratory tract. Shi Y, Shuai L, Wen Z, Wang C, Yan Y, Jiao Z, Guo F, Fu ZF, Chen H, Bu Z, Peng G. Emerg Microbes Infect 10 481-492 (2021)
  23. Hepatitis C Virus Protease Inhibitors Show Differential Efficacy and Interactions with Remdesivir for Treatment of SARS-CoV-2 In Vitro. Gammeltoft KA, Zhou Y, Duarte Hernandez CR, Galli A, Offersgaard A, Costa R, Pham LV, Fahnøe U, Feng S, Scheel TKH, Ramirez S, Bukh J, Gottwein JM. Antimicrob Agents Chemother 65 e0268020 (2021)
  24. Characterization of the non-covalent interaction between the PF-07321332 inhibitor and the SARS-CoV-2 main protease. Macchiagodena M, Pagliai M, Procacci P. J Mol Graph Model 110 108042 (2022)
  25. Direct Observation of Protonation State Modulation in SARS-CoV-2 Main Protease upon Inhibitor Binding with Neutron Crystallography. Kneller DW, Phillips G, Weiss KL, Zhang Q, Coates L, Kovalevsky A. J Med Chem 64 4991-5000 (2021)
  26. Drug Repurposing and Polypharmacology to Fight SARS-CoV-2 Through Inhibition of the Main Protease. Pinzi L, Tinivella A, Caporuscio F, Rastelli G. Front Pharmacol 12 636989 (2021)
  27. Protease cleavage of RNF20 facilitates coronavirus replication via stabilization of SREBP1. Zhang S, Wang J, Cheng G. Proc Natl Acad Sci U S A 118 e2107108118 (2021)
  28. Repurposing of FDA-approved drugs against active site and potential allosteric drug-binding sites of COVID-19 main protease. Yuce M, Cicek E, Inan T, Dag AB, Kurkcuoglu O, Sungur FA. Proteins 89 1425-1441 (2021)
  29. Structural Basis of the Main Proteases of Coronavirus Bound to Drug Candidate PF-07321332. Li J, Lin C, Zhou X, Zhong F, Zeng P, Yang Y, Zhang Y, Yu B, Fan X, McCormick PJ, Fu R, Fu Y, Jiang H, Zhang J. J Virol 96 e0201321 (2022)
  30. Evaluation of SARS-CoV-2 Main Protease Inhibitors Using a Novel Cell-Based Assay. Cao W, Cho CD, Geng ZZ, Shaabani N, Ma XR, Vatansever EC, Alugubelli YR, Ma Y, Chaki SP, Ellenburg WH, Yang KS, Qiao Y, Allen R, Neuman BW, Ji H, Xu S, Liu WR. ACS Cent Sci 8 192-204 (2022)
  31. Multiscale Simulations of SARS-CoV-2 3CL Protease Inhibition with Aldehyde Derivatives. Role of Protein and Inhibitor Conformational Changes in the Reaction Mechanism. Ramos-Guzmán CA, Ruiz-Pernía JJ, Tuñón I. ACS Catal 11 4157-4168 (2021)
  32. Screening a Library of FDA-Approved and Bioactive Compounds for Antiviral Activity against SARS-CoV-2. Biering SB, Van Dis E, Wehri E, Yamashiro LH, Nguyenla X, Dugast-Darzacq C, Graham TGW, Stroumza JR, Golovkine GR, Roberts AW, Fines DM, Spradlin JN, Ward CC, Bajaj T, Dovala D, Schulze-Gamen U, Bajaj R, Fox DM, Ott M, Murthy N, Nomura DK, Schaletzky J, Stanley SA. ACS Infect Dis 7 2337-2351 (2021)
  33. Structural, Electronic, and Electrostatic Determinants for Inhibitor Binding to Subsites S1 and S2 in SARS-CoV-2 Main Protease. Kneller DW, Li H, Galanie S, Phillips G, Labbé A, Weiss KL, Zhang Q, Arnould MA, Clyde A, Ma H, Ramanathan A, Jonsson CB, Head MS, Coates L, Louis JM, Bonnesen PV, Kovalevsky A. J Med Chem 64 17366-17383 (2021)
  34. Cloning of a Passage-Free SARS-CoV-2 Genome and Mutagenesis Using Red Recombination. Herrmann A, Jungnickl D, Cordsmeier A, Peter AS, Überla K, Ensser A. Int J Mol Sci 22 10188 (2021)
  35. The Combination of Molnupiravir with Nirmatrelvir or GC376 Has a Synergic Role in the Inhibition of SARS-CoV-2 Replication In Vitro. Gidari A, Sabbatini S, Schiaroli E, Bastianelli S, Pierucci S, Busti C, Comez L, Libera V, Macchiarulo A, Paciaroni A, Vicenti I, Zazzi M, Francisci D. Microorganisms 10 1475 (2022)
  36. A computational drug repurposing approach in identifying the cephalosporin antibiotic and anti-hepatitis C drug derivatives for COVID-19 treatment. Kumar R, Kumar V, Lee KW. Comput Biol Med 130 104186 (2021)
  37. DNA-encoded chemistry technology yields expedient access to SARS-CoV-2 Mpro inhibitors. Chamakuri S, Lu S, Ucisik MN, Bohren KM, Chen YC, Du HC, Faver JC, Jimmidi R, Li F, Li JY, Nyshadham P, Palmer SS, Pollet J, Qin X, Ronca SE, Sankaran B, Sharma KL, Tan Z, Versteeg L, Yu Z, Matzuk MM, Palzkill T, Young DW. Proc Natl Acad Sci U S A 118 e2111172118 (2021)
  38. Targeting SARS-CoV-2 M3CLpro by HCV NS3/4a Inhibitors: In Silico Modeling and In Vitro Screening. Manandhar A, Blass BE, Colussi DJ, Almi I, Abou-Gharbia M, Klein ML, Elokely KM. J Chem Inf Model 61 1020-1032 (2021)
  39. Coronaviruses Nsp5 Antagonizes Porcine Gasdermin D-Mediated Pyroptosis by Cleaving Pore-Forming p30 Fragment. Shi F, Lv Q, Wang T, Xu J, Xu W, Shi Y, Fu X, Yang T, Yang Y, Zhuang L, Fang W, Gu J, Li X. mBio 13 e0273921 (2022)
  40. Letter Structural basis for the inhibition of the SARS-CoV-2 main protease by the anti-HCV drug narlaprevir. Bai Y, Ye F, Feng Y, Liao H, Song H, Qi J, Gao GF, Tan W, Fu L, Shi Y. Signal Transduct Target Ther 6 51 (2021)
  41. Targeted design of drug binding sites in the main protease of SARS-CoV-2 reveals potential signatures of adaptation. Padhi AK, Tripathi T. Biochem Biophys Res Commun 555 147-153 (2021)
  42. X-ray crystallographic characterization of the SARS-CoV-2 main protease polyprotein cleavage sites essential for viral processing and maturation. Lee J, Kenward C, Worrall LJ, Vuckovic M, Gentile F, Ton AT, Ng M, Cherkasov A, Strynadka NCJ, Paetzel M. Nat Commun 13 5196 (2022)
  43. Is PF-00835231 a Pan-SARS-CoV-2 Mpro Inhibitor? A Comparative Study. Baig MH, Sharma T, Ahmad I, Abohashrh M, Alam MM, Dong JJ. Molecules 26 1678 (2021)
  44. Structural basis of nirmatrelvir and ensitrelvir activity against naturally occurring polymorphisms of the SARS-CoV-2 main protease. Noske GD, de Souza Silva E, de Godoy MO, Dolci I, Fernandes RS, Guido RVC, Sjö P, Oliva G, Godoy AS. J Biol Chem 299 103004 (2023)
  45. Betulonic Acid Derivatives Interfering with Human Coronavirus 229E Replication via the nsp15 Endoribonuclease. Stevaert A, Krasniqi B, Van Loy B, Nguyen T, Thomas J, Vandeput J, Jochmans D, Thiel V, Dijkman R, Dehaen W, Voet A, Naesens L. J Med Chem 64 5632-5644 (2021)
  46. COVID19db: a comprehensive database platform to discover potential drugs and targets of COVID-19 at whole transcriptomic scale. Zhang W, Zhang Y, Min Z, Mo J, Ju Z, Guan W, Zeng B, Liu Y, Chen J, Zhang Q, Li H, Zeng C, Wei Y, Chan GC. Nucleic Acids Res 50 D747-D757 (2022)
  47. Development of a simple and miniaturized sandwich-like fluorescence polarization assay for rapid screening of SARS-CoV-2 main protease inhibitors. Yan G, Li D, Lin Y, Fu Z, Qi H, Liu X, Zhang J, Si S, Chen Y. Cell Biosci 11 199 (2021)
  48. A multi-targeted approach to identify potential flavonoids against three targets in the SARS-CoV-2 life cycle. Kumar S, Paul P, Yadav P, Kaul R, Maitra SS, Jha SK, Chaari A. Comput Biol Med 142 105231 (2022)
  49. Antiviral cyclic peptides targeting the main protease of SARS-CoV-2. Johansen-Leete J, Ullrich S, Fry SE, Frkic R, Bedding MJ, Aggarwal A, Ashhurst AS, Ekanayake KB, Mahawaththa MC, Sasi VM, Luedtke S, Ford DJ, O'Donoghue AJ, Passioura T, Larance M, Otting G, Turville S, Jackson CJ, Nitsche C, Payne RJ. Chem Sci 13 3826-3836 (2022)
  50. Comparison of anti-SARS-CoV-2 activity and intracellular metabolism of remdesivir and its parent nucleoside. Tao S, Zandi K, Bassit L, Ong YT, Verma K, Liu P, Downs-Bowen JA, McBrayer T, LeCher JC, Kohler JJ, Tedbury PR, Kim B, Amblard F, Sarafianos SG, Schinazi RF. Curr Res Pharmacol Drug Discov 2 100045 (2021)
  51. Gain-of-Signal Assays for Probing Inhibition of SARS-CoV-2 Mpro/3CLpro in Living Cells. Moghadasi SA, Esler MA, Otsuka Y, Becker JT, Moraes SN, Anderson CB, Chamakuri S, Belica C, Wick C, Harki DA, Young DW, Scampavia L, Spicer TP, Shi K, Aihara H, Brown WL, Harris RS. mBio 13 e0078422 (2022)
  52. Prediction of Potential Commercially Available Inhibitors against SARS-CoV-2 by Multi-Task Deep Learning Model. Hu F, Jiang J, Yin P. Biomolecules 12 1156 (2022)
  53. Protease inhibitor GC376 for COVID-19: Lessons learned from feline infectious peritonitis. Sharun K, Tiwari R, Dhama K. Ann Med Surg (Lond) 61 122-125 (2021)
  54. SARS-CoV-2 Main Protease Drug Design, Assay Development, and Drug Resistance Studies. Tan B, Joyce R, Tan H, Hu Y, Wang J. Acc Chem Res 56 157-168 (2023)
  55. A multi-pronged evaluation of aldehyde-based tripeptidyl main protease inhibitors as SARS-CoV-2 antivirals. Ma Y, Yang KS, Geng ZZ, Alugubelli YR, Shaabani N, Vatansever EC, Ma XR, Cho CC, Khatua K, Xiao J, Blankenship LR, Yu G, Sankaran B, Li P, Allen R, Ji H, Xu S, Liu WR. Eur J Med Chem 240 114570 (2022)
  56. Identification of Anti-SARS-CoV-2 Compounds from Food Using QSAR-Based Virtual Screening, Molecular Docking, and Molecular Dynamics Simulation Analysis. Zaki MEA, Al-Hussain SA, Masand VH, Akasapu S, Bajaj SO, El-Sayed NNE, Ghosh A, Lewaa I. Pharmaceuticals (Basel) 14 357 (2021)
  57. Mechanism of Microbial Metabolite Leupeptin in the Treatment of COVID-19 by Traditional Chinese Medicine Herbs. Fu L, Shao S, Feng Y, Ye F, Sun X, Wang Q, Yu F, Wang Q, Huang B, Niu P, Li X, Wong CCL, Qi J, Tan W, Gao GF. mBio 12 e0222021 (2021)
  58. Penicillin Derivatives Inhibit the SARS-CoV-2 Main Protease by Reaction with Its Nucleophilic Cysteine. Malla TR, Brewitz L, Muntean DG, Aslam H, Owen CD, Salah E, Tumber A, Lukacik P, Strain-Damerell C, Mikolajek H, Walsh MA, Schofield CJ. J Med Chem 65 7682-7696 (2022)
  59. SARS-CoV-2 Main Protease Active Site Ligands in the Human Metabolome. Sardanelli AM, Isgrò C, Palese LL. Molecules 26 1409 (2021)
  60. Efficiency Improvements and Discovery of New Substrates for a SARS-CoV-2 Main Protease FRET Assay. Dražić T, Kühl N, Leuthold MM, Behnam MAM, Klein CD. SLAS Discov 26 1189-1199 (2021)
  61. Pro108Ser mutation of SARS-CoV-2 3CLpro reduces the enzyme activity and ameliorates the clinical severity of COVID-19. Abe K, Kabe Y, Uchiyama S, Iwasaki YW, Ishizu H, Uwamino Y, Takenouchi T, Uno S, Ishii M, Maruno T, Noda M, Murata M, Hasegawa N, Saya H, Kitagawa Y, Fukunaga K, Amagai M, Siomi H, Suematsu M, Kosaki K, Keio Donner Project. Sci Rep 12 1299 (2022)
  62. Self-Masked Aldehyde Inhibitors: A Novel Strategy for Inhibiting Cysteine Proteases. Li L, Chenna BC, Yang KS, Cole TR, Goodall ZT, Giardini M, Moghadamchargari Z, Hernandez EA, Gomez J, Calvet CM, Bernatchez JA, Mellott DM, Zhu J, Rademacher A, Thomas D, Blankenship LR, Drelich A, Laganowsky A, Tseng CK, Liu WR, Wand AJ, Cruz-Reyes J, Siqueira-Neto JL, Meek TD. J Med Chem 64 11267-11287 (2021)
  63. The Natural Stilbenoid (-)-Hopeaphenol Inhibits Cellular Entry of SARS-CoV-2 USA-WA1/2020, B.1.1.7, and B.1.351 Variants. Tietjen I, Cassel J, Register ET, Zhou XY, Messick TE, Keeney F, Lu LD, Beattie KD, Rali T, Tebas P, Ertl HCJ, Salvino JM, Davis RA, Montaner LJ. Antimicrob Agents Chemother 65 e0077221 (2021)
  64. A Computer-Aided Drug Design Approach to Predict Marine Drug-Like Leads for SARS-CoV-2 Main Protease Inhibition. Gaudêncio SP, Pereira F. Mar Drugs 18 E633 (2020)
  65. Allosteric inhibitors of the main protease of SARS-CoV-2. Samrat SK, Xu J, Xie X, Gianti E, Chen H, Zou J, Pattis JG, Elokely K, Lee H, Li Z, Klein ML, Shi PY, Zhou J, Li H. Antiviral Res 205 105381 (2022)
  66. An Integrated Computational and Experimental Approach to Identifying Inhibitors for SARS-CoV-2 3CL Protease. Zhai T, Zhang F, Haider S, Kraut D, Huang Z. Front Mol Biosci 8 661424 (2021)
  67. Continuous Automated Model EvaluatiOn (CAMEO)-Perspectives on the future of fully automated evaluation of structure prediction methods. Robin X, Haas J, Gumienny R, Smolinski A, Tauriello G, Schwede T. Proteins 89 1977-1986 (2021)
  68. Identifying and repurposing antiviral drugs against severe acute respiratory syndrome coronavirus 2 with in silico and in vitro approaches. Watashi K. Biochem Biophys Res Commun 538 137-144 (2021)
  69. NMR Spectroscopy of the Main Protease of SARS-CoV-2 and Fragment-Based Screening Identify Three Protein Hotspots and an Antiviral Fragment. Cantrelle FX, Boll E, Brier L, Moschidi D, Belouzard S, Landry V, Leroux F, Dewitte F, Landrieu I, Dubuisson J, Deprez B, Charton J, Hanoulle X. Angew Chem Int Ed Engl 60 25428-25435 (2021)
  70. Oridonin Inhibits SARS-CoV-2 by Targeting Its 3C-Like Protease. Zhong B, Peng W, Du S, Chen B, Feng Y, Hu X, Lai Q, Liu S, Zhou ZW, Fang P, Wu Y, Gao F, Zhou H, Sun L. Small Sci 2 2100124 (2022)
  71. Screening for Inhibitors of Main Protease in SARS-CoV-2: In Silico and In Vitro Approach Avoiding Peptidyl Secondary Amides. Yamamoto KZ, Yasuo N, Sekijima M. J Chem Inf Model 62 350-358 (2022)
  72. Xanthohumol Is a Potent Pan-Inhibitor of Coronaviruses Targeting Main Protease. Lin Y, Zang R, Ma Y, Wang Z, Li L, Ding S, Zhang R, Wei Z, Yang J, Wang X. Int J Mol Sci 22 12134 (2021)
  73. A Ligand Selection Strategy Identifies Chemical Probes Targeting the Proteases of SARS-CoV-2. Peñalver L, Schmid P, Szamosvári D, Schildknecht S, Globisch C, Sawade K, Peter C, Böttcher T. Angew Chem Int Ed Engl 60 6799-6806 (2021)
  74. A new inactive conformation of SARS-CoV-2 main protease. Fornasier E, Macchia ML, Giachin G, Sosic A, Pavan M, Sturlese M, Salata C, Moro S, Gatto B, Bellanda M, Battistutta R. Acta Crystallogr D Struct Biol 78 363-378 (2022)
  75. Antiviral activities of 4H-chromen-4-one scaffold-containing flavonoids against SARS-CoV-2 using computational and in vitro approaches. Raj V, Lee JH, Shim JJ, Lee J. J Mol Liq 353 118775 (2022)
  76. Comprehensive Consensus Analysis of SARS-CoV-2 Drug Repurposing Campaigns. Mslati H, Gentile F, Perez C, Cherkasov A. J Chem Inf Model 61 3771-3788 (2021)
  77. Development of Highly Potent Noncovalent Inhibitors of SARS-CoV-2 3CLpro. Hou N, Shuai L, Zhang L, Xie X, Tang K, Zhu Y, Yu Y, Zhang W, Tan Q, Zhong G, Wen Z, Wang C, He X, Huo H, Gao H, Xu Y, Xue J, Peng C, Zou J, Schindewolf C, Menachery V, Su W, Yuan Y, Shen Z, Zhang R, Yuan S, Yu H, Shi PY, Bu Z, Huang J, Hu Q. ACS Cent Sci 9 217-227 (2023)
  78. Hepatitis C virus NS3/4A inhibitors and other drug-like compounds as covalent binders of SARS-CoV-2 main protease. Andi B, Kumaran D, Kreitler DF, Soares AS, Keereetaweep J, Jakoncic J, Lazo EO, Shi W, Fuchs MR, Sweet RM, Shanklin J, Adams PD, Schmidt JG, Head MS, McSweeney S. Sci Rep 12 12197 (2022)
  79. Iterated Virtual Screening-Assisted Antiviral and Enzyme Inhibition Assays Reveal the Discovery of Novel Promising Anti-SARS-CoV-2 with Dual Activity. Hamdy R, Fayed B, Mostafa A, Shama NMA, Mahmoud SH, Mehta CH, Nayak Y, M Soliman SS. Int J Mol Sci 22 9057 (2021)
  80. Potential SARS-CoV-2 3CLpro inhibitors from chromene, flavonoid and hydroxamic acid compound based on FRET assay, docking and pharmacophore studies. Hariono M, Hariyono P, Dwiastuti R, Setyani W, Yusuf M, Salin N, Wahab H. Results Chem 3 100195 (2021)
  81. Structure-based identification of SARS-CoV-2 main protease inhibitors from anti-viral specific chemical libraries: an exhaustive computational screening approach. Bhowmick S, Saha A, Osman SM, Alasmary FA, Almutairi TM, Islam MA. Mol Divers 25 1979-1997 (2021)
  82. In vitro and computational investigations of novel synthetic carboxamide-linked pyridopyrrolopyrimidines with potent activity as SARS-CoV-2-MPro inhibitors. Aljuhani A, Ahmed HEA, Ihmaid SK, Omar AM, Althagfan SS, Alahmadi YM, Ahmad I, Patel H, Ahmed S, Almikhlafi MA, El-Agrody AM, Zayed MF, Turkistani SA, Abulkhair SH, Almaghrabi M, Salama SA, Al-Karmalawy AA, Abulkhair HS. RSC Adv 12 26895-26907 (2022)
  83. Identification of Food Compounds as inhibitors of SARS-CoV-2 main protease using molecular docking and molecular dynamics simulations. Masand VH, Sk MF, Kar P, Rastija V, Zaki MEA. Chemometr Intell Lab Syst 217 104394 (2021)
  84. Polyphenols as alternative treatments of COVID-19. Wu Y, Pegan SD, Crich D, Desrochers E, Starling EB, Hansen MC, Booth C, Nicole Mullininx L, Lou L, Chang KY, Xie ZR. Comput Struct Biotechnol J 19 5371-5380 (2021)
  85. Probing the Dynamic Structure-Function and Structure-Free Energy Relationships of the Coronavirus Main Protease with Biodynamics Theory. Wan H, Aravamuthan V, Pearlstein RA. ACS Pharmacol Transl Sci 3 1111-1143 (2020)
  86. Thiazole/Thiadiazole/Benzothiazole Based Thiazolidin-4-One Derivatives as Potential Inhibitors of Main Protease of SARS-CoV-2. Petrou A, Zagaliotis P, Theodoroula NF, Mystridis GA, Vizirianakis IS, Walsh TJ, Geronikaki A. Molecules 27 2180 (2022)
  87. Ugonin J Acts as a SARS-CoV-2 3C-like Protease Inhibitor and Exhibits Anti-inflammatory Properties. Chiou WC, Lu HF, Hsu NY, Chang TY, Chin YF, Liu PC, Lo JM, Wu YB, Yang JM, Huang C. Front Pharmacol 12 720018 (2021)
  88. A Genetic Trap in Yeast for Inhibitors of SARS-CoV-2 Main Protease. Alalam H, Sigurdardóttir S, Bourgard C, Tiukova I, King RD, Grøtli M, Sunnerhagen P. mSystems 6 e0108721 (2021)
  89. A VSV-based assay quantifies coronavirus Mpro/3CLpro/Nsp5 main protease activity and chemical inhibition. Heilmann E, Costacurta F, Geley S, Mogadashi SA, Volland A, Rupp B, Harris RS, von Laer D. Commun Biol 5 391 (2022)
  90. A fluorescence-based, gain-of-signal, live cell system to evaluate SARS-CoV-2 main protease inhibition. Dey-Rao R, Smith GR, Timilsina U, Falls Z, Samudrala R, Stavrou S, Melendy T. Antiviral Res 195 105183 (2021)
  91. A novel framework integrating AI model and enzymological experiments promotes identification of SARS-CoV-2 3CL protease inhibitors and activity-based probe. Hu F, Wang L, Hu Y, Wang D, Wang W, Jiang J, Li N, Yin P. Brief Bioinform 22 bbab301 (2021)
  92. Conserved coronavirus proteins as targets of broad-spectrum antivirals. Melo-Filho CC, Bobrowski T, Martin HJ, Sessions Z, Popov KI, Moorman NJ, Baric RS, Muratov EN, Tropsha A. Antiviral Res 204 105360 (2022)
  93. Determination of Ligand Binding Modes in Hydrated Viral Ion Channels to Foster Drug Design and Repositioning. Zsidó BZ, Börzsei R, Szél V, Hetényi C. J Chem Inf Model 61 4011-4022 (2021)
  94. Invalidation of dieckol and 1,2,3,4,6-pentagalloylglucose (PGG) as SARS-CoV-2 main protease inhibitors and the discovery of PGG as a papain-like protease inhibitor. Tan H, Ma C, Wang J. Med Chem Res 31 1147-1153 (2022)
  95. Systematic Search for SARS-CoV-2 Main Protease Inhibitors for Drug Repurposing: Ethacrynic Acid as a Potential Drug. Isgrò C, Sardanelli AM, Palese LL. Viruses 13 106 (2021)
  96. Target-Based Virtual Screening and LC/MS-Guided Isolation Procedure for Identifying Phloroglucinol-Terpenoid Inhibitors of SARS-CoV-2. Hou B, Zhang YM, Liao HY, Fu LF, Li DD, Zhao X, Qi JX, Yang W, Xiao GF, Yang L, Zuo ZY, Wang L, Zhang XL, Bai F, Yang L, Gao GF, Song H, Hu JM, Shang WJ, Zhou J. J Nat Prod 85 327-336 (2022)
  97. A Study of 3CLpros as Promising Targets against SARS-CoV and SARS-CoV-2. Jo S, Kim S, Yoo J, Kim MS, Shin DH. Microorganisms 9 756 (2021)
  98. A systematic exploration of boceprevir-based main protease inhibitors as SARS-CoV-2 antivirals. Alugubelli YR, Geng ZZ, Yang KS, Shaabani N, Khatua K, Ma XR, Vatansever EC, Cho CC, Ma Y, Xiao J, Blankenship LR, Yu G, Sankaran B, Li P, Allen R, Ji H, Xu S, Liu WR. Eur J Med Chem 240 114596 (2022)
  99. Bioguided Isolation of Cyclopenin Analogues as Potential SARS-CoV-2 Mpro Inhibitors from Penicillium citrinum TDPEF34. Thissera B, Sayed AM, Hassan MHA, Abdelwahab SF, Amaeze N, Semler VT, Alenezi FN, Yaseen M, Alhadrami HA, Belbahri L, Rateb ME. Biomolecules 11 1366 (2021)
  100. Comparative evaluation of flavonoids reveals the superiority and promising inhibition activity of silibinin against SARS-CoV-2. Hamdy R, Mostafa A, Abo Shama NM, Soliman SSM, Fayed B. Phytother Res 36 2921-2939 (2022)
  101. Construction and characterization of two SARS-CoV-2 minigenome replicon systems. Zhang H, Fischer DK, Shuda M, Moore PS, Gao SJ, Ambrose Z, Guo H. J Med Virol 94 2438-2452 (2022)
  102. Current status of structure-based drug repurposing against COVID-19 by targeting SARS-CoV-2 proteins. Hijikata A, Shionyu C, Nakae S, Shionyu M, Ota M, Kanaya S, Shirai T. Biophys Physicobiol 18 226-240 (2021)
  103. Discovery of novel oxazole-based macrocycles as anti-coronaviral agents targeting SARS-CoV-2 main protease. Al-Wahaibi LH, Mostafa A, Mostafa YA, Abou-Ghadir OF, Abdelazeem AH, Gouda AM, Kutkat O, Abo Shama NM, Shehata M, Gomaa HAM, Abdelrahman MH, Mohamed FAM, Gu X, Ali MA, Trembleau L, Youssif BGM. Bioorg Chem 116 105363 (2021)
  104. Human early syncytiotrophoblasts are highly susceptible to SARS-CoV-2 infection. Ruan D, Ye ZW, Yuan S, Li Z, Zhang W, Ong CP, Tang K, Ka Ki Tam TT, Guo J, Xuan Y, Huang Y, Zhang Q, Lee CL, Lu L, Chiu PCN, Yeung WSB, Liu F, Jin DY, Liu P. Cell Rep Med 3 100849 (2022)
  105. Identification of high affinity and low molecular alternatives of boceprevir against SARS-CoV-2 main protease: A virtual screening approach. Borkotoky S, Banerjee M, Modi GP, Dubey VK. Chem Phys Lett 770 138446 (2021)
  106. In silico evidence of beauvericin antiviral activity against SARS-CoV-2. Al Khoury C, Bashir Z, Tokajian S, Nemer N, Merhi G, Nemer G. Comput Biol Med 141 105171 (2022)
  107. Methodological Development of a Multi-Readout Assay for the Assessment of Antiviral Drugs against SARS-CoV-2. Hahn F, Häge S, Herrmann A, Wangen C, Kicuntod J, Jungnickl D, Tillmanns J, Müller R, Fraedrich K, Überla K, Kohlhof H, Ensser A, Marschall M. Pathogens 10 1076 (2021)
  108. Peptide valence-induced breaks in plasmonic coupling. Chang YC, Jin Z, Li K, Zhou J, Yim W, Yeung J, Cheng Y, Retout M, Creyer MN, Fajtová P, He T, Chen X, O'Donoghue AJ, Jokerst JV. Chem Sci 14 2659-2668 (2023)
  109. Schaftoside inhibits 3CLpro and PLpro of SARS-CoV-2 virus and regulates immune response and inflammation of host cells for the treatment of COVID-19. Yi Y, Zhang M, Xue H, Yu R, Bao YO, Kuang Y, Chai Y, Ma W, Wang J, Shi X, Li W, Hong W, Li J, Muturi E, Wei H, Wlodarz J, Roszak S, Qiao X, Yang H, Ye M. Acta Pharm Sin B 12 4154-4164 (2022)
  110. Structural Basis of Main Proteases of Coronavirus Bound to Drug Candidate PF-07304814. Li J, Lin C, Zhou X, Zhong F, Zeng P, McCormick PJ, Jiang H, Zhang J. J Mol Biol 434 167706 (2022)
  111. A genetically encoded BRET-based SARS-CoV-2 Mpro protease activity sensor. Geethakumari AM, Ahmed WS, Rasool S, Fatima A, Nasir Uddin SM, Aouida M, Biswas KH. Commun Chem 5 117 (2022)
  112. A reporter cell line for the automated quantification of SARS-CoV-2 infection in living cells. Desmarets L, Callens N, Hoffmann E, Danneels A, Lavie M, Couturier C, Dubuisson J, Belouzard S, Rouillé Y. Front Microbiol 13 1031204 (2022)
  113. Alkyne Derivatives of SARS-CoV-2 Main Protease Inhibitors Including Nirmatrelvir Inhibit by Reacting Covalently with the Nucleophilic Cysteine. Brewitz L, Dumjahn L, Zhao Y, Owen CD, Laidlaw SM, Malla TR, Nguyen D, Lukacik P, Salah E, Crawshaw AD, Warren AJ, Trincao J, Strain-Damerell C, Carroll MW, Walsh MA, Schofield CJ. J Med Chem 66 2663-2680 (2023)
  114. Diamond Light Source: contributions to SARS-CoV-2 biology and therapeutics. Walsh MA, Grimes JM, Stuart DI. Biochem Biophys Res Commun 538 40-46 (2021)
  115. High-throughput screening of SARS-CoV-2 main and papain-like protease inhibitors. Zang Y, Su M, Wang Q, Cheng X, Zhang W, Zhao Y, Chen T, Jiang Y, Shen Q, Du J, Tan Q, Wang P, Gao L, Jin Z, Zhang M, Li C, Zhu Y, Feng B, Tang B, Xie H, Wang MW, Zheng M, Pan X, Yang H, Xu Y, Wu B, Zhang L, Rao Z, Yang X, Jiang H, Xiao G, Zhao Q, Li J. Protein Cell 14 17-27 (2023)
  116. Naturally occurring anthraquinones as potential inhibitors of SARS-CoV-2 main protease: an integrated computational study. Das S, Singh A, Samanta SK, Singha Roy A. Biologia (Bratisl) 77 1121-1134 (2022)
  117. Polyphenolic Compounds Isolated from Marine Algae Attenuate the Replication of SARS-CoV-2 in the Host Cell through a Multi-Target Approach of 3CLpro and PLpro. Nagahawatta DP, Liyanage NM, Je JG, Jayawardhana HHACK, Jayawardena TU, Jeong SH, Kwon HJ, Choi CS, Jeon YJ. Mar Drugs 20 786 (2022)
  118. Profile of SARS-CoV-2. Heinz FX, Stiasny K. Wien Klin Wochenschr 132 635-644 (2020)
  119. A genetically encoded BRET-based SARS-CoV-2 Mpro protease activity sensor. Geethakumari AM, Ahmed WS, Rasool S, Fatima A, Nasir Uddin SM, Aouida M, Biswas KH. Commun Chem 5 117 (2022)
  120. A highly sensitive cell-based luciferase assay for high-throughput automated screening of SARS-CoV-2 nsp5/3CLpro inhibitors. Chen KY, Krischuns T, Varga LO, Harigua-Souiai E, Paisant S, Zettor A, Chiaravalli J, Delpal A, Courtney D, O'Brien A, Baker SC, Decroly E, Isel C, Agou F, Jacob Y, Blondel A, Naffakh N. Antiviral Res 201 105272 (2022)
  121. A new generation Mpro inhibitor with potent activity against SARS-CoV-2 Omicron variants. Huang C, Shuai H, Qiao J, Hou Y, Zeng R, Xia A, Xie L, Fang Z, Li Y, Yoon C, Huang Q, Hu B, You J, Quan B, Zhao X, Guo N, Zhang S, Ma R, Zhang J, Wang Y, Yang R, Zhang S, Nan J, Xu H, Wang F, Lei J, Chu H, Yang S. Signal Transduct Target Ther 8 128 (2023)
  122. Anticoronaviral Activity of the Natural Phloroglucinols, Dryocrassin ABBA and Filixic Acid ABA from the Rhizome of Dryopteris crassirhizoma by Targeting the Main Protease of SARS-CoV-2. Jin YH, Jeon S, Lee J, Kim S, Jang MS, Park CM, Song JH, Kim HR, Kwon S. Pharmaceutics 14 376 (2022)
  123. Combined computational and cellular screening identifies synergistic inhibition of SARS-CoV-2 by lenvatinib and remdesivir. Pohl MO, Busnadiego I, Marrafino F, Wiedmer L, Hunziker A, Fernbach S, Glas I, Moroz-Omori EV, Hale BG, Caflisch A, Stertz S. J Gen Virol 102 (2021)
  124. Discovery of lead natural products for developing pan-SARS-CoV-2 therapeutics. Pérez-Vargas J, Shapira T, Olmstead AD, Villanueva I, Thompson CAH, Ennis S, Gao G, De Guzman J, Williams DE, Wang M, Chin A, Bautista-Sánchez D, Agafitei O, Levett P, Xie X, Nuzzo G, Freire VF, Quintana-Bulla JI, Bernardi DI, Gubiani JR, Suthiphasilp V, Raksat A, Meesakul P, Polbuppha I, Cheenpracha S, Jaidee W, Kanokmedhakul K, Yenjai C, Chaiyosang B, Teles HL, Manzo E, Fontana A, Leduc R, Boudreault PL, Berlinck RGS, Laphookhieo S, Kanokmedhakul S, Tietjen I, Cherkasov A, Krajden M, Nabi IR, Niikura M, Shi PY, Andersen RJ, Jean F. Antiviral Res 209 105484 (2023)
  125. Easy access to α-ketoamides as SARS-CoV-2 and MERS Mpro inhibitors via the PADAM oxidation route. Pelliccia S, Cerchia C, Esposito F, Cannalire R, Corona A, Costanzi E, Kuzikov M, Gribbon P, Zaliani A, Brindisi M, Storici P, Tramontano E, Summa V. Eur J Med Chem 244 114853 (2022)
  126. From Repurposing to Redesign: Optimization of Boceprevir to Highly Potent Inhibitors of the SARS-CoV-2 Main Protease. Göhl M, Zhang L, El Kilani H, Sun X, Zhang K, Brönstrup M, Hilgenfeld R. Molecules 27 4292 (2022)
  127. Improved Synthesis of a Cyclic Glutamine Analogue Used in Antiviral Agents Targeting 3C and 3CL Proteases Including SARS-CoV-2 Mpro. Vuong W, Vederas JC. J Org Chem 86 13104-13110 (2021)
  128. Novel dithiocarbamates selectively inhibit 3CL protease of SARS-CoV-2 and other coronaviruses. Brier L, Hassan H, Hanoulle X, Landry V, Moschidi D, Desmarets L, Rouillé Y, Dumont J, Herledan A, Warenghem S, Piveteau C, Carré P, Ikherbane S, Cantrelle FX, Dupré E, Dubuisson J, Belouzard S, Leroux F, Deprez B, Charton J. Eur J Med Chem 250 115186 (2023)
  129. Pre-Steady-State Kinetics of the SARS-CoV-2 Main Protease as a Powerful Tool for Antiviral Drug Discovery. Zakharova MY, Kuznetsova AA, Uvarova VI, Fomina AD, Kozlovskaya LI, Kaliberda EN, Kurbatskaia IN, Smirnov IV, Bulygin AA, Knorre VD, Fedorova OS, Varnek A, Osolodkin DI, Ishmukhametov AA, Egorov AM, Gabibov AG, Kuznetsov NA. Front Pharmacol 12 773198 (2021)
  130. Primer for Designing Main Protease (Mpro) Inhibitors of SARS-CoV-2. Thakur A, Sharma G, Badavath VN, Jayaprakash V, Merz KM, Blum G, Acevedo O. J Phys Chem Lett 13 5776-5786 (2022)
  131. Repurposing Halicin as a potent covalent inhibitor for the SARS-CoV-2 main protease. Yang KS, Alex Kuo ST, Blankenship LR, Geng ZZ, Li SG, Russell DH, Yan X, Xu S, Liu WR. Curr Res Chem Biol 2 100025 (2022)
  132. Repurposing of drugs for combined treatment of COVID-19 cytokine storm using machine learning. Gantla MR, Tsigelny IF, Kouznetsova VL. Med Drug Discov 17 100148 (2023)
  133. Small molecule interactions with the SARS-CoV-2 main protease: In silico all-atom microsecond MD simulations, PELE Monte Carlo simulations, and determination of in vitro activity inhibition. Liang J, Pitsillou E, Ververis K, Guallar V, Hung A, Karagiannis TC. J Mol Graph Model 110 108050 (2022)
  134. BRET-Based Self-Cleaving Biosensors for SARS-CoV-2 3CLpro Inhibitor Discovery. Hou N, Peng C, Zhang L, Zhu Y, Hu Q. Microbiol Spectr 10 e0255921 (2022)
  135. Development of a colorimetric assay for the detection of SARS-CoV-2 3CLpro activity. Garland GD, Harvey RF, Mulroney TE, Monti M, Fuller S, Haigh R, Gerber PP, Barer MR, Matheson NJ, Willis AE. Biochem J 479 901-920 (2022)
  136. Discovery of 2-(furan-2-ylmethylene)hydrazine-1-carbothioamide derivatives as novel inhibitors of SARS-CoV-2 main protease. Dou X, Sun Q, Xu G, Liu Y, Zhang C, Wang B, Lu Y, Guo Z, Su L, Huo T, Zhao X, Wang C, Yu Z, Song S, Zhang L, Liu Z, Lai L, Jiao N. Eur J Med Chem 238 114508 (2022)
  137. Exploring the dual effect of novel 1,4-diarylpyranopyrazoles as antiviral and anti-inflammatory for the management of SARS-CoV-2 and associated inflammatory symptoms. Malebari AM, E A Ahmed H, Ihmaid SK, Omar AM, Muhammad YA, Althagfan SS, Aljuhani N, A A El-Sayed AA, Halawa AH, El-Tahir HM, Turkistani SA, Almaghrabi M, K B Aljohani A, El-Agrody AM, Abulkhair HS. Bioorg Chem 130 106255 (2023)
  138. Identification of potential SARS-CoV-2 Mpro inhibitors integrating molecular docking and water thermodynamics. Sobhia ME, Ghosh K, Sivangula S, Kumar S, Singh H. J Biomol Struct Dyn 40 5079-5089 (2022)
  139. Identification of repurposing therapeutics toward SARS-CoV-2 main protease by virtual screening. Sanachai K, Somboon T, Wilasluck P, Deetanya P, Wolschann P, Langer T, Lee VS, Wangkanont K, Rungrotmongkol T, Hannongbua S. PLoS One 17 e0269563 (2022)
  140. NMR Observation of Sulfhydryl Signals in SARS-CoV-2 Main Protease Aids Structural Studies. Robertson AJ, Ying J, Bax A. Chembiochem 23 e202200471 (2022)
  141. Nirmatrelvir treatment of SARS-CoV-2-infected mice blunts antiviral adaptive immune responses. Fumagalli V, Di Lucia P, Ravà M, Marotta D, Bono E, Grassi S, Donnici L, Cannalire R, Stefanelli I, Ferraro A, Esposito F, Pariani E, Inverso D, Montesano C, Delbue S, Perlman S, Tramontano E, De Francesco R, Summa V, Guidotti LG, Iannacone M. EMBO Mol Med 15 e17580 (2023)
  142. Repurposing of potential antiviral drugs against RNA-dependent RNA polymerase of SARS-CoV-2 by computational approach. Gangadharan S, Ambrose JM, Rajajagadeesan A, Kullappan M, Patil S, Gandhamaneni SH, Veeraraghavan VP, Nakkella AK, Agarwal A, Jayaraman S, Surapaneni KM. J Infect Public Health 15 1180-1191 (2022)
  143. SMYD2 Inhibition Downregulates TMPRSS2 and Decreases SARS-CoV-2 Infection in Human Intestinal and Airway Epithelial Cells. Yu YQ, Herrmann A, Thonn V, Cordsmeier A, Neurath MF, Ensser A, Becker C. Cells 11 1262 (2022)
  144. Structural similarities between SARS-CoV2 3CLpro and other viral proteases suggest potential lead molecules for developing broad spectrum antivirals. Bafna K, Cioffi CL, Krug RM, Montelione GT. Front Chem 10 948553 (2022)
  145. Working goal of Brazilein sappan wood as a candidate for SARS-coV-2 antivirus drug against spike (S) glycoprotein, papain-like proteinase, and main protease: In silico study. Kurniawan E, Krihariyani D. J Adv Pharm Technol Res 12 298-304 (2021)
  146. A Versatile Class of 1,4,4-Trisubstituted Piperidines Block Coronavirus Replication In Vitro. De Castro S, Stevaert A, Maldonado M, Delpal A, Vandeput J, Van Loy B, Eydoux C, Guillemot JC, Decroly E, Gago F, Canard B, Camarasa MJ, Velázquez S, Naesens L. Pharmaceuticals (Basel) 15 1021 (2022)
  147. Broad-spectrum coronavirus 3C-like protease peptidomimetic inhibitors effectively block SARS-CoV-2 replication in cells: Design, synthesis, biological evaluation, and X-ray structure determination. Stefanelli I, Corona A, Cerchia C, Cassese E, Improta S, Costanzi E, Pelliccia S, Morasso S, Esposito F, Paulis A, Scognamiglio S, Di Leva FS, Storici P, Brindisi M, Tramontano E, Cannalire R, Summa V. Eur J Med Chem 253 115311 (2023)
  148. Differing pan-coronavirus antiviral potency of boceprevir and GC376 in vitro despite discordant molecular docking predictions. Wang Y, Li P, Lavrijsen M, Li Y, Ma Z, Peppelenbosch MP, Baig MS, Pan Q. Arch Virol 167 1125-1130 (2022)
  149. Dual-Reporter System for Real-Time Monitoring of SARS-CoV-2 Main Protease Activity in Live Cells Enables Identification of an Allosteric Inhibition Path. Bram Y, Duan X, Nilsson-Payant BE, Chandar V, Wu H, Shore D, Fajardo A, Sinha S, Hassan N, Weinstein H, TenOever BR, Chen S, Schwartz RE. ACS Bio Med Chem Au 2 627-641 (2022)
  150. Inhibitory activities of alginate phosphate and sulfate derivatives against SARS-CoV-2 in vitro. Yang C, Li D, Wang S, Xu M, Wang D, Li X, Xu X, Li C. Int J Biol Macromol 227 316-328 (2023)
  151. Label-free duplex SAMDI-MS screen reveals novel SARS-CoV-2 3CLpro inhibitors. Scholle MD, O'Kane PT, Dib S, Gurard-Levin ZA. Antiviral Res 200 105279 (2022)
  152. Ligand-based and structure-based studies to develop predictive models for SARS-CoV-2 main protease inhibitors through the 3d-qsar.com portal. Proia E, Ragno A, Antonini L, Sabatino M, Mladenovič M, Capobianco R, Ragno R. J Comput Aided Mol Des 36 483-505 (2022)
  153. Maturation of the SARS-CoV-2 virus is regulated by dimerization of its main protease. Kaptan S, Girych M, Enkavi G, Kulig W, Sharma V, Vuorio J, Rog T, Vattulainen I. Comput Struct Biotechnol J 20 3336-3346 (2022)
  154. Prediction of coronavirus 3C-like protease cleavage sites using machine-learning algorithms. Chen H, Zhu Z, Qiu Y, Ge X, Zheng H, Peng Y. Virol Sin 37 437-444 (2022)
  155. Protocetraric and Salazinic Acids as Potential Inhibitors of SARS-CoV-2 3CL Protease: Biochemical, Cytotoxic, and Computational Characterization of Depsidones as Slow-Binding Inactivators. Fagnani L, Nazzicone L, Bellio P, Franceschini N, Tondi D, Verri A, Petricca S, Iorio R, Amicosante G, Perilli M, Celenza G. Pharmaceuticals (Basel) 15 714 (2022)
  156. Screening for inhibitors against SARS-CoV-2 and its variants. Yuan W, Dong X, Chen L, Lei X, Zhou Z, Guo L, Wang J. Biosaf Health 4 186-192 (2022)
  157. Search of Novel Small Molecule Inhibitors for the Main Protease of SARS-CoV-2. Zhang W, Lin SX. Viruses 15 580 (2023)
  158. Synthesis, spectroscopic characterization of novel phthalimides derivatives bearing a 1,2,3-triazole unit and examination as potential SARS-CoV-2 inhibitors via in silico studies. Tan A. J Mol Struct 1261 132915 (2022)
  159. Targeting SARS-CoV-2 Main Protease: A Successful Story Guided by an In Silico Drug Repurposing Approach. Ambrosio FA, Costa G, Romeo I, Esposito F, Alkhatib M, Salpini R, Svicher V, Corona A, Malune P, Tramontano E, Ceccherini-Silberstein F, Alcaro S, Artese A. J Chem Inf Model 63 3601-3613 (2023)
  160. The Potential of Stilbene Compounds to Inhibit Mpro Protease as a Natural Treatment Strategy for Coronavirus Disease-2019. Naseem A, Rasool F, Ahmed A, Carter WG. Curr Issues Mol Biol 45 12-32 (2022)
  161. In silico identification of natural compounds against SARS-CoV-2 main protease from Chinese herbal medicines. Kuang Y, Shen W, Ma X, Wang Z, Xu R, Rao Q, Yang S. Future Sci OA 9 FSO873 (2023)
  162. A Study of Drug Repurposing to Identify SARS-CoV-2 Main Protease (3CLpro) Inhibitors. Jo S, Signorile L, Kim S, Kim MS, Huertas O, Insa R, Reig N, Shin DH. Int J Mol Sci 23 6468 (2022)
  163. A cysteine protease inhibitor GC376 displays potent antiviral activity against coxsackievirus infection. Chen Y, Li X, Wang M, Li Y, Fan J, Yan J, Zhang S, Lu L, Zou P. Curr Res Microb Sci 5 100203 (2023)
  164. An electrophilic fragment screening for the development of small molecules targeting caspase-2. Cuellar ME, Yang M, Karavadhi S, Zhang YQ, Zhu H, Sun H, Shen M, Hall MD, Patnaik S, Ashe KH, Walters MA, Pockes S. Eur J Med Chem 259 115632 (2023)
  165. Antcin-B, a phytosterol-like compound from Taiwanofungus camphoratus inhibits SARS-CoV-2 3-chymotrypsin-like protease (3CLPro) activity in silico and in vitro. Dakpa G, Kumar KJS, Nelen J, Pérez-Sánchez H, Wang SY. Sci Rep 13 17106 (2023)
  166. Published Erratum Author Correction: Structure basis for inhibition of SARS-CoV-2 by the feline drug GC376. Luan XD, Chen BX, Shang WJ, Yin WC, Jin Y, Zhang LK, Xu HE, Zhang SY. Acta Pharmacol Sin 44 258 (2023)
  167. Combining virtual screening with cis-/trans-cleavage enzymatic assays effectively reveals broad-spectrum inhibitors that target the main proteases of SARS-CoV-2 and MERS-CoV. Chang YJ, Le UNP, Liu JJ, Li SR, Chao ST, Lai HC, Lin YF, Hsu KC, Lu CH, Lin CW. Antiviral Res 216 105653 (2023)
  168. Computational insights into binding mechanism of drugs as potential inhibitors against SARS-CoV-2 targets. Arooj M, Shehadi I, Nassab CN, Mohamed AA. Chem Zvesti 76 111-121 (2022)
  169. Contribution of the catalytic dyad of SARS-CoV-2 main protease to binding covalent and noncovalent inhibitors. Kovalevsky A, Aniana A, Coates L, Bonnesen PV, Nashed NT, Louis JM. J Biol Chem 299 104886 (2023)
  170. Curcumin Transferosome-Loaded Thermosensitive Intranasal in situ Gel as Prospective Antiviral Therapy for SARS-Cov-2. Eleraky NE, El-Badry M, Omar MM, El-Koussi WM, Mohamed NG, Abdel-Lateef MA, Hassan AS. Int J Nanomedicine 18 5831-5869 (2023)
  171. Design, synthesis and biological evaluation of covalent peptidomimetic 3CL protease inhibitors containing nitrile moiety. Zhu M, Fu T, You M, Cao J, Yang H, Chen X, Zhang Q, Xu Y, Jiang X, Zhang L, Su H, Zhang Y, Shen J. Bioorg Med Chem 87 117316 (2023)
  172. Design, synthesis and biological evaluation of peptidomimetic benzothiazolyl ketones as 3CLpro inhibitors against SARS-CoV-2. Yang H, You M, Shu X, Zhen J, Zhu M, Fu T, Zhang Y, Jiang X, Zhang L, Xu Y, Zhang Y, Su H, Zhang Q, Shen J. Eur J Med Chem 257 115512 (2023)
  173. Development of the Safe and Broad-Spectrum Aldehyde and Ketoamide Mpro inhibitors Derived from the Constrained α, γ-AA Peptide Scaffold. Wang L, Ma C, Sacco MD, Xue S, Mahmoud M, Calcul L, Chen Y, Wang J, Cai J. Chemistry 29 e202300476 (2023)
  174. Discovery of 2-thiobenzimidazoles as noncovalent inhibitors of SARS-CoV-2 main protease. Deodato D, Asad N, Dore TM. Bioorg Med Chem Lett 72 128867 (2022)
  175. Discovery of C-12 dithiocarbamate andrographolide analogues as inhibitors of SARS-CoV-2 main protease: In vitro and in silico studies. Nutho B, Wilasluck P, Deetanya P, Wangkanont K, Arsakhant P, Saeeng R, Rungrotmongkol T. Comput Struct Biotechnol J 20 2784-2797 (2022)
  176. E3 ubiquitin ligase ZBTB25 suppresses beta coronavirus infection through ubiquitination of the main viral protease MPro. Lear TB, Boudreau ÁN, Lockwood KC, Chu E, Camarco DP, Cao Q, Nguyen M, Evankovich JW, Finkel T, Liu Y, Chen BB. J Biol Chem 299 105388 (2023)
  177. Effects of diarylbutane lignans from Schisandra chinensis fruit on SARS-CoV-2 3CLpro and PLpro and their in vitro anti-inflammatory properties. Li B, Qiao L, Xiao Q, Zhang J, Liu J, Zhang B, Liu H. Phytomed Plus 3 100432 (2023)
  178. Engineering and Characterization of Avian Coronavirus Mutants Expressing Fluorescent Reporter Proteins from the Replicase Gene. Xing N, Wang Z, Wang J, Nascimento M, Jongkaewwattana A, Trimpert J, Osterrieder N, Kunec D. J Virol 96 e0065322 (2022)
  179. Evaluation of in vitro antiviral activity of SARS-CoV-2 Mpro inhibitor pomotrelvir and cross-resistance to nirmatrelvir resistance substitutions. Tong X, Keung W, Arnold LD, Stevens LJ, Pruijssers AJ, Kook S, Lopatin U, Denison M, Kwong AD. Antimicrob Agents Chemother 67 e0084023 (2023)
  180. Evaluation of RevX solution extract as a potential inhibitor of the main protease of SARS-CoV-2-In vitro study and molecular docking. Chou FP, Liu CC, Huong Giang HN, Huang SC, Hsu HF, Wu TK. Heliyon 8 e09034 (2022)
  181. High throughput screening for drugs that inhibit 3C-like protease in SARS-CoV-2. Smith E, Davis-Gardner ME, Garcia-Ordonez RD, Nguyen TT, Hull M, Chen E, Yu X, Bannister TD, Baillargeon P, Scampavia L, Griffin P, Farzan M, Spicer TP. SLAS Discov 28 95-101 (2023)
  182. Identification and evaluation of antiviral activity of novel compounds targeting SARS-CoV-2 virus by enzymatic and antiviral assays, and computational analysis. Nemčovičová I, Lopušná K, Štibrániová I, Benedetti F, Berti F, Felluga F, Drioli S, Vidali M, Katrlík J, Pažitná L, Holazová A, Blahutová J, Lenhartová S, Sláviková M, Klempa B, Ondrejovič M, Chmelová D, Legerská B, Miertuš S, Klacsová M, Uhríková D, Kerti L, Frecer V. J Enzyme Inhib Med Chem 39 2301772 (2024)
  183. Identification of and Mechanistic Insights into SARS-CoV-2 Main Protease Non-Covalent Inhibitors: An In-Silico Study. Shen JX, Du WW, Xia YL, Zhang ZB, Yu ZF, Fu YX, Liu SQ. Int J Mol Sci 24 4237 (2023)
  184. In silico identification and molecular dynamic simulations of derivatives of 6,6-dimethyl-3-azabicyclo[3.1.0]hexane-2-carboxamide against main protease 3CLpro of SARS-CoV-2 viral infection. Sinha P, Yadav AK. J Mol Model 29 130 (2023)
  185. Inhibition of SARS-CoV-2 3CL protease by the anti-viral chimeric protein RetroMAD1. Chan LC, Mat Yassim AS, Ahmad Fuaad AAH, Leow TC, Sabri S, Radin Yahaya RS, Abu Bakar AMS. Sci Rep 13 20178 (2023)
  186. Insights into targeting SARS-CoV-2: design, synthesis, in silico studies and antiviral evaluation of new dimethylxanthine derivatives. Mohamed AR, Mostafa A, El Hassab MA, Hedeab GM, Mahmoud SH, George RF, Georgey HH, Abdel Gawad NM, El-Ashrey MK. RSC Med Chem 14 899-920 (2023)
  187. Investigating novel thiazolyl-indazole derivatives as scaffolds for SARS-CoV-2 MPro inhibitors. Airas J, Bayas CA, N'Ait Ousidi A, Ait Itto MY, Auhmani A, Loubidi M, Esseffar M, Pollock JA, Parish CA. Eur J Med Chem Rep 4 100034 (2022)
  188. Lab-on-a-chip for the easy and visual detection of SARS-CoV-2 in saliva based on sensory polymers. Arnaiz A, Guirado-Moreno JC, Guembe-García M, Barros R, Tamayo-Ramos JA, Fernández-Pampín N, García JM, Vallejos S. Sens Actuators B Chem 379 133165 (2023)
  189. Natural Product-Based Screening for Lead Compounds Targeting SARS CoV-2 Mpro. Chen J, Zhou X, Fu L, Xu H. Pharmaceuticals (Basel) 16 767 (2023)
  190. Oridonin inhibits SARS-CoV-2 replication by targeting viral proteinase and polymerase. Zhang Z, Zhang H, Zhang Y, Zhang Q, Liu Q, Hu Y, Chen X, Wang J, Shi Y, Deng C, Gong P, Zhang B, Li X, Zhu B, Ye H. Virol Sin 38 470-479 (2023)
  191. P21-activated kinase 1 (PAK1)-mediated cytoskeleton rearrangement promotes SARS-CoV-2 entry and ACE2 autophagic degradation. Liu M, Lu B, Li Y, Yuan S, Zhuang Z, Li G, Wang D, Ma L, Zhu J, Zhao J, Chan CC, Poon VK, Chik KK, Zhao Z, Xian H, Zhao J, Zhao J, Chan JF, Zhang Y. Signal Transduct Target Ther 8 385 (2023)
  192. Quinazolinone-Peptido-Nitrophenyl-Derivatives as Potential Inhibitors of SARS-CoV-2 Main Protease. Giang HN, Chou FP, Chen CY, Chou SC, Huang SC, Wu T, Hue BT, Lin HC, Wu TK. Viruses 15 287 (2023)
  193. Structure-based development and preclinical evaluation of the SARS-CoV-2 3C-like protease inhibitor simnotrelvir. Jiang X, Su H, Shang W, Zhou F, Zhang Y, Zhao W, Zhang Q, Xie H, Jiang L, Nie T, Yang F, Xiong M, Huang X, Li M, Chen P, Peng S, Xiao G, Jiang H, Tang R, Zhang L, Shen J, Xu Y. Nat Commun 14 6463 (2023)
  194. Synthesis of optically active SARS-CoV-2 Mpro inhibitor drug nirmatrelvir (Paxlovid): an approved treatment of COVID-19. Ghosh AK, Yadav M. Org Biomol Chem 21 5768-5774 (2023)
  195. research-article The N-terminal peptide of the main protease of SARS-CoV-2, targeting dimer interface, inhibits its proteolytic activity. Song S, Kim Y, Kwak K, Lee H, Park H, Kim YB, Lee HJ, Kang LW. BMB Rep 56 606-611 (2023)
  196. Letter The SARS-CoV-2 main protease induces neurotoxic TDP-43 cleavage and aggregates. Yang J, Li Y, Wang S, Li H, Zhang L, Zhang H, Wang PH, Zheng X, Yu XF, Wei W. Signal Transduct Target Ther 8 109 (2023)