6y2e Citations

Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors.

Science 368 409-412 (2020)
Related entries: 6y2f, 6y2g, 6y7m

Cited: 1600 times
EuropePMC logo PMID: 32198291

Abstract

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) is a global health emergency. An attractive drug target among coronaviruses is the main protease (Mpro, also called 3CLpro) because of its essential role in processing the polyproteins that are translated from the viral RNA. We report the x-ray structures of the unliganded SARS-CoV-2 Mpro and its complex with an α-ketoamide inhibitor. This was derived from a previously designed inhibitor but with the P3-P2 amide bond incorporated into a pyridone ring to enhance the half-life of the compound in plasma. On the basis of the unliganded structure, we developed the lead compound into a potent inhibitor of the SARS-CoV-2 Mpro The pharmacokinetic characterization of the optimized inhibitor reveals a pronounced lung tropism and suitability for administration by the inhalative route.

Reviews - 6y2e mentioned but not cited (40)

  1. The SARS-CoV-2 main protease as drug target. Ullrich S, Nitsche C. Bioorg Med Chem Lett 30 127377 (2020)
  2. COVID-19: Drug Targets and Potential Treatments. Gil C, Ginex T, Maestro I, Nozal V, Barrado-Gil L, Cuesta-Geijo MÁ, Urquiza J, Ramírez D, Alonso C, Campillo NE, Martinez A. J Med Chem 63 12359-12386 (2020)
  3. Targeting the Dimerization of the Main Protease of Coronaviruses: A Potential Broad-Spectrum Therapeutic Strategy. Goyal B, Goyal D. ACS Comb Sci 22 297-305 (2020)
  4. Structural Basis of Potential Inhibitors Targeting SARS-CoV-2 Main Protease. Mengist HM, Dilnessa T, Jin T. Front Chem 9 622898 (2021)
  5. Structural Characterization of SARS-CoV-2: Where We Are, and Where We Need to Be. Mariano G, Farthing RJ, Lale-Farjat SLM, Bergeron JRC. Front Mol Biosci 7 605236 (2020)
  6. Targeting SARS-CoV-2 Proteases and Polymerase for COVID-19 Treatment: State of the Art and Future Opportunities. Cannalire R, Cerchia C, Beccari AR, Di Leva FS, Summa V. J Med Chem 65 2716-2746 (2022)
  7. Antiviral activity of green tea and black tea polyphenols in prophylaxis and treatment of COVID-19: A review. Mhatre S, Srivastava T, Naik S, Patravale V. Phytomedicine 85 153286 (2021)
  8. Potential therapeutic use of ebselen for COVID-19 and other respiratory viral infections. Sies H, Parnham MJ. Free Radic Biol Med 156 107-112 (2020)
  9. COVID-19 and SARS-CoV-2. Modeling the present, looking at the future. Estrada E. Phys Rep 869 1-51 (2020)
  10. Progress in Developing Inhibitors of SARS-CoV-2 3C-Like Protease. Li Q, Kang C. Microorganisms 8 E1250 (2020)
  11. Physicochemical properties of SARS-CoV-2 for drug targeting, virus inactivation and attenuation, vaccine formulation and quality control. Scheller C, Krebs F, Minkner R, Astner I, Gil-Moles M, Wätzig H. Electrophoresis 41 1137-1151 (2020)
  12. Recent advances in developing small-molecule inhibitors against SARS-CoV-2. Xiang R, Yu Z, Wang Y, Wang L, Huo S, Li Y, Liang R, Hao Q, Ying T, Gao Y, Yu F, Jiang S. Acta Pharm Sin B 12 1591-1623 (2022)
  13. Minireview of progress in the structural study of SARS-CoV-2 proteins. Zhu G, Zhu C, Zhu Y, Sun F. Curr Res Microb Sci 1 53-61 (2020)
  14. Therapeutics for COVID-19: from computation to practices-where we are, where we are heading to. Ojha PK, Kar S, Krishna JG, Roy K, Leszczynski J. Mol Divers 25 625-659 (2021)
  15. An Overview of the Crystallized Structures of the SARS-CoV-2. Ionescu MI. Protein J 39 600-618 (2020)
  16. Inhibition of the main protease of SARS-CoV-2 (Mpro) by repurposing/designing drug-like substances and utilizing nature's toolbox of bioactive compounds. Antonopoulou I, Sapountzaki E, Rova U, Christakopoulos P. Comput Struct Biotechnol J 20 1306-1344 (2022)
  17. Artificial Intelligence Technologies for COVID-19 De Novo Drug Design. Floresta G, Zagni C, Gentile D, Patamia V, Rescifina A. Int J Mol Sci 23 3261 (2022)
  18. Genomics insights of SARS-CoV-2 (COVID-19) into target-based drug discovery. Chellapandi P, Saranya S. Med Chem Res 29 1777-1791 (2020)
  19. Novel 2019 coronavirus: Genome structure, clinical trials, and outstanding questions. Jogalekar MP, Veerabathini A, Gangadaran P. Exp Biol Med (Maywood) 245 964-969 (2020)
  20. A Biochemical Perspective of the Nonstructural Proteins (NSPs) and the Spike Protein of SARS CoV-2. Yoshimoto FK. Protein J 40 260-295 (2021)
  21. A structural view of the SARS-CoV-2 virus and its assembly. Hardenbrook NJ, Zhang P. Curr Opin Virol 52 123-134 (2022)
  22. Role of Iron Chelation and Protease Inhibition of Natural Products on COVID-19 Infection. Carota G, Ronsisvalle S, Panarello F, Tibullo D, Nicolosi A, Li Volti G. J Clin Med 10 2306 (2021)
  23. Targeting protein-protein interaction interfaces in COVID-19 drug discovery. Chang CK, Lin SM, Satange R, Lin SC, Sun SC, Wu HY, Kehn-Hall K, Hou MH. Comput Struct Biotechnol J 19 2246-2255 (2021)
  24. Mechanisms of Proteolytic Enzymes and Their Inhibition in QM/MM Studies. Elsässer B, Goettig P. Int J Mol Sci 22 3232 (2021)
  25. Molecular Docking as a Potential Approach in Repurposing Drugs Against COVID-19: a Systematic Review and Novel Pharmacophore Models. Fadlalla M, Ahmed M, Ali M, Elshiekh AA, Yousef BA. Curr Pharmacol Rep 8 212-226 (2022)
  26. Computational methods directed towards drug repurposing for COVID-19: advantages and limitations. Sharma PP, Bansal M, Sethi A, Poonam, Pena L, Goel VK, Grishina M, Chaturvedi S, Kumar D, Rathi B. RSC Adv 11 36181-36198 (2021)
  27. Multi-Omics Approach in the Identification of Potential Therapeutic Biomolecule for COVID-19. Singh R, Singh PK, Kumar R, Kabir MT, Kamal MA, Rauf A, Albadrani GM, Sayed AA, Mousa SA, Abdel-Daim MM, Uddin MS. Front Pharmacol 12 652335 (2021)
  28. Antiviral fungal metabolites and some insights into their contribution to the current COVID-19 pandemic. Takahashi JA, Barbosa BVR, Lima MTNS, Cardoso PG, Contigli C, Pimenta LPS. Bioorg Med Chem 46 116366 (2021)
  29. Current Trends and Future Approaches in Small-Molecule Therapeutics for COVID-19. Laws M, Surani YM, Hasan MM, Chen Y, Jin P, Al-Adhami T, Chowdhury M, Imran A, Psaltis I, Jamshidi S, Nahar KS, Rahman KM. Curr Med Chem 28 3803-3824 (2021)
  30. Drug repurposing against SARS-CoV-2 using computational approaches. Kumar S, Kovalenko S, Bhardwaj S, Sethi A, Gorobets NY, Desenko SM, Poonam, Rathi B. Drug Discov Today 27 2015-2027 (2022)
  31. Biflavonoid as potential 3-chymotrypsin-like protease (3CLpro) inhibitor of SARS-Coronavirus. Hartini Y, Saputra B, Wahono B, Auw Z, Indayani F, Adelya L, Namba G, Hariono M. Results Chem 3 100087 (2021)
  32. Review on development of potential inhibitors of SARS-CoV-2 main protease (MPro). Katre SG, Asnani AJ, Pratyush K, Sakharkar NG, Bhope AG, Sawarkar KT, Nimbekar VS. Futur J Pharm Sci 8 36 (2022)
  33. Nigella sativa L. and COVID-19: A Glance at The Anti-COVID-19 Chemical Constituents, Clinical Trials, Inventions, and Patent Literature. Imran M, Khan SA, Abida, Alshammari MK, Alkhaldi SM, Alshammari FN, Kamal M, Alam O, Asdaq SMB, Alzahrani AK, Jomah S. Molecules 27 2750 (2022)
  34. An understanding of coronavirus and exploring the molecular dynamics simulations to find promising candidates against the Mpro of nCoV to combat the COVID-19: A systematic review. Singh MB, Sharma R, Kumar D, Khanna P, Mansi, Khanna L, Kumar V, Kumari K, Gupta A, Chaudhary P, Kaushik N, Choi EH, Kaushik NK, Singh P. J Infect Public Health 15 1326-1349 (2022)
  35. Insights into SARS-CoV-2: Medicinal Chemistry Approaches to Combat Its Structural and Functional Biology. Zhuo LS, Wang MS, Yang JF, Xu HC, Huang W, Shang LQ, Yang GF. Top Curr Chem (Cham) 379 23 (2021)
  36. Glycyrrhizin as a promising kryptonite against SARS-CoV-2: Clinical, experimental, and theoretical evidences. Banerjee S, Baidya SK, Adhikari N, Ghosh B, Jha T. J Mol Struct 1275 134642 (2023)
  37. Lessons Learnt from COVID-19: Computational Strategies for Facing Present and Future Pandemics. Pavan M, Moro S. Int J Mol Sci 24 4401 (2023)
  38. Recent updates on the biological efficacy of approved drugs and potent synthetic compounds against SARS-CoV-2. Anjani, Kumar S, Rathi B, Poonam. RSC Adv 13 3677-3687 (2023)
  39. Non-Canonical Amino Acids in Analyses of Protease Structure and Function. Goettig P, Koch NG, Budisa N. Int J Mol Sci 24 14035 (2023)
  40. Prospective mode of action of Ivermectin: SARS-CoV-2. Patil VM, Verma S, Masand N. Eur J Med Chem Rep 4 100018 (2022)

Articles - 6y2e mentioned but not cited (143)

  1. Feline coronavirus drug inhibits the main protease of SARS-CoV-2 and blocks virus replication. Vuong W, Khan MB, Fischer C, Arutyunova E, Lamer T, Shields J, Saffran HA, McKay RT, van Belkum MJ, Joyce MA, Young HS, Tyrrell DL, Vederas JC, Lemieux MJ. Nat Commun 11 4282 (2020)
  2. Structural plasticity of SARS-CoV-2 3CL Mpro active site cavity revealed by room temperature X-ray crystallography. Kneller DW, Phillips G, O'Neill HM, Jedrzejczak R, Stols L, Langan P, Joachimiak A, Coates L, Kovalevsky A. Nat Commun 11 3202 (2020)
  3. Discovery of potential multi-target-directed ligands by targeting host-specific SARS-CoV-2 structurally conserved main protease. Joshi RS, Jagdale SS, Bansode SB, Shankar SS, Tellis MB, Pandya VK, Chugh A, Giri AP, Kulkarni MJ. J Biomol Struct Dyn 39 3099-3114 (2021)
  4. Structural stability of SARS-CoV-2 3CLpro and identification of quercetin as an inhibitor by experimental screening. Abian O, Ortega-Alarcon D, Jimenez-Alesanco A, Ceballos-Laita L, Vega S, Reyburn HT, Rizzuti B, Velazquez-Campoy A. Int J Biol Macromol 164 1693-1703 (2020)
  5. SARS-CoV-2 simulations go exascale to predict dramatic spike opening and cryptic pockets across the proteome. Zimmerman MI, Porter JR, Ward MD, Singh S, Vithani N, Meller A, Mallimadugula UL, Kuhn CE, Borowsky JH, Wiewiora RP, Hurley MFD, Harbison AM, Fogarty CA, Coffland JE, Fadda E, Voelz VA, Chodera JD, Bowman GR. Nat Chem 13 651-659 (2021)
  6. In silico prediction of potential inhibitors for the main protease of SARS-CoV-2 using molecular docking and dynamics simulation based drug-repurposing. Kumar Y, Singh H, Patel CN. J Infect Public Health 13 1210-1223 (2020)
  7. Structural and Evolutionary Analysis Indicate That the SARS-CoV-2 Mpro Is a Challenging Target for Small-Molecule Inhibitor Design. Bzówka M, Mitusińska K, Raczyńska A, Samol A, Tuszyński JA, Góra A. Int J Mol Sci 21 E3099 (2020)
  8. In Silico Exploration of the Molecular Mechanism of Clinically Oriented Drugs for Possibly Inhibiting SARS-CoV-2's Main Protease. Huynh T, Wang H, Luan B. J Phys Chem Lett 11 4413-4420 (2020)
  9. Main protease mutants of SARS-CoV-2 variants remain susceptible to nirmatrelvir. Ullrich S, Ekanayake KB, Otting G, Nitsche C. Bioorg Med Chem Lett 62 128629 (2022)
  10. Supercomputer-Based Ensemble Docking Drug Discovery Pipeline with Application to Covid-19. Acharya A, Agarwal R, Baker MB, Baudry J, Bhowmik D, Boehm S, Byler KG, Chen SY, Coates L, Cooper CJ, Demerdash O, Daidone I, Eblen JD, Ellingson S, Forli S, Glaser J, Gumbart JC, Gunnels J, Hernandez O, Irle S, Kneller DW, Kovalevsky A, Larkin J, Lawrence TJ, LeGrand S, Liu SH, Mitchell JC, Park G, Parks JM, Pavlova A, Petridis L, Poole D, Pouchard L, Ramanathan A, Rogers DM, Santos-Martins D, Scheinberg A, Sedova A, Shen Y, Smith JC, Smith MD, Soto C, Tsaris A, Thavappiragasam M, Tillack AF, Vermaas JV, Vuong VQ, Yin J, Yoo S, Zahran M, Zanetti-Polzi L. J Chem Inf Model 60 5832-5852 (2020)
  11. Inhibition mechanism of SARS-CoV-2 main protease by ebselen and its derivatives. Amporndanai K, Meng X, Shang W, Jin Z, Rogers M, Zhao Y, Rao Z, Liu ZJ, Yang H, Zhang L, O'Neill PM, Samar Hasnain S. Nat Commun 12 3061 (2021)
  12. Unraveling the SARS-CoV-2 Main Protease Mechanism Using Multiscale Methods. Ramos-Guzmán CA, Ruiz-Pernía JJ, Tuñón I. ACS Catal 10 12544-12554 (2020)
  13. Ligand and structure-based virtual screening applied to the SARS-CoV-2 main protease: an in silico repurposing study. Ferraz WR, Gomes RA, S Novaes AL, Goulart Trossini GH. Future Med Chem 12 1815-1828 (2020)
  14. Impact of Early Pandemic Stage Mutations on Molecular Dynamics of SARS-CoV-2 Mpro. Sheik Amamuddy O, Verkhivker GM, Tastan Bishop Ö. J Chem Inf Model 60 5080-5102 (2020)
  15. Molecular Docking Reveals Ivermectin and Remdesivir as Potential Repurposed Drugs Against SARS-CoV-2. Eweas AF, Alhossary AA, Abdel-Moneim AS. Front Microbiol 11 592908 (2020)
  16. Rutin Is a Low Micromolar Inhibitor of SARS-CoV-2 Main Protease 3CLpro: Implications for Drug Design of Quercetin Analogs. Rizzuti B, Grande F, Conforti F, Jimenez-Alesanco A, Ceballos-Laita L, Ortega-Alarcon D, Vega S, Reyburn HT, Abian O, Velazquez-Campoy A. Biomedicines 9 375 (2021)
  17. Identification of polyphenols from Broussonetia papyrifera as SARS CoV-2 main protease inhibitors using in silico docking and molecular dynamics simulation approaches. Ghosh R, Chakraborty A, Biswas A, Chowdhuri S. J Biomol Struct Dyn 39 6747-6760 (2021)
  18. Catalytic Dyad Residues His41 and Cys145 Impact the Catalytic Activity and Overall Conformational Fold of the Main SARS-CoV-2 Protease 3-Chymotrypsin-Like Protease. Ferreira JC, Fadl S, Villanueva AJ, Rabeh WM. Front Chem 9 692168 (2021)
  19. Update on the target structures of SARS-CoV-2: A systematic review. Prajapat M, Sarma P, Shekhar N, Prakash A, Avti P, Bhattacharyya A, Kaur H, Kumar S, Bansal S, Sharma AR, Medhi B. Indian J Pharmacol 52 142-149 (2020)
  20. The dimer-monomer equilibrium of SARS-CoV-2 main protease is affected by small molecule inhibitors. Silvestrini L, Belhaj N, Comez L, Gerelli Y, Lauria A, Libera V, Mariani P, Marzullo P, Ortore MG, Palumbo Piccionello A, Petrillo C, Savini L, Paciaroni A, Spinozzi F. Sci Rep 11 9283 (2021)
  21. A Blueprint for High Affinity SARS-CoV-2 Mpro Inhibitors from Activity-Based Compound Library Screening Guided by Analysis of Protein Dynamics. Gossen J, Albani S, Hanke A, Joseph BP, Bergh C, Kuzikov M, Costanzi E, Manelfi C, Storici P, Gribbon P, Beccari AR, Talarico C, Spyrakis F, Lindahl E, Zaliani A, Carloni P, Wade RC, Musiani F, Kokh DB, Rossetti G. ACS Pharmacol Transl Sci 4 1079-1095 (2021)
  22. Ligand-centered assessment of SARS-CoV-2 drug target models in the Protein Data Bank. Wlodawer A, Dauter Z, Shabalin IG, Gilski M, Brzezinski D, Kowiel M, Minor W, Rupp B, Jaskolski M. FEBS J 287 3703-3718 (2020)
  23. Topological analysis of SARS CoV-2 main protease. Estrada E. Chaos 30 061102 (2020)
  24. Functional and druggability analysis of the SARS-CoV-2 proteome. Cavasotto CN, Lamas MS, Maggini J. Eur J Pharmacol 890 173705 (2021)
  25. Computational analysis of dynamic allostery and control in the SARS-CoV-2 main protease. Dubanevics I, McLeish TCB. J R Soc Interface 18 20200591 (2021)
  26. In silico study of azithromycin, chloroquine and hydroxychloroquine and their potential mechanisms of action against SARS-CoV-2 infection. Braz HLB, Silveira JAM, Marinho AD, de Moraes MEA, Moraes Filho MO, Monteiro HSA, Jorge RJB. Int J Antimicrob Agents 56 106119 (2020)
  27. Seleno-Functionalization of Quercetin Improves the Non-Covalent Inhibition of Mpro and Its Antiviral Activity in Cells against SARS-CoV-2. Mangiavacchi F, Botwina P, Menichetti E, Bagnoli L, Rosati O, Marini F, Fonseca SF, Abenante L, Alves D, Dabrowska A, Kula-Pacurar A, Ortega-Alarcon D, Jimenez-Alesanco A, Ceballos-Laita L, Vega S, Rizzuti B, Abian O, Lenardão EJ, Velazquez-Campoy A, Pyrc K, Sancineto L, Santi C. Int J Mol Sci 22 7048 (2021)
  28. Biochemical and biophysical characterization of the main protease, 3-chymotrypsin-like protease (3CLpro) from the novel coronavirus SARS-CoV 2. Ferreira JC, Rabeh WM. Sci Rep 10 22200 (2020)
  29. Sequence Characterization and Molecular Modeling of Clinically Relevant Variants of the SARS-CoV-2 Main Protease. Cross TJ, Takahashi GR, Diessner EM, Crosby MG, Farahmand V, Zhuang S, Butts CT, Martin RW. Biochemistry 59 3741-3756 (2020)
  30. A Comprehensive Mapping of the Druggable Cavities within the SARS-CoV-2 Therapeutically Relevant Proteins by Combining Pocket and Docking Searches as Implemented in Pockets 2.0. Gervasoni S, Vistoli G, Talarico C, Manelfi C, Beccari AR, Studer G, Tauriello G, Waterhouse AM, Schwede T, Pedretti A. Int J Mol Sci 21 E5152 (2020)
  31. In-silico drug repurposing for targeting SARS-CoV-2 main protease (Mpro). Sharma S, Deep S. J Biomol Struct Dyn 40 3003-3010 (2022)
  32. Large-Scale Recombinant Production of the SARS-CoV-2 Proteome for High-Throughput and Structural Biology Applications. Altincekic N, Korn SM, Qureshi NS, Dujardin M, Ninot-Pedrosa M, Abele R, Abi Saad MJ, Alfano C, Almeida FCL, Alshamleh I, de Amorim GC, Anderson TK, Anobom CD, Anorma C, Bains JK, Bax A, Blackledge M, Blechar J, Böckmann A, Brigandat L, Bula A, Bütikofer M, Camacho-Zarco AR, Carlomagno T, Caruso IP, Ceylan B, Chaikuad A, Chu F, Cole L, Crosby MG, de Jesus V, Dhamotharan K, Felli IC, Ferner J, Fleischmann Y, Fogeron ML, Fourkiotis NK, Fuks C, Fürtig B, Gallo A, Gande SL, Gerez JA, Ghosh D, Gomes-Neto F, Gorbatyuk O, Guseva S, Hacker C, Häfner S, Hao B, Hargittay B, Henzler-Wildman K, Hoch JC, Hohmann KF, Hutchison MT, Jaudzems K, Jović K, Kaderli J, Kalniņš G, Kaņepe I, Kirchdoerfer RN, Kirkpatrick J, Knapp S, Krishnathas R, Kutz F, Zur Lage S, Lambertz R, Lang A, Laurents D, Lecoq L, Linhard V, Löhr F, Malki A, Bessa LM, Martin RW, Matzel T, Maurin D, McNutt SW, Mebus-Antunes NC, Meier BH, Meiser N, Mompeán M, Monaca E, Montserret R, Mariño Perez L, Moser C, Muhle-Goll C, Neves-Martins TC, Ni X, Norton-Baker B, Pierattelli R, Pontoriero L, Pustovalova Y, Ohlenschläger O, Orts J, Da Poian AT, Pyper DJ, Richter C, Riek R, Rienstra CM, Robertson A, Pinheiro AS, Sabbatella R, Salvi N, Saxena K, Schulte L, Schiavina M, Schwalbe H, Silber M, Almeida MDS, Sprague-Piercy MA, Spyroulias GA, Sreeramulu S, Tants JN, Tārs K, Torres F, Töws S, Treviño MÁ, Trucks S, Tsika AC, Varga K, Wang Y, Weber ME, Weigand JE, Wiedemann C, Wirmer-Bartoschek J, Wirtz Martin MA, Zehnder J, Hengesbach M, Schlundt A. Front Mol Biosci 8 653148 (2021)
  33. Molecular docking and ADMET study of bioactive compounds of Glycyrrhiza glabra against main protease of SARS-CoV2. Srivastava V, Yadav A, Sarkar P. Mater Today Proc 49 2999-3007 (2022)
  34. In search of RdRp and Mpro inhibitors against SARS CoV-2: Molecular docking, molecular dynamic simulations and ADMET analysis. Gajjar ND, Dhameliya TM, Shah GB. J Mol Struct 1239 130488 (2021)
  35. Targeting SARS-CoV-2 M3CLpro by HCV NS3/4a Inhibitors: In Silico Modeling and In Vitro Screening. Manandhar A, Blass BE, Colussi DJ, Almi I, Abou-Gharbia M, Klein ML, Elokely KM. J Chem Inf Model 61 1020-1032 (2021)
  36. Structural and molecular basis of the interaction mechanism of selected drugs towards multiple targets of SARS-CoV-2 by molecular docking and dynamic simulation studies- deciphering the scope of repurposed drugs. Skariyachan S, Gopal D, Chakrabarti S, Kempanna P, Uttarkar A, Muddebihalkar AG, Niranjan V. Comput Biol Med 126 104054 (2020)
  37. The temperature-dependent conformational ensemble of SARS-CoV-2 main protease (Mpro). Ebrahim A, Riley BT, Kumaran D, Andi B, Fuchs MR, McSweeney S, Keedy DA. IUCrJ 9 682-694 (2022)
  38. In Silico Study of Coumarins and Quinolines Derivatives as Potent Inhibitors of SARS-CoV-2 Main Protease. Yañez O, Osorio MI, Uriarte E, Areche C, Tiznado W, Pérez-Donoso JM, García-Beltrán O, González-Nilo F. Front Chem 8 595097 (2020)
  39. Potential Pathogenicity Determinants Identified from Structural Proteomics of SARS-CoV and SARS-CoV-2. Prates ET, Garvin MR, Pavicic M, Jones P, Shah M, Demerdash O, Amos BK, Geiger A, Jacobson D. Mol Biol Evol 38 702-715 (2021)
  40. Structural stability of the SARS-CoV-2 main protease: Can metal ions affect function? Kozak JJ, Gray HB, Garza-López RA. J Inorg Biochem 211 111179 (2020)
  41. A cyclic peptide inhibitor of the SARS-CoV-2 main protease. Kreutzer AG, Krumberger M, Diessner EM, Parrocha CMT, Morris MA, Guaglianone G, Butts CT, Nowick JS. Eur J Med Chem 221 113530 (2021)
  42. Inhibition of SARS-CoV-2 main protease 3CLpro by means of α-ketoamide and pyridone-containing pharmaceuticals using in silico molecular docking. Elzupir AO. J Mol Struct 1222 128878 (2020)
  43. Antiretroviral drug activity and potential for pre-exposure prophylaxis against COVID-19 and HIV infection. Copertino DC, Casado Lima BC, Duarte RRR, Powell TR, Ormsby CE, Wilkin T, Gulick RM, de Mulder Rougvie M, Nixon DF. J Biomol Struct Dyn 40 7367-7380 (2022)
  44. Caffeine and caffeine-containing pharmaceuticals as promising inhibitors for 3-chymotrypsin-like protease of SARS-CoV-2. Elzupir AO. J Biomol Struct Dyn 40 2113-2120 (2022)
  45. Crystallographic models of SARS-CoV-2 3CLpro: in-depth assessment of structure quality and validation. Jaskolski M, Dauter Z, Shabalin IG, Gilski M, Brzezinski D, Kowiel M, Rupp B, Wlodawer A. IUCrJ 8 238-256 (2021)
  46. Letter Montelukast drug activity and potential against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Copertino DC, Duarte RRR, Powell TR, de Mulder Rougvie M, Nixon DF. J Med Virol 93 187-189 (2021)
  47. Phytochemicals against SARS-CoV as potential drug leads. Swain SS, Panda SK, Luyten W. Biomed J 44 74-85 (2021)
  48. Structure-Based Virtual Screening Reveals Ibrutinib and Zanubrutinib as Potential Repurposed Drugs against COVID-19. Kaliamurthi S, Selvaraj G, Selvaraj C, Singh SK, Wei DQ, Peslherbe GH. Int J Mol Sci 22 7071 (2021)
  49. Antiviral cyclic peptides targeting the main protease of SARS-CoV-2. Johansen-Leete J, Ullrich S, Fry SE, Frkic R, Bedding MJ, Aggarwal A, Ashhurst AS, Ekanayake KB, Mahawaththa MC, Sasi VM, Luedtke S, Ford DJ, O'Donoghue AJ, Passioura T, Larance M, Otting G, Turville S, Jackson CJ, Nitsche C, Payne RJ. Chem Sci 13 3826-3836 (2022)
  50. Coagulation modifiers targeting SARS-CoV-2 main protease Mpro for COVID-19 treatment: an in silico approach. Biembengut ÍV, de Souza TACB. Mem Inst Oswaldo Cruz 115 e200179 (2020)
  51. Identifying FDA-approved drugs with multimodal properties against COVID-19 using a data-driven approach and a lung organoid model of SARS-CoV-2 entry. Duarte RRR, Copertino DC, Iñiguez LP, Marston JL, Bram Y, Han Y, Schwartz RE, Chen S, Nixon DF, Powell TR. Mol Med 27 105 (2021)
  52. Near-physiological-temperature serial crystallography reveals conformations of SARS-CoV-2 main protease active site for improved drug repurposing. Durdagi S, Dağ Ç, Dogan B, Yigin M, Avsar T, Buyukdag C, Erol I, Ertem FB, Calis S, Yildirim G, Orhan MD, Guven O, Aksoydan B, Destan E, Sahin K, Besler SO, Oktay L, Shafiei A, Tolu I, Ayan E, Yuksel B, Peksen AB, Gocenler O, Yucel AD, Can O, Ozabrahamyan S, Olkan A, Erdemoglu E, Aksit F, Tanisali G, Yefanov OM, Barty A, Tolstikova A, Ketawala GK, Botha S, Dao EH, Hayes B, Liang M, Seaberg MH, Hunter MS, Batyuk A, Mariani V, Su Z, Poitevin F, Yoon CH, Kupitz C, Sierra RG, Snell EH, DeMirci H. Structure 29 1382-1396.e6 (2021)
  53. Tuning Proton Transfer Thermodynamics in SARS-CoV-2 Main Protease: Implications for Catalysis and Inhibitor Design. Zanetti-Polzi L, Smith MD, Chipot C, Gumbart JC, Lynch DL, Pavlova A, Smith JC, Daidone I. J Phys Chem Lett 12 4195-4202 (2021)
  54. Synthesis, anti-bacterial evaluation, DFT study and molecular docking as a potential 3-chymotrypsin-like protease (3CLpro) of SARS-CoV-2 inhibitors of a novel Schiff bases. Al-Janabi ASM, Elzupir AO, Yousef TA. J Mol Struct 1228 129454 (2021)
  55. Virtual screening of plant-derived compounds against SARS-CoV-2 viral proteins using computational tools. Zígolo MA, Goytia MR, Poma HR, Rajal VB, Irazusta VP. Sci Total Environ 781 146400 (2021)
  56. Main protease inhibitors and drug surface hotspots for the treatment of COVID-19: A drug repurposing and molecular docking approach. Hasan M, Parvez MSA, Azim KF, Imran MAS, Raihan T, Gulshan A, Muhit S, Akhand RN, Ahmed SSU, Uddin MB. Biomed Pharmacother 140 111742 (2021)
  57. Self-Masked Aldehyde Inhibitors: A Novel Strategy for Inhibiting Cysteine Proteases. Li L, Chenna BC, Yang KS, Cole TR, Goodall ZT, Giardini M, Moghadamchargari Z, Hernandez EA, Gomez J, Calvet CM, Bernatchez JA, Mellott DM, Zhu J, Rademacher A, Thomas D, Blankenship LR, Drelich A, Laganowsky A, Tseng CK, Liu WR, Wand AJ, Cruz-Reyes J, Siqueira-Neto JL, Meek TD. J Med Chem 64 11267-11287 (2021)
  58. Combining High-Throughput Synthesis and High-Throughput Protein Crystallography for Accelerated Hit Identification. Sutanto F, Shaabani S, Oerlemans R, Eris D, Patil P, Hadian M, Wang M, Sharpe ME, Groves MR, Dömling A. Angew Chem Int Ed Engl 60 18231-18239 (2021)
  59. Computed optical spectra of SARS-CoV-2 proteins. Li Z, Hirst JD. Chem Phys Lett 758 137935 (2020)
  60. Finding Druggable Sites in Proteins Using TACTICS. Evans DJ, Yovanno RA, Rahman S, Cao DW, Beckett MQ, Patel MH, Bandak AF, Lau AY. J Chem Inf Model 61 2897-2910 (2021)
  61. From the Wuhan-Hu-1 strain to the XD and XE variants: is targeting the SARS-CoV-2 spike protein still a pharmaceutically relevant option against COVID-19? Pavan M, Bassani D, Sturlese M, Moro S. J Enzyme Inhib Med Chem 37 1704-1714 (2022)
  62. Marine algal antagonists targeting 3CL protease and spike glycoprotein of SARS-CoV-2: a computational approach for anti-COVID-19 drug discovery. Arunkumar M, Gunaseelan S, Kubendran Aravind M, Mohankumar V, Anupam P, Harikrishnan M, Siva A, Ashokkumar B, Varalakshmi P. J Biomol Struct Dyn 40 8961-8988 (2022)
  63. Protein structural heterogeneity: A hypothesis for the basis of proteolytic recognition by the main protease of SARS-CoV and SARS-CoV-2. Behnam MAM. Biochimie 182 177-184 (2021)
  64. "Identification of Nafamostat and VR23 as COVID-19 drug candidates by targeting 3CLpro and PLpro." Bhowmik D, Sharma RD, Prakash A, Kumar D. J Mol Struct 1233 130094 (2021)
  65. Are vanadium complexes druggable against the main protease Mpro of SARS-CoV-2? - A computational approach. Scior T, Abdallah HH, Mustafa SFZ, Guevara-García JA, Rehder D. Inorganica Chim Acta 519 120287 (2021)
  66. Protein reliability analysis and virtual screening of natural inhibitors for SARS-CoV-2 main protease (Mpro) through docking, molecular mechanic & dynamic, and ADMET profiling. Kapusta K, Kar S, Collins JT, Franklin LM, Kolodziejczyk W, Leszczynski J, Hill GA. J Biomol Struct Dyn 39 6810-6827 (2021)
  67. Sub-Micromolar Inhibition of SARS-CoV-2 3CLpro by Natural Compounds. Rizzuti B, Ceballos-Laita L, Ortega-Alarcon D, Jimenez-Alesanco A, Vega S, Grande F, Conforti F, Abian O, Velazquez-Campoy A. Pharmaceuticals (Basel) 14 892 (2021)
  68. Anti-HIV-drug and phyto-flavonoid combination against SARS-CoV-2: a molecular docking-simulation base assessment. Swain SS, Singh SR, Sahoo A, Hussain T, Pati S. J Biomol Struct Dyn 40 6463-6476 (2022)
  69. Deep Learning-Based Potential Ligand Prediction Framework for COVID-19 with Drug-Target Interaction Model. Majumdar S, Nandi SK, Ghosal S, Ghosh B, Mallik W, Roy ND, Biswas A, Mukherjee S, Pal S, Bhattacharyya N. Cognit Comput 1-13 (2021)
  70. Dietary stigmastane-type saponins as promising dual-target directed inhibitors of SARS-CoV-2 proteases: a structure-based screening. Ogunyemi OM, Gyebi GA, Ibrahim IM, Olaiya CO, Ocheje JO, Fabusiwa MM, Adebayo JO. RSC Adv 11 33380-33398 (2021)
  71. Impact of dimerization and N3 binding on molecular dynamics of SARS-CoV and SARS-CoV-2 main proteases. Tekpinar M, Yildirim A. J Biomol Struct Dyn 40 6243-6254 (2022)
  72. Potential therapeutic use of corticosteroids as SARS CoV-2 main protease inhibitors: a computational study. Ghosh R, Chakraborty A, Biswas A, Chowdhuri S. J Biomol Struct Dyn 40 2053-2066 (2022)
  73. A fluorescence-based, gain-of-signal, live cell system to evaluate SARS-CoV-2 main protease inhibition. Dey-Rao R, Smith GR, Timilsina U, Falls Z, Samudrala R, Stavrou S, Melendy T. Antiviral Res 195 105183 (2021)
  74. Dimethyl sulfoxide reduces the stability but enhances catalytic activity of the main SARS-CoV-2 protease 3CLpro. Ferreira JC, Fadl S, Ilter M, Pekel H, Rezgui R, Sensoy O, Rabeh WM. FASEB J 35 e21774 (2021)
  75. Discovering common pathogenetic processes between COVID-19 and sepsis by bioinformatics and system biology approach. Lu L, Liu LP, Gui R, Dong H, Su YR, Zhou XH, Liu FX. Front Immunol 13 975848 (2022)
  76. In Silico Identification of New Anti-SARS-CoV-2 Main Protease (Mpro) Molecules with Pharmacokinetic Properties from Natural Sources Using Molecular Dynamics (MD) Simulations and Hierarchical Virtual Screening. Onyango H, Odhiambo P, Angwenyi D, Okoth P. J Trop Med 2022 3697498 (2022)
  77. Molecular dynamics simulation perception study of the binding affinity performance for main protease of SARS-CoV-2. Sahu SN, Mishra B, Sahu R, Pattanayak SK. J Biomol Struct Dyn 40 2444-2459 (2022)
  78. Allosteric Hotspots in the Main Protease of SARS-CoV-2. Strömich L, Wu N, Barahona M, Yaliraki SN. J Mol Biol 434 167748 (2022)
  79. In Silico Genome Analysis Reveals the Evolution and Potential Impact of SARS-CoV-2 Omicron Structural Changes on Host Immune Evasion and Antiviral Therapeutics. Chauhan D, Chakravarty N, Jeyachandran AV, Jayakarunakaran A, Sinha S, Mishra R, Arumugaswami V, Ramaiah A. Viruses 14 2461 (2022)
  80. Molecular Docking and Dynamics Investigations for Identifying Potential Inhibitors of the 3-Chymotrypsin-like Protease of SARS-CoV-2: Repurposing of Approved Pyrimidonic Pharmaceuticals for COVID-19 Treatment. Elzupir AO. Molecules 26 7458 (2021)
  81. In silico prediction of mozenavir as a potential drug for SARS-CoV-2 infection via binding multiple drug targets. Mamidala E, Davella R, Praveen Kumar M, Swamy S, Abhiav M, Ali Kaimkhani Z, Al-Ghanim KA, Mahboob S. Saudi J Biol Sci 29 840-847 (2022)
  82. A Computer-Aided Approach for the Discovery of D-Peptides as Inhibitors of SARS-CoV-2 Main Protease. Hernández González JE, Eberle RJ, Willbold D, Coronado MA. Front Mol Biosci 8 816166 (2021)
  83. A ligand-based computational drug repurposing pipeline using KNIME and Programmatic Data Access: case studies for rare diseases and COVID-19. Tuerkova A, Zdrazil B. J Cheminform 12 71 (2020)
  84. Antiviral potential of diminazene aceturate against SARS-CoV-2 proteases using computational and in vitro approaches. Santos ES, Silva PC, Sousa PSA, Aquino CC, Pacheco G, Teixeira LFLS, Araujo AR, Sousa FBM, Barros RO, Ramos RM, Rocha JA, Nicolau LAD, Medeiros JVR. Chem Biol Interact 367 110161 (2022)
  85. Diastereomeric Resolution Yields Highly Potent Inhibitor of SARS-CoV-2 Main Protease. Cooper MS, Zhang L, Ibrahim M, Zhang K, Sun X, Röske J, Göhl M, Brönstrup M, Cowell JK, Sauerhering L, Becker S, Vangeel L, Jochmans D, Neyts J, Rox K, Marsh GP, Maple HJ, Hilgenfeld R. J Med Chem 65 13328-13342 (2022)
  86. High-throughput screening of SARS-CoV-2 main and papain-like protease inhibitors. Zang Y, Su M, Wang Q, Cheng X, Zhang W, Zhao Y, Chen T, Jiang Y, Shen Q, Du J, Tan Q, Wang P, Gao L, Jin Z, Zhang M, Li C, Zhu Y, Feng B, Tang B, Xie H, Wang MW, Zheng M, Pan X, Yang H, Xu Y, Wu B, Zhang L, Rao Z, Yang X, Jiang H, Xiao G, Zhao Q, Li J. Protein Cell 14 17-27 (2023)
  87. Improved SARS-CoV-2 main protease high-throughput screening assay using a 5-carboxyfluorescein substrate. Legare S, Heide F, Bailey-Elkin BA, Stetefeld J. J Biol Chem 298 101739 (2022)
  88. Integrated bioinformatics-cheminformatics approach toward locating pseudo-potential antiviral marine alkaloids against SARS-CoV-2-Mpro. Swain SS, Singh SR, Sahoo A, Panda PK, Hussain T, Pati S. Proteins 90 1617-1633 (2022)
  89. Ligand-based design, molecular dynamics and ADMET studies of suggested SARS-CoV-2 Mpro inhibitors. Mohamed NM, Ali EMH, AboulMagd AM. RSC Adv 11 4523-4538 (2021)
  90. Phytochemical Discrimination, Biological Activity and Molecular Docking of Water-Soluble Inhibitors from Saussurea costus Herb against Main Protease of SARS-CoV-2. Idriss H, Siddig B, Maldonado PG, Elkhair HM, Alakhras AI, Abdallah EM, Torres PHS, Elzupir AO. Molecules 27 4908 (2022)
  91. Structure-Based Design of a Dual-Targeted Covalent Inhibitor Against Papain-like and Main Proteases of SARS-CoV-2. Yu W, Zhao Y, Ye H, Wu N, Liao Y, Chen N, Li Z, Wan N, Hao H, Yan H, Xiao Y, Lai M. J Med Chem 65 16252-16267 (2022)
  92. An insight into the interaction between α-ketoamide- based inhibitor and coronavirus main protease: A detailed in silico study. Banerjee S. Biophys Chem 269 106510 (2021)
  93. Bat coronaviruses related to SARS-CoV-2: what about their 3CL proteases (MPro)? Pavan M, Bassani D, Sturlese M, Moro S. J Enzyme Inhib Med Chem 37 1077-1082 (2022)
  94. COVID-19 Induced Coagulopathy (CIC): Thrombotic Manifestations of Viral Infection. Sharma S, Mishra A, Ashraf Z. TH Open 6 e70-e79 (2022)
  95. From Repurposing to Redesign: Optimization of Boceprevir to Highly Potent Inhibitors of the SARS-CoV-2 Main Protease. Göhl M, Zhang L, El Kilani H, Sun X, Zhang K, Brönstrup M, Hilgenfeld R. Molecules 27 4292 (2022)
  96. Identification of Aloe-derived natural products as prospective lead scaffolds for SARS-CoV-2 main protease (Mpro) inhibitors. Hicks EG, Kandel SE, Lampe JN. Bioorg Med Chem Lett 66 128732 (2022)
  97. Metal-Bound Methisazone; Novel Drugs Targeting Prophylaxis and Treatment of SARS-CoV-2, a Molecular Docking Study. Abdelaal Ahmed Mahmoud M Alkhatip A, Georgakis M, Montero Valenzuela LR, Hamza M, Farag E, Hodgkinson J, Hosny H, Kamal AM, Wagih M, Naguib A, Yassin H, Algameel H, Elayashy M, Abdelhaq M, Younis MI, Mohamed H, Abdulshafi M, Elramely MA. Int J Mol Sci 22 2977 (2021)
  98. Modeling the binding of protoporphyrin IX, verteporfin, and chlorin e6 to SARS-CoV-2 proteins. Koifman OI, Lebedeva NS, Gubarev YA, Koifman MO. Chem Heterocycl Compd (N Y) 57 423-431 (2021)
  99. Potential role of nicotinamide analogues against SARS-COV-2 target proteins. Arora MK, Grover P, Asdaq SMB, Mehta L, Tomar R, Imran M, Pathak A, Jangra A, Sahoo J, Alamri AS, Alsanie WF, Alhomrani M. Saudi J Biol Sci 28 7567-7574 (2021)
  100. Supersulphides provide airway protection in viral and chronic lung diseases. Matsunaga T, Sano H, Takita K, Morita M, Yamanaka S, Ichikawa T, Numakura T, Ida T, Jung M, Ogata S, Yoon S, Fujino N, Kyogoku Y, Sasaki Y, Koarai A, Tamada T, Toyama A, Nakabayashi T, Kageyama L, Kyuwa S, Inaba K, Watanabe S, Nagy P, Sawa T, Oshiumi H, Ichinose M, Yamada M, Sugiura H, Wei FY, Motohashi H, Akaike T. Nat Commun 14 4476 (2023)
  101. Surface cysteines could protect the SARS-CoV-2 main protease from oxidative damage. Ravanfar R, Sheng Y, Shahgholi M, Lomenick B, Jones J, Chou TF, Gray HB, Winkler JR. J Inorg Biochem 234 111886 (2022)
  102. dockECR: Open consensus docking and ranking protocol for virtual screening of small molecules. Ochoa R, Palacio-Rodriguez K, Clemente CM, Adler NS. J Mol Graph Model 109 108023 (2021)
  103. BRET-Based Self-Cleaving Biosensors for SARS-CoV-2 3CLpro Inhibitor Discovery. Hou N, Peng C, Zhang L, Zhu Y, Hu Q. Microbiol Spectr 10 e0255921 (2022)
  104. Inhibitory Activity of Saussurea costus Extract against Bacteria, Candida, Herpes, and SARS-CoV-2. Idriss H, Siddig B, González-Maldonado P, Elkhair HM, Alakhras AI, Abdallah EM, Elzupir AO, Sotelo PH. Plants (Basel) 12 460 (2023)
  105. Probing marine brown macroalgal phlorotannins as antiviral candidate against SARS-CoV-2: molecular docking and dynamics simulation approach. Gunaseelan S, Arunkumar M, Aravind MK, Gayathri S, Rajkeerthana S, Mohankumar V, Ashokkumar B, Varalakshmi P. Mol Divers 26 3205-3224 (2022)
  106. Structure-Based Virtual Screening and Functional Validation of Potential Hit Molecules Targeting the SARS-CoV-2 Main Protease. Moovarkumudalvan B, Geethakumari AM, Ramadoss R, Biswas KH, Mifsud B. Biomolecules 12 1754 (2022)
  107. The Molecular Mechanism of Domain Swapping of the C-Terminal Domain of the SARS-Coronavirus Main Protease. Terse VL, Gosavi S. Biophys J 120 504-516 (2021)
  108. The efficacy of Paxlovid against COVID-19 is the result of the tight molecular docking between Mpro and antiviral drugs (nirmatrelvir and ritonavir). Dawood AA. Adv Med Sci 68 1-9 (2023)
  109. Understanding Cysteine Chemistry Using Conventional and Serial X-Ray Protein Crystallography. Smith N, Wilson MA. Crystals (Basel) 12 1671 (2022)
  110. Computational Selectivity Assessment of Protease Inhibitors against SARS-CoV-2. Fischer A, Sellner M, Mitusińska K, Bzówka M, Lill MA, Góra A, Smieško M. Int J Mol Sci 22 2065 (2021)
  111. Computational approach investigation bioactive molecules from Saussurea Costus plant as SARS-CoV-2 main protease inhibitors using reverse docking, molecular dynamics simulation, and pharmacokinetic ADMET parameters. Hajji H, Alaqarbeh M, Lakhlifi T, Ajana MA, Alsakhen N, Bouachrine M. Comput Biol Med 150 106209 (2022)
  112. Discovery of anti-infective adipostatins through bioactivity-guided isolation and heterologous expression of a type III polyketide synthase. Hou L, Li Y, Wu Q, Li M, Older EA, Tang X, Nagarkatti P, Nagarkatti M, Liu Y, Li L, Fan D, Bugni TS, Shang Z, Li J. Bioorg Chem 112 104925 (2021)
  113. Inhibition of SARS-CoV-2 main protease: a repurposing study that targets the dimer interface of the protein. Pekel H, Ilter M, Sensoy O. J Biomol Struct Dyn 40 7167-7182 (2022)
  114. Maturation of the SARS-CoV-2 virus is regulated by dimerization of its main protease. Kaptan S, Girych M, Enkavi G, Kulig W, Sharma V, Vuorio J, Rog T, Vattulainen I. Comput Struct Biotechnol J 20 3336-3346 (2022)
  115. Metal-induced oxidative stress and human plasma protein oxidation after SARS-CoV-2 infection. Aryal B, Tillotson J, Ok K, Stoltzfus AT, Michel SLJ, Rao VA. Sci Rep 13 2441 (2023)
  116. Molecular basis of specificity and deamidation of eIF4A by Burkholderia Lethal Factor 1. Mobbs GW, Aziz AA, Dix SR, Blackburn GM, Sedelnikova SE, Minshull TC, Dickman MJ, Baker PJ, Nathan S, Raih MF, Rice DW. Commun Biol 5 272 (2022)
  117. Novel covalent and non-covalent complex-based pharmacophore models of SARS-CoV-2 main protease (Mpro) elucidated by microsecond MD simulations. Hayek-Orduz Y, Vásquez AF, Villegas-Torres MF, Caicedo PA, Achenie LEK, González Barrios AF. Sci Rep 12 14030 (2022)
  118. One-pot synthesis, X-ray crystal structure, and identification of potential molecules against COVID-19 main protease through structure-guided modeling and simulation approach. El Bakri Y, Musrat Kurbanova M, Ali Siddique S, Ahmad S, Goumri-Said S. Arab J Chem 15 104230 (2022)
  119. research-article SARS-CoV-2 Simulations Go Exascale to Capture Spike Opening and Reveal Cryptic Pockets Across the Proteome. Zimmerman MI, Porter JR, Ward MD, Singh S, Vithani N, Meller A, Mallimadugula UL, Kuhn CE, Borowsky JH, Wiewiora RP, Hurley MFD, Harbison AM, Fogarty CA, Coffland JE, Fadda E, Voelz VA, Chodera JD, Bowman GR. bioRxiv 2020.06.27.175430 (2020)
  120. Stabilization of the Dimeric State of SARS-CoV-2 Main Protease by GC376 and Nirmatrelvir. Paciaroni A, Libera V, Ripanti F, Orecchini A, Petrillo C, Francisci D, Schiaroli E, Sabbatini S, Gidari A, Bianconi E, Macchiarulo A, Hussain R, Silvestrini L, Moretti P, Belhaj N, Vercelli M, Roque Y, Mariani P, Comez L, Spinozzi F. Int J Mol Sci 24 6062 (2023)
  121. Structural insights into SARS-CoV-2 main protease conformational plasticity. Dehury B, Mishra S, Pati S. J Cell Biochem 124 861-876 (2023)
  122. Structure and inhibition of SARS-CoV-1 and SARS-CoV-2 main proteases by oral antiviral compound AG7404. Fàbrega-Ferrer M, Herrera-Morandé A, Muriel-Goñi S, Pérez-Saavedra J, Bueno P, Castro V, Garaigorta U, Gastaminza P, Coll M. Antiviral Res 208 105458 (2022)
  123. Synchrotron Radiation as a Tool for Macromolecular X-Ray Crystallography: a XXI Century Perspective. Grabowski M, Cooper DR, Brzezinski D, Macnar JM, Shabalin IG, Cymborowski M, Otwinowski Z, Minor W. Nucl Instrum Methods Phys Res B 489 30-40 (2021)
  124. Bayesian Inference Elucidates the Catalytic Competency of the SARS-CoV-2 Main Protease 3CLpro. Wralstad EC, Sayers J, Raines RT. Anal Chem 95 14981-14989 (2023)
  125. COVID-19 Genomic Surveillance in Bangui (Central African Republic) Reveals a Landscape of Circulating Variants Linked to Validated Antiviral Targets of SARS-CoV-2 Proteome. Vickos U, Camasta M, Grandi N, Scognamiglio S, Schindler T, Belizaire MRD, Lango-Yaya E, Koyaweda GW, Senzongo O, Pounguinza S, Estimé KKJF, N'yetobouko S, Gadia CLB, Feiganazoui DA, Le Faou A, Orsini M, Perno CF, Zinzula L, Rafaï CD. Viruses 15 2309 (2023)
  126. research-article Copper(II) Inhibition of the SARS-CoV-2 Main Protease. Garza-Lopez RA, Kozak JJ, Gray HB. ChemRxiv (2020)
  127. Derivation, Functionalization of (S)-Goniothalamin from Goniothalamus wightii and Their Derivative Targets SARS-CoV-2 MPro, SPro, and RdRp: A Pharmacological Perspective. Palani V, Chinnaraj S, Shanmugasundaram M, Malaisamy A, Maluventhen V, Arumugam VA, Rengasamy KRR, Balasubramanian B, Liu WC, Arumugam M. Molecules 27 6962 (2022)
  128. Development of potent and effective SARS-CoV-2 main protease inhibitors based on maleimide analogs for the potential treatment of COVID-19. Biernacki K, Ciupak O, Daśko M, Rachon J, Flis D, Budka J, Inkielewicz-Stępniak I, Czaja A, Rak J, Demkowicz S. J Enzyme Inhib Med Chem 39 2290910 (2024)
  129. Effect of pH on stability of dimer structure of the main protease of coronavirus-2. Boonamnaj P, Pandey RB, Sompornpisut P. Biophys Chem 287 106829 (2022)
  130. Expression, purification, and biophysical characterization of recombinant MERS-CoV main (Mpro) protease. Almutairi GO, Malik A, Alonazi M, Khan JM, Alhomida AS, Khan MS, Alenad AM, Altwaijry N, Alafaleq NO. Int J Biol Macromol 209 984-990 (2022)
  131. In silico Screening of Potential SARS-CoV-2 Main Protease Inhibitors from Thymus schimperi. Mengist HM, Khalid Z, Adane F. Adv Appl Bioinform Chem 16 1-13 (2023)
  132. In silico and in vitro prediction of new synthesized N-heterocyclic compounds as anti-SARS-CoV-2. Hashem HE, Ahmad S, Kumer A, Bakri YE. Sci Rep 14 1152 (2024)
  133. Investigation of Thiocarbamates as Potential Inhibitors of the SARS-CoV-2 Mpro. Papaj K, Spychalska P, Hopko K, Kapica P, Fisher A, Lill MA, Bagrowska W, Nowak J, Szleper K, Smieško M, Kasprzycka A, Góra A. Pharmaceuticals (Basel) 14 1153 (2021)
  134. Molecular Dynamics Simulations to Decipher the Role of Phosphorylation of SARS-CoV-2 Nonstructural Proteins (nsps) in Viral Replication. Alomair L, Mustafa S, Jafri MS, Alharbi W, Aljouie A, Almsned F, Alawad M, Bokhari YA, Rashid M. Viruses 14 2436 (2022)
  135. Molecular mechanism of ensitrelvir inhibiting SARS-CoV-2 main protease and its variants. Lin M, Zeng X, Duan Y, Yang Z, Ma Y, Yang H, Yang X, Liu X. Commun Biol 6 694 (2023)
  136. Mutation Effects on Structure and Dynamics: Adaptive Evolution of the SARS-CoV-2 Main Protease. Diessner EM, Takahashi GR, Cross TJ, Martin RW, Butts CT. Biochemistry 62 747-758 (2023)
  137. Potential Self-Peptide Inhibitors of the SARS-CoV-2 Main Protease. Banerjee A, Gosavi S. J Phys Chem B 127 855-865 (2023)
  138. Structural biology and public health response to biomedical threats. Lenkiewicz J, Bijak V, Poonuganti S, Szczygiel M, Gucwa M, Murzyn K, Minor W. Struct Dyn 10 034701 (2023)
  139. research-article Supercomputer-Based Ensemble Docking Drug Discovery Pipeline with Application to Covid-19. Acharya A, Agarwal R, Baker M, Baudry J, Bhowmik D, Boehm S, Byler KG, Coates L, Chen SY, Cooper CJ, Demerdash O, Daidone I, Eblen JD, Ellingson S, Forli S, Glaser J, Gumbart JC, Gunnels J, Hernandez O, Irle S, Larkin J, Lawrence TJ, LeGrand S, Liu SH, Mitchell JC, Park G, Parks JM, Pavlova A, Petridis L, Poole D, Pouchard L, Ramanathan A, Rogers D, Santos-Martins D, Scheinberg A, Sedova A, Shen S, Smith JC, Smith MD, Soto C, Tsaris A, Thavappiragasam M, Tillack AF, Vermaas JV, Vuong VQ, Yin J, Yoo S, Zahran M, Zanetti-Polzi L. ChemRxiv (2020)
  140. Synergism between x-ray crystallography and NMR residual dipolar couplings in characterizing protein dynamics. Shen Y, Bax A. Struct Dyn 10 040901 (2023)
  141. research-article The temperature-dependent conformational ensemble of SARS-CoV-2 main protease (Mpro). Ebrahim A, Riley BT, Kumaran D, Andi B, Fuchs MR, McSweeney S, Keedy DA. bioRxiv 2021.05.03.437411 (2021)
  142. research-article Tuning Proton Transfer Thermodynamics in SARS-Cov-2 Main Protease: Implications for Catalysis and Inhibitor Design. Zanetti-Polzi L, Smith MD, Chipot C, Gumbart JC, Lynch DL, Pavlova A, Smith JC, Daidone I. ChemRxiv (2020)
  143. Understanding the role of water on temperature-dependent structural modifications of SARS CoV-2 main protease binding sites. Venugopal PP, Singh O, Chakraborty D. J Mol Liq 363 119867 (2022)


Reviews citing this publication (328)

  1. Coronavirus biology and replication: implications for SARS-CoV-2. V'kovski P, Kratzel A, Steiner S, Stalder H, Thiel V. Nat Rev Microbiol 19 155-170 (2021)
  2. Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach. Naqvi AAT, Fatima K, Mohammad T, Fatima U, Singh IK, Singh A, Atif SM, Hariprasad G, Hasan GM, Hassan MI. Biochim Biophys Acta Mol Basis Dis 1866 165878 (2020)
  3. Immunity, endothelial injury and complement-induced coagulopathy in COVID-19. Perico L, Benigni A, Casiraghi F, Ng LFP, Renia L, Remuzzi G. Nat Rev Nephrol 17 46-64 (2021)
  4. The Natural History, Pathobiology, and Clinical Manifestations of SARS-CoV-2 Infections. Machhi J, Herskovitz J, Senan AM, Dutta D, Nath B, Oleynikov MD, Blomberg WR, Meigs DD, Hasan M, Patel M, Kline P, Chang RC, Chang L, Gendelman HE, Kevadiya BD. J Neuroimmune Pharmacol 15 359-386 (2020)
  5. Candidate drugs against SARS-CoV-2 and COVID-19. McKee DL, Sternberg A, Stange U, Laufer S, Naujokat C. Pharmacol Res 157 104859 (2020)
  6. The molecular virology of coronaviruses. Hartenian E, Nandakumar D, Lari A, Ly M, Tucker JM, Glaunsinger BA. J Biol Chem 295 12910-12934 (2020)
  7. COVID-19: A promising cure for the global panic. Vellingiri B, Jayaramayya K, Iyer M, Narayanasamy A, Govindasamy V, Giridharan B, Ganesan S, Venugopal A, Venkatesan D, Ganesan H, Rajagopalan K, Rahman PKSM, Cho SG, Kumar NS, Subramaniam MD. Sci Total Environ 725 138277 (2020)
  8. Overview of Immune Response During SARS-CoV-2 Infection: Lessons From the Past. Shah VK, Firmal P, Alam A, Ganguly D, Chattopadhyay S. Front Immunol 11 1949 (2020)
  9. Quercetin and Vitamin C: An Experimental, Synergistic Therapy for the Prevention and Treatment of SARS-CoV-2 Related Disease (COVID-19). Colunga Biancatelli RML, Berrill M, Catravas JD, Marik PE. Front Immunol 11 1451 (2020)
  10. Clinical, molecular, and epidemiological characterization of the SARS-CoV-2 virus and the Coronavirus Disease 2019 (COVID-19), a comprehensive literature review. Ortiz-Prado E, Simbaña-Rivera K, Gómez-Barreno L, Rubio-Neira M, Guaman LP, Kyriakidis NC, Muslin C, Jaramillo AMG, Barba-Ostria C, Cevallos-Robalino D, Sanches-SanMiguel H, Unigarro L, Zalakeviciute R, Gadian N, López-Cortés A. Diagn Microbiol Infect Dis 98 115094 (2020)
  11. Role of Structural and Non-Structural Proteins and Therapeutic Targets of SARS-CoV-2 for COVID-19. Yadav R, Chaudhary JK, Jain N, Chaudhary PK, Khanra S, Dhamija P, Sharma A, Kumar A, Handu S. Cells 10 821 (2021)
  12. COVID-19 for the Cardiologist: Basic Virology, Epidemiology, Cardiac Manifestations, and Potential Therapeutic Strategies. Atri D, Siddiqi HK, Lang JP, Nauffal V, Morrow DA, Bohula EA. JACC Basic Transl Sci 5 518-536 (2020)
  13. Structural insights into SARS-CoV-2 proteins. Arya R, Kumari S, Pandey B, Mistry H, Bihani SC, Das A, Prashar V, Gupta GD, Panicker L, Kumar M. J Mol Biol 433 166725 (2021)
  14. Nanotechnology for COVID-19: Therapeutics and Vaccine Research. Chauhan G, Madou MJ, Kalra S, Chopra V, Ghosh D, Martinez-Chapa SO. ACS Nano 14 7760-7782 (2020)
  15. Roles of flavonoids against coronavirus infection. Russo M, Moccia S, Spagnuolo C, Tedesco I, Russo GL. Chem Biol Interact 328 109211 (2020)
  16. Opportunities and Challenges for Biosensors and Nanoscale Analytical Tools for Pandemics: COVID-19. Bhalla N, Pan Y, Yang Z, Payam AF. ACS Nano 14 7783-7807 (2020)
  17. COVID-19, Renin-Angiotensin System and Endothelial Dysfunction. Amraei R, Rahimi N. Cells 9 E1652 (2020)
  18. Traditional Chinese Medicine (TCM) in the treatment of COVID-19 and other viral infections: Efficacies and mechanisms. Huang K, Zhang P, Zhang Z, Youn JY, Wang C, Zhang H, Cai H. Pharmacol Ther 225 107843 (2021)
  19. An Evidence Based Perspective on mRNA-SARS-CoV-2 Vaccine Development. Wang F, Kream RM, Stefano GB. Med Sci Monit 26 e924700 (2020)
  20. Insights to SARS-CoV-2 life cycle, pathophysiology, and rationalized treatments that target COVID-19 clinical complications. Trougakos IP, Stamatelopoulos K, Terpos E, Tsitsilonis OE, Aivalioti E, Paraskevis D, Kastritis E, Pavlakis GN, Dimopoulos MA. J Biomed Sci 28 9 (2021)
  21. Structural biology of SARS-CoV-2 and implications for therapeutic development. Yang H, Rao Z. Nat Rev Microbiol 19 685-700 (2021)
  22. From SARS to SARS-CoV-2, insights on structure, pathogenicity and immunity aspects of pandemic human coronaviruses. Kirtipal N, Bharadwaj S, Kang SG. Infect Genet Evol 85 104502 (2020)
  23. COVID-19: Review on latest available drugs and therapies against SARS-CoV-2. Coagulation and inflammation cross-talking. Magro G. Virus Res 286 198070 (2020)
  24. Protease targeted COVID-19 drug discovery and its challenges: Insight into viral main protease (Mpro) and papain-like protease (PLpro) inhibitors. Amin SA, Banerjee S, Ghosh K, Gayen S, Jha T. Bioorg Med Chem 29 115860 (2021)
  25. SARS-CoV-2, the pandemic coronavirus: Molecular and structural insights. Kadam SB, Sukhramani GS, Bishnoi P, Pable AA, Barvkar VT. J Basic Microbiol 61 180-202 (2021)
  26. Medicinal Plants as Sources of Active Molecules Against COVID-19. Benarba B, Pandiella A. Front Pharmacol 11 1189 (2020)
  27. A Global Review on Short Peptides: Frontiers and Perspectives. Apostolopoulos V, Bojarska J, Chai TT, Elnagdy S, Kaczmarek K, Matsoukas J, New R, Parang K, Lopez OP, Parhiz H, Perera CO, Pickholz M, Remko M, Saviano M, Skwarczynski M, Tang Y, Wolf WM, Yoshiya T, Zabrocki J, Zielenkiewicz P, AlKhazindar M, Barriga V, Kelaidonis K, Sarasia EM, Toth I. Molecules 26 E430 (2021)
  28. The development of Coronavirus 3C-Like protease (3CLpro) inhibitors from 2010 to 2020. Liu Y, Liang C, Xin L, Ren X, Tian L, Ju X, Li H, Wang Y, Zhao Q, Liu H, Cao W, Xie X, Zhang D, Wang Y, Jian Y. Eur J Med Chem 206 112711 (2020)
  29. Comprehensive analysis of drugs to treat SARS‑CoV‑2 infection: Mechanistic insights into current COVID‑19 therapies (Review). Nitulescu GM, Paunescu H, Moschos SA, Petrakis D, Nitulescu G, Ion GND, Spandidos DA, Nikolouzakis TK, Drakoulis N, Tsatsakis A. Int J Mol Med 46 467-488 (2020)
  30. Potential SARS-CoV-2 main protease inhibitors. Banerjee R, Perera L, Tillekeratne LMV. Drug Discov Today 26 804-816 (2021)
  31. Structural biology of SARS-CoV-2: open the door for novel therapies. Yan W, Zheng Y, Zeng X, He B, Cheng W. Signal Transduct Target Ther 7 26 (2022)
  32. Current and Perspective Diagnostic Techniques for COVID-19. Yuan X, Yang C, He Q, Chen J, Yu D, Li J, Zhai S, Qin Z, Du K, Chu Z, Qin P. ACS Infect Dis 6 1998-2016 (2020)
  33. Drugs targeting various stages of the SARS-CoV-2 life cycle: Exploring promising drugs for the treatment of Covid-19. Poduri R, Joshi G, Jagadeesh G. Cell Signal 74 109721 (2020)
  34. Repurposing Drugs, Ongoing Vaccine, and New Therapeutic Development Initiatives Against COVID-19. Saha RP, Sharma AR, Singh MK, Samanta S, Bhakta S, Mandal S, Bhattacharya M, Lee SS, Chakraborty C. Front Pharmacol 11 1258 (2020)
  35. Potential therapeutic targets for combating SARS-CoV-2: Drug repurposing, clinical trials and recent advancements. Pandey A, Nikam AN, Shreya AB, Mutalik SP, Gopalan D, Kulkarni S, Padya BS, Fernandes G, Mutalik S, Prassl R. Life Sci 256 117883 (2020)
  36. SARS-CoV-2 Mpro: A Potential Target for Peptidomimetics and Small-Molecule Inhibitors. Citarella A, Scala A, Piperno A, Micale N. Biomolecules 11 607 (2021)
  37. Pharmacological Therapeutics Targeting RNA-Dependent RNA Polymerase, Proteinase and Spike Protein: From Mechanistic Studies to Clinical Trials for COVID-19. Huang J, Song W, Huang H, Sun Q. J Clin Med 9 E1131 (2020)
  38. Anti-SARS-CoV Natural Products With the Potential to Inhibit SARS-CoV-2 (COVID-19). Verma S, Twilley D, Esmear T, Oosthuizen CB, Reid AM, Nel M, Lall N. Front Pharmacol 11 561334 (2020)
  39. COVID-19: Therapeutics and Their Toxicities. Chary MA, Barbuto AF, Izadmehr S, Hayes BD, Burns MM. J Med Toxicol 16 284-294 (2020)
  40. Current status of antivirals and druggable targets of SARS CoV-2 and other human pathogenic coronaviruses. Artese A, Svicher V, Costa G, Salpini R, Di Maio VC, Alkhatib M, Ambrosio FA, Santoro MM, Assaraf YG, Alcaro S, Ceccherini-Silberstein F. Drug Resist Updat 53 100721 (2020)
  41. Overview of SARS-CoV-2 genome-encoded proteins. Bai C, Zhong Q, Gao GF. Sci China Life Sci 65 280-294 (2022)
  42. What coronavirus 3C-like protease tells us: From structure, substrate selectivity, to inhibitor design. Xiong M, Su H, Zhao W, Xie H, Shao Q, Xu Y. Med Res Rev 41 1965-1998 (2021)
  43. Substance Use Disorder in the COVID-19 Pandemic: A Systematic Review of Vulnerabilities and Complications. Wei Y, Shah R. Pharmaceuticals (Basel) 13 E155 (2020)
  44. N-Acetylcysteine to Combat COVID-19: An Evidence Review. Shi Z, Puyo CA. Ther Clin Risk Manag 16 1047-1055 (2020)
  45. SARS-CoV-2 COVID-19 susceptibility and lung inflammatory storm by smoking and vaping. Kaur G, Lungarella G, Rahman I. J Inflamm (Lond) 17 21 (2020)
  46. Artificial Intelligence for COVID-19 Drug Discovery and Vaccine Development. Keshavarzi Arshadi A, Webb J, Salem M, Cruz E, Calad-Thomson S, Ghadirian N, Collins J, Diez-Cecilia E, Kelly B, Goodarzi H, Yuan JS. Front Artif Intell 3 65 (2020)
  47. Discovering small-molecule therapeutics against SARS-CoV-2. Tiwari V, Beer JC, Sankaranarayanan NV, Swanson-Mungerson M, Desai UR. Drug Discov Today 25 1535-1544 (2020)
  48. Role of proteolytic enzymes in the COVID-19 infection and promising therapeutic approaches. Gioia M, Ciaccio C, Calligari P, De Simone G, Sbardella D, Tundo G, Fasciglione GF, Di Masi A, Di Pierro D, Bocedi A, Ascenzi P, Coletta M. Biochem Pharmacol 182 114225 (2020)
  49. The roles of signaling pathways in SARS-CoV-2 infection; lessons learned from SARS-CoV and MERS-CoV. Hemmat N, Asadzadeh Z, Ahangar NK, Alemohammad H, Najafzadeh B, Derakhshani A, Baghbanzadeh A, Baghi HB, Javadrashid D, Najafi S, Ar Gouilh M, Baradaran B. Arch Virol 166 675-696 (2021)
  50. Impact of virus genetic variability and host immunity for the success of COVID-19 vaccines. Dos Santos WG. Biomed Pharmacother 136 111272 (2021)
  51. Recent Progress in the Drug Development Targeting SARS-CoV-2 Main Protease as Treatment for COVID-19. Cui W, Yang K, Yang H. Front Mol Biosci 7 616341 (2020)
  52. The role of cysteine peptidases in coronavirus cell entry and replication: The therapeutic potential of cathepsin inhibitors. Pišlar A, Mitrović A, Sabotič J, Pečar Fonović U, Perišić Nanut M, Jakoš T, Senjor E, Kos J. PLoS Pathog 16 e1009013 (2020)
  53. Current Status of COVID-19 Therapies and Drug Repositioning Applications. Altay O, Mohammadi E, Lam S, Turkez H, Boren J, Nielsen J, Uhlen M, Mardinoglu A. iScience 23 101303 (2020)
  54. Molecular biology of coronaviruses: current knowledge. Artika IM, Dewantari AK, Wiyatno A. Heliyon 6 e04743 (2020)
  55. Biomarkers of COVID-19 and technologies to combat SARS-CoV-2. Zhang L, Guo H. Adv Biomark Sci Technol 2 1-23 (2020)
  56. COVID-19 drug repurposing: A review of computational screening methods, clinical trials, and protein interaction assays. Wang X, Guan Y. Med Res Rev 41 5-28 (2021)
  57. Déjà vu: Stimulating open drug discovery for SARS-CoV-2. Ekins S, Mottin M, Ramos PRPS, Sousa BKP, Neves BJ, Foil DH, Zorn KM, Braga RC, Coffee M, Southan C, Puhl AC, Andrade CH. Drug Discov Today 25 928-941 (2020)
  58. Potential drug targets of SARS-CoV-2: From genomics to therapeutics. Shamsi A, Mohammad T, Anwar S, Amani S, Khan MS, Husain FM, Rehman MT, Islam A, Hassan MI. Int J Biol Macromol 177 1-9 (2021)
  59. Targeting novel structural and functional features of coronavirus protease nsp5 (3CLpro, Mpro) in the age of COVID-19. Roe MK, Junod NA, Young AR, Beachboard DC, Stobart CC. J Gen Virol 102 (2021)
  60. Therapeutic targets and interventional strategies in COVID-19: mechanisms and clinical studies. Zhou YW, Xie Y, Tang LS, Pu D, Zhu YJ, Liu JY, Ma XL. Signal Transduct Target Ther 6 317 (2021)
  61. What Does Plant-Based Vaccine Technology Offer to the Fight against COVID-19? Rosales-Mendoza S, Márquez-Escobar VA, González-Ortega O, Nieto-Gómez R, Arévalo-Villalobos JI. Vaccines (Basel) 8 E183 (2020)
  62. COVID-19 Therapeutic Options Under Investigation. Kaddoura M, AlIbrahim M, Hijazi G, Soudani N, Audi A, Alkalamouni H, Haddad S, Eid A, Zaraket H. Front Pharmacol 11 1196 (2020)
  63. SARS-CoV-2 Antiviral Therapy. Tao K, Tzou PL, Nouhin J, Bonilla H, Jagannathan P, Shafer RW. Clin Microbiol Rev 34 e0010921 (2021)
  64. The current understanding and potential therapeutic options to combat COVID-19. Pooladanda V, Thatikonda S, Godugu C. Life Sci 254 117765 (2020)
  65. A comparative analysis of remdesivir and other repurposed antivirals against SARS-CoV-2. Simonis A, Theobald SJ, Fätkenheuer G, Rybniker J, Malin JJ. EMBO Mol Med 13 e13105 (2021)
  66. COVID-19: neonatal-perinatal perspectives. Barrero-Castillero A, Beam KS, Bernardini LB, Ramos EGC, Davenport PE, Duncan AR, Fraiman YS, Frazer LC, Healy H, Herzberg EM, Keyes ML, Leeman KT, Leone K, Levin JC, Lin M, Raju RM, Sullivan A, Harvard Neonatal-Perinatal Fellowship COVID-19 Working Group. J Perinatol 41 940-951 (2021)
  67. An overview of coronaviruses including the SARS-2 coronavirus - Molecular biology, epidemiology and clinical implications. Kaul D. Curr Med Res Pract 10 54-64 (2020)
  68. Curcumin as a Potential Treatment for COVID-19. Rattis BAC, Ramos SG, Celes MRN. Front Pharmacol 12 675287 (2021)
  69. Drug repurposing against COVID-19: focus on anticancer agents. Ciliberto G, Mancini R, Paggi MG. J Exp Clin Cancer Res 39 86 (2020)
  70. Therapeutic Strategies Against COVID-19 and Structural Characterization of SARS-CoV-2: A Review. Jeong GU, Song H, Yoon GY, Kim D, Kwon YC. Front Microbiol 11 1723 (2020)
  71. An update review of emerging small-molecule therapeutic options for COVID-19. Tian D, Liu Y, Liang C, Xin L, Xie X, Zhang D, Wan M, Li H, Fu X, Liu H, Cao W. Biomed Pharmacother 137 111313 (2021)
  72. Evolutionary and Structural Insights about Potential SARS-CoV-2 Evasion of Nirmatrelvir. Yang KS, Leeuwon SZ, Xu S, Liu WR. J Med Chem 65 8686-8698 (2022)
  73. SARS-CoV-2 ORF8 and SARS-CoV ORF8ab: Genomic Divergence and Functional Convergence. Mohammad S, Bouchama A, Mohammad Alharbi B, Rashid M, Saleem Khatlani T, Gaber NS, Malik SS. Pathogens 9 E677 (2020)
  74. The SARS-CoV-2 main protease (Mpro): Structure, function, and emerging therapies for COVID-19. Hu Q, Xiong Y, Zhu GH, Zhang YN, Zhang YW, Huang P, Ge GB. MedComm (2020) 3 e151 (2022)
  75. An Updated Review of Computer-Aided Drug Design and Its Application to COVID-19. Gurung AB, Ali MA, Lee J, Farah MA, Al-Anazi KM. Biomed Res Int 2021 8853056 (2021)
  76. Natural Bioactive Molecules: An Alternative Approach to the Treatment and Control of COVID-19. Islam F, Bibi S, Meem AFK, Islam MM, Rahaman MS, Bepary S, Rahman MM, Rahman MM, Elzaki A, Kajoak S, Osman H, ElSamani M, Khandaker MU, Idris AM, Emran TB. Int J Mol Sci 22 12638 (2021)
  77. Improved SARS-CoV-2 Mpro inhibitors based on feline antiviral drug GC376: Structural enhancements, increased solubility, and micellar studies. Vuong W, Fischer C, Khan MB, van Belkum MJ, Lamer T, Willoughby KD, Lu J, Arutyunova E, Joyce MA, Saffran HA, Shields JA, Young HS, Nieman JA, Tyrrell DL, Lemieux MJ, Vederas JC. Eur J Med Chem 222 113584 (2021)
  78. COVID-19: Targeting Proteases in Viral Invasion and Host Immune Response. Seth S, Batra J, Srinivasan S. Front Mol Biosci 7 215 (2020)
  79. Tackling SARS-CoV-2: proposed targets and repurposed drugs. Joshi S, Joshi M, Degani MS. Future Med Chem 12 1579-1601 (2020)
  80. Development and application of therapeutic antibodies against COVID-19. Ning L, Abagna HB, Jiang Q, Liu S, Huang J. Int J Biol Sci 17 1486-1496 (2021)
  81. Paxlovid: Mechanism of Action, Synthesis, and In Silico Study. Marzi M, Vakil MK, Bahmanyar M, Zarenezhad E. Biomed Res Int 2022 7341493 (2022)
  82. SARS-CoV-2: Targeted managements and vaccine development. Bakhiet M, Taurin S. Cytokine Growth Factor Rev 58 16-29 (2021)
  83. Nanoparticle-Based Strategies to Combat COVID-19. Medhi R, Srinoi P, Ngo N, Tran HV, Lee TR. ACS Appl Nano Mater 3 8557-8580 (2020)
  84. Therapeutic strategies for COVID-19: progress and lessons learned. Li G, Hilgenfeld R, Whitley R, De Clercq E. Nat Rev Drug Discov 22 449-475 (2023)
  85. Update on therapeutic approaches and emerging therapies for SARS-CoV-2 virus. Omolo CA, Soni N, Fasiku VO, Mackraj I, Govender T. Eur J Pharmacol 883 173348 (2020)
  86. Potential Resistance of SARS-CoV-2 Main Protease (Mpro) against Protease Inhibitors: Lessons Learned from HIV-1 Protease. Mótyán JA, Mahdi M, Hoffka G, Tőzsér J. Int J Mol Sci 23 3507 (2022)
  87. A Review of SARS-CoV2: Compared With SARS-CoV and MERS-CoV. Zhou H, Yang J, Zhou C, Chen B, Fang H, Chen S, Zhang X, Wang L, Zhang L. Front Med (Lausanne) 8 628370 (2021)
  88. A review of the latest research on Mpro targeting SARS-COV inhibitors. Yang H, Yang J. RSC Med Chem 12 1026-1036 (2021)
  89. Bench-to-bedside: Innovation of small molecule anti-SARS-CoV-2 drugs in China. Yang L, Wang Z. Eur J Med Chem 257 115503 (2023)
  90. COVID-19: Direct and Indirect Mechanisms of Statins. Pawlos A, Niedzielski M, Gorzelak-Pabiś P, Broncel M, Woźniak E. Int J Mol Sci 22 4177 (2021)
  91. Current Perspective of Antiviral Strategies against COVID-19. Ahidjo BA, Loe MWC, Ng YL, Mok CK, Chu JJH. ACS Infect Dis 6 1624-1634 (2020)
  92. Targeting SARS-CoV-2 Proteases for COVID-19 Antiviral Development. Lv Z, Cano KE, Jia L, Drag M, Huang TT, Olsen SK. Front Chem 9 819165 (2021)
  93. Antimicrobial and Amyloidogenic Activity of Peptides. Can Antimicrobial Peptides Be Used against SARS-CoV-2? Kurpe SR, Grishin SY, Surin AK, Panfilov AV, Slizen MV, Chowdhury SD, Galzitskaya OV. Int J Mol Sci 21 E9552 (2020)
  94. The race to treat COVID-19: Potential therapeutic agents for the prevention and treatment of SARS-CoV-2. Shagufta, Ahmad I. Eur J Med Chem 213 113157 (2021)
  95. Drugs against SARS-CoV-2: What do we know about their mode of action? Valle C, Martin B, Touret F, Shannon A, Canard B, Guillemot JC, Coutard B, Decroly E. Rev Med Virol 30 1-10 (2020)
  96. Structures of SARS-CoV-2 RNA-Binding Proteins and Therapeutic Targets. Khan MT, Irfan M, Ahsan H, Ahmed A, Kaushik AC, Khan AS, Chinnasamy S, Ali A, Wei DQ. Intervirology 64 55-68 (2021)
  97. Potential treatment methods targeting 2019-nCoV infection. Zheng L, Zhang L, Huang J, Nandakumar KS, Liu S, Cheng K. Eur J Med Chem 205 112687 (2020)
  98. Targeting SARS-CoV-2 viral proteases as a therapeutic strategy to treat COVID-19. Anirudhan V, Lee H, Cheng H, Cooper L, Rong L. J Med Virol 93 2722-2734 (2021)
  99. The recent outbreaks of human coronaviruses: A medicinal chemistry perspective. Pillaiyar T, Wendt LL, Manickam M, Easwaran M. Med Res Rev 41 72-135 (2021)
  100. Vaccines and Therapies in Development for SARS-CoV-2 Infections. Wu D, Koganti R, Lambe UP, Yadavalli T, Nandi SS, Shukla D. J Clin Med 9 E1885 (2020)
  101. An overview of potential inhibitors targeting non-structural proteins 3 (PLpro and Mac1) and 5 (3CLpro/Mpro) of SARS-CoV-2. Yan F, Gao F. Comput Struct Biotechnol J 19 4868-4883 (2021)
  102. Food and COVID-19: Preventive/Co-therapeutic Strategies Explored by Current Clinical Trials and in Silico Studies. Di Matteo G, Spano M, Grosso M, Salvo A, Ingallina C, Russo M, Ritieni A, Mannina L. Foods 9 E1036 (2020)
  103. Precision therapeutic targets for COVID-19. Krumm ZA, Lloyd GM, Francis CP, Nasif LH, Mitchell DA, Golde TE, Giasson BI, Xia Y. Virol J 18 66 (2021)
  104. Severe Acute Respiratory Syndrome Coronavirus 2: From Gene Structure to Pathogenic Mechanisms and Potential Therapy. Wu J, Yuan X, Wang B, Gu R, Li W, Xiang X, Tang L, Sun H. Front Microbiol 11 1576 (2020)
  105. mRNA vaccines for COVID-19 and diverse diseases. Hussain A, Yang H, Zhang M, Liu Q, Alotaibi G, Irfan M, He H, Chang J, Liang XJ, Weng Y, Huang Y. J Control Release 345 314-333 (2022)
  106. Angiotensin-converting enzyme 2: The old door for new severe acute respiratory syndrome coronavirus 2 infection. Tan HW, Xu YM, Lau ATY. Rev Med Virol 30 e2122 (2020)
  107. Candidate antiviral drugs for COVID-19 and their environmental implications: a comprehensive analysis. Biswas P, Hasan MM, Dey D, Dos Santos Costa AC, Polash SA, Bibi S, Ferdous N, Kaium MA, Rahman MDH, Jeet FK, Papadakos S, Islam K, Uddin MS. Environ Sci Pollut Res Int 28 59570-59593 (2021)
  108. Clinical Trials of Repurposed Antivirals for SARS-CoV-2. Martinez MA. Antimicrob Agents Chemother 64 e01101-20 (2020)
  109. Natural products and phytochemicals as potential anti-SARS-CoV-2 drugs. Merarchi M, Dudha N, Das BC, Garg M. Phytother Res 35 5384-5396 (2021)
  110. Potential Anti-COVID-19 Therapeutics that Block the Early Stage of the Viral Life Cycle: Structures, Mechanisms, and Clinical Trials. Al-Horani RA, Kar S, Aliter KF. Int J Mol Sci 21 E5224 (2020)
  111. Small molecules in the treatment of COVID-19. Lei S, Chen X, Wu J, Duan X, Men K. Signal Transduct Target Ther 7 387 (2022)
  112. A Crystallographic Snapshot of SARS-CoV-2 Main Protease Maturation Process. Noske GD, Nakamura AM, Gawriljuk VO, Fernandes RS, Lima GMA, Rosa HVD, Pereira HD, Zeri ACM, Nascimento AFZ, Freire MCLC, Fearon D, Douangamath A, von Delft F, Oliva G, Godoy AS. J Mol Biol 433 167118 (2021)
  113. Biochemical features and mutations of key proteins in SARS-CoV-2 and their impacts on RNA therapeutics. Zeng L, Li D, Tong W, Shi T, Ning B. Biochem Pharmacol 189 114424 (2021)
  114. Papain-Like Proteases as Coronaviral Drug Targets: Current Inhibitors, Opportunities, and Limitations. Petushkova AI, Zamyatnin AA. Pharmaceuticals (Basel) 13 E277 (2020)
  115. Potency, Safety, and Pharmacokinetic Profiles of Potential Inhibitors Targeting SARS-CoV-2 Main Protease. Mengist HM, Mekonnen D, Mohammed A, Shi R, Jin T. Front Pharmacol 11 630500 (2020)
  116. A comprehensive review on promising anti-viral therapeutic candidates identified against main protease from SARS-CoV-2 through various computational methods. Singh E, Khan RJ, Jha RK, Amera GM, Jain M, Singh RP, Muthukumaran J, Singh AK. J Genet Eng Biotechnol 18 69 (2020)
  117. Advances in the Development of SARS-CoV-2 Mpro Inhibitors. Agost-Beltrán L, de la Hoz-Rodríguez S, Bou-Iserte L, Rodríguez S, Fernández-de-la-Pradilla A, González FV. Molecules 27 2523 (2022)
  118. Molecular mechanisms of the novel coronavirus SARS-CoV-2 and potential anti-COVID19 pharmacological targets since the outbreak of the pandemic. Vlachakis D, Papakonstantinou E, Mitsis T, Pierouli K, Diakou I, Chrousos G, Bacopoulou F. Food Chem Toxicol 146 111805 (2020)
  119. Potential Anti-SARS-CoV-2 Therapeutics That Target the Post-Entry Stages of the Viral Life Cycle: A Comprehensive Review. Al-Horani RA, Kar S. Viruses 12 E1092 (2020)
  120. Repurposing cefuroxime for treatment of COVID-19: a scoping review of in silico studies. Durojaiye AB, Clarke JD, Stamatiades GA, Wang C. J Biomol Struct Dyn 39 4547-4554 (2021)
  121. Targeting SARS-CoV-2 Main Protease for Treatment of COVID-19: Covalent Inhibitors Structure-Activity Relationship Insights and Evolution Perspectives. La Monica G, Bono A, Lauria A, Martorana A. J Med Chem 65 12500-12534 (2022)
  122. B.1.617.2 (Delta) Variant of SARS-CoV-2: features, transmission and potential strategies. Zhan Y, Yin H, Yin JY. Int J Biol Sci 18 1844-1851 (2022)
  123. Co-crystallization and structure determination: An effective direction for anti-SARS-CoV-2 drug discovery. Wang Z, Yang L, Zhao XE. Comput Struct Biotechnol J 19 4684-4701 (2021)
  124. Repositioning Ivermectin for Covid-19 treatment: Molecular mechanisms of action against SARS-CoV-2 replication. Low ZY, Yip AJW, Lal SK. Biochim Biophys Acta Mol Basis Dis 1868 166294 (2022)
  125. Revisiting potential druggable targets against SARS-CoV-2 and repurposing therapeutics under preclinical study and clinical trials: A comprehensive review. Sohag AAM, Hannan MA, Rahman S, Hossain M, Hasan M, Khan MK, Khatun A, Dash R, Uddin MJ. Drug Dev Res 81 919-941 (2020)
  126. Will curcumin nanosystems be the next promising antiviral alternatives in COVID-19 treatment trials? Dourado D, Freire DT, Pereira DT, Amaral-Machado L, N Alencar É, de Barros ALB, Egito EST. Biomed Pharmacother 139 111578 (2021)
  127. Antiviral Drug Discovery for the Treatment of COVID-19 Infections. Ng TI, Correia I, Seagal J, DeGoey DA, Schrimpf MR, Hardee DJ, Noey EL, Kati WM. Viruses 14 961 (2022)
  128. Essential functional molecules associated with SARS-CoV-2 infection: Potential therapeutic targets for COVID-19. Rajarshi K, Khan R, Singh MK, Ranjan T, Ray S, Ray S. Gene 768 145313 (2021)
  129. Nirmatrelvir combined with ritonavir for preventing and treating COVID-19. Reis S, Metzendorf MI, Kuehn R, Popp M, Gagyor I, Kranke P, Meybohm P, Skoetz N, Weibel S. Cochrane Database Syst Rev 9 CD015395 (2022)
  130. Overview of Targets and Potential Drugs of SARS-CoV-2 According to the Viral Replication. Zhang Y, Tang LV. J Proteome Res 20 49-59 (2021)
  131. Quercetin in the Prevention and Treatment of Coronavirus Infections: A Focus on SARS-CoV-2. Gasmi A, Mujawdiya PK, Lysiuk R, Shanaida M, Peana M, Gasmi Benahmed A, Beley N, Kovalska N, Bjørklund G. Pharmaceuticals (Basel) 15 1049 (2022)
  132. The Leukotriene Receptor Antagonist Montelukast as a Potential COVID-19 Therapeutic. Aigner L, Pietrantonio F, Bessa de Sousa DM, Michael J, Schuster D, Reitsamer HA, Zerbe H, Studnicka M. Front Mol Biosci 7 610132 (2020)
  133. The time to offer treatments for COVID-19. Ngo BT, Marik P, Kory P, Shapiro L, Thomadsen R, Iglesias J, Ditmore S, Rendell M, Varon J, Dubé M, Nanda N, In G, Arkfeld D, Chaudhary P, Campese VM, Hanna DL, Sawcer DE, Ehresmann G, Peng D, Smogorewski M, Armstrong A, Dasgupta R, Sattler F, Brennan-Rieder D, Mussini C, Mitja O, Soriano V, Peschanski N, Hayem G, Confalonieri M, Piccirillo MC, Lobo-Ferreira A, Bello Rivero I, Turkia M, Vinjevoll EH, Griffin D, Hung IF. Expert Opin Investig Drugs 30 505-518 (2021)
  134. Zinc(II)-The Overlooked Éminence Grise of Chloroquine's Fight against COVID-19? Hecel A, Ostrowska M, Stokowa-Sołtys K, Wątły J, Dudek D, Miller A, Potocki S, Matera-Witkiewicz A, Dominguez-Martin A, Kozłowski H, Rowińska-Żyrek M. Pharmaceuticals (Basel) 13 E228 (2020)
  135. Deciphering SARS-CoV-2 Virologic and Immunologic Features. Lebeau G, Vagner D, Frumence É, Ah-Pine F, Guillot X, Nobécourt E, Raffray L, Gasque P. Int J Mol Sci 21 E5932 (2020)
  136. Plant Products as Inhibitors of Coronavirus 3CL Protease. Mandal A, Jha AK, Hazra B. Front Pharmacol 12 583387 (2021)
  137. Potential Therapeutic Agents and Associated Bioassay Data for COVID-19 and Related Human Coronavirus Infections. Zhou QA, Kato-Weinstein J, Li Y, Deng Y, Granet R, Garner L, Liu C, Polshakov D, Gessner C, Watkins S. ACS Pharmacol Transl Sci 3 813-834 (2020)
  138. Recent Advances in Pathophysiology, Drug Development and Future Perspectives of SARS-CoV-2. Singh DD, Han I, Choi EH, Yadav DK. Front Cell Dev Biol 8 580202 (2020)
  139. 2020 update on human coronaviruses: One health, one world. Zhao X, Ding Y, Du J, Fan Y. Med Nov Technol Devices 8 100043 (2020)
  140. Characteristics of the Coronavirus Disease 2019 and related Therapeutic Options. Huang B, Ling R, Cheng Y, Wen J, Dai Y, Huang W, Zhang S, Lu X, Luo Y, Jiang YZ. Mol Ther Methods Clin Dev 18 367-375 (2020)
  141. Protease targeted COVID-19 drug discovery: What we have learned from the past SARS-CoV inhibitors? Amin SA, Banerjee S, Gayen S, Jha T. Eur J Med Chem 215 113294 (2021)
  142. Research progress on repositioning drugs and specific therapeutic drugs for SARS-CoV-2. Fan S, Xiao D, Wang Y, Liu L, Zhou X, Zhong W. Future Med Chem 12 1565-1578 (2020)
  143. A Patent Review on SARS Coronavirus Main Protease (3CLpro ) Inhibitors. Chia CSB, Xu W, Shuyi Ng P. ChemMedChem 17 e202100576 (2022)
  144. Human cell receptors: potential drug targets to combat COVID-19. Raghav PK, Kalyanaraman K, Kumar D. Amino Acids 53 813-842 (2021)
  145. The impact of structural bioinformatics tools and resources on SARS-CoV-2 research and therapeutic strategies. Waman VP, Sen N, Varadi M, Daina A, Wodak SJ, Zoete V, Velankar S, Orengo C. Brief Bioinform 22 742-768 (2021)
  146. Efficacy and mechanisms of traditional Chinese medicine for COVID-19: a systematic review. Kang X, Jin, Jiang L, Zhang Y, Zhang Y, An X, Duan L, Yang C, Zhou R, Duan Y, Sun Y, Lian F. Chin Med 17 30 (2022)
  147. Natural and Nature-Derived Products Targeting Human Coronaviruses. Vougogiannopoulou K, Corona A, Tramontano E, Alexis MN, Skaltsounis AL. Molecules 26 448 (2021)
  148. Possible Use of Phytochemicals for Recovery from COVID-19-Induced Anosmia and Ageusia. Koyama S, Kondo K, Ueha R, Kashiwadani H, Heinbockel T. Int J Mol Sci 22 8912 (2021)
  149. SARS-CoV-2: Pathogenesis, Molecular Targets and Experimental Models. Kanimozhi G, Pradhapsingh B, Singh Pawar C, Khan HA, Alrokayan SH, Prasad NR. Front Pharmacol 12 638334 (2021)
  150. Structural and molecular perspectives of SARS-CoV-2. Kumar S, Saxena SK. Methods 195 23-28 (2021)
  151. Union is strength: antiviral and anti-inflammatory drugs for COVID-19. Naveja JJ, Madariaga-Mazón A, Flores-Murrieta F, Granados-Montiel J, Maradiaga-Ceceña M, Alaniz VD, Maldonado-Rodriguez M, García-Morales J, Senosiain-Peláez JP, Martinez-Mayorga K. Drug Discov Today 26 229-239 (2021)
  152. A Comprehensive Overview on the Production of Vaccines in Plant-Based Expression Systems and the Scope of Plant Biotechnology to Combat against SARS-CoV-2 Virus Pandemics. Kumar M, Kumari N, Thakur N, Bhatia SK, Saratale GD, Ghodake G, Mistry BM, Alavilli H, Kishor DS, Du X, Chung SM. Plants (Basel) 10 1213 (2021)
  153. COVID-19 treatment: Much research and testing, but far, few magic bullets against SARS-CoV-2 coronavirus. Kouznetsov VV. Eur J Med Chem 203 112647 (2020)
  154. Potential 3-chymotrypsin-like cysteine protease cleavage sites in the coronavirus polyproteins pp1a and pp1ab and their possible relevance to COVID-19 vaccine and drug development. Yan S, Wu G. FASEB J 35 e21573 (2021)
  155. Potential repurposed SARS-CoV-2 (COVID-19) infection drugs. Abuo-Rahma GEA, Mohamed MFA, Ibrahim TS, Shoman ME, Samir E, Abd El-Baky RM. RSC Adv 10 26895-26916 (2020)
  156. Repositioning microbial biotechnology against COVID-19: the case of microbial production of flavonoids. Goris T, Pérez-Valero Á, Martínez I, Yi D, Fernández-Calleja L, San León D, Bornscheuer UT, Magadán-Corpas P, Lombó F, Nogales J. Microb Biotechnol 14 94-110 (2021)
  157. Structure-Function Characteristics of SARS-CoV-2 Proteases and Their Potential Inhibitors from Microbial Sources. Razali R, Asis H, Budiman C. Microorganisms 9 2481 (2021)
  158. Update on Antiviral Strategies Against COVID-19: Unmet Needs and Prospects. Liu CH, Lu CH, Wong SH, Lin LT. Front Immunol 11 616595 (2020)
  159. An Overview of Current Knowledge of Deadly CoVs and Their Interface with Innate Immunity. Zhang Y, Gargan S, Lu Y, Stevenson NJ. Viruses 13 560 (2021)
  160. An overview of key potential therapeutic strategies for combat in the COVID-19 battle. Das G, Ghosh S, Garg S, Ghosh S, Jana A, Samat R, Mukherjee N, Roy R, Ghosh S. RSC Adv 10 28243-28266 (2020)
  161. An overview on nanoparticle-based strategies to fight viral infections with a focus on COVID-19. Yasamineh S, Kalajahi HG, Yasamineh P, Yazdani Y, Gholizadeh O, Tabatabaie R, Afkhami H, Davodabadi F, Farkhad AK, Pahlevan D, Firouzi-Amandi A, Nejati-Koshki K, Dadashpour M. J Nanobiotechnology 20 440 (2022)
  162. COVID-19: Emergence of Infectious Diseases, Nanotechnology Aspects, Challenges, and Future Perspectives. Gupta A, Kumar S, Kumar R, Choudhary AK, Kumari K, Singh P, Kumar V. ChemistrySelect 5 7521-7533 (2020)
  163. Combination of natural antivirals and potent immune invigorators: A natural remedy to combat COVID-19. Shah MA, Rasul A, Yousaf R, Haris M, Faheem HI, Hamid A, Khan H, Khan AH, Aschner M, Batiha GE. Phytother Res 35 6530-6551 (2021)
  164. Design and Evaluation of Anti-SARS-Coronavirus Agents Based on Molecular Interactions with the Viral Protease. Akaji K, Konno H. Molecules 25 E3920 (2020)
  165. In Search of Herbal Anti-SARS-Cov2 Compounds. Matveeva T, Khafizova G, Sokornova S. Front Plant Sci 11 589998 (2020)
  166. Innate immune evasion mediated by picornaviral 3C protease: Possible lessons for coronaviral 3C-like protease? Ng CS, Stobart CC, Luo H. Rev Med Virol 31 1-22 (2021)
  167. Metabolic Perturbations and Severe COVID-19 Disease: Implication of Molecular Pathways. Nigro E, Perrotta F, Polito R, D'Agnano V, Scialò F, Bianco A, Daniele A. Int J Endocrinol 2020 8896536 (2020)
  168. Natural Plant Products: A Less Focused Aspect for the COVID-19 Viral Outbreak. Pandey A, Khan MK, Hamurcu M, Gezgin S. Front Plant Sci 11 568890 (2020)
  169. Potential molecular targets of nonstructural proteins for the development of antiviral drugs against SARS-CoV-2 infection. Liu XH, Zhang X, Lu ZH, Zhu YS, Wang T. Biomed Pharmacother 133 111035 (2021)
  170. SARS-COV-2, infection, transmission, transcription, translation, proteins, and treatment: A review. Emrani J, Ahmed M, Jeffers-Francis L, Teleha JC, Mowa N, Newman RH, Thomas MD. Int J Biol Macromol 193 1249-1273 (2021)
  171. Therapeutic approaches for SARS-CoV-2 infection. Gupta A, Pradhan A, Maurya VK, Kumar S, Theengh A, Puri B, Saxena SK. Methods 195 29-43 (2021)
  172. A Comprehensive Updated Review on SARS-CoV-2 and COVID-19. Ren YR, Golding A, Sorbello A, Ji P, Chen J, Saluja B, Witzmann K, Arya V, Reynolds KS, Choi SY, Nikolov NP, Sahajwalla C. J Clin Pharmacol 60 954-975 (2020)
  173. Antiviral plant-derived natural products to combat RNA viruses: Targets throughout the viral life cycle. Owen L, Laird K, Shivkumar M. Lett Appl Microbiol 75 476-499 (2022)
  174. Molecular Virology of SARS-CoV-2 and Related Coronaviruses. Kung YA, Lee KM, Chiang HJ, Huang SY, Wu CJ, Shih SR. Microbiol Mol Biol Rev 86 e0002621 (2022)
  175. Repurpose but also (nano)-reformulate! The potential role of nanomedicine in the battle against SARS-CoV2. Tammam SN, El Safy S, Ramadan S, Arjune S, Krakor E, Mathur S. J Control Release 337 258-284 (2021)
  176. SARS-CoV-2 Non-Structural Proteins and Their Roles in Host Immune Evasion. Low ZY, Zabidi NZ, Yip AJW, Puniyamurti A, Chow VTK, Lal SK. Viruses 14 1991 (2022)
  177. The main protease and RNA-dependent RNA polymerase are two prime targets for SARS-CoV-2. Jin Z, Wang H, Duan Y, Yang H. Biochem Biophys Res Commun 538 63-71 (2021)
  178. Adverse Cardiovascular Effects of Anti-COVID-19 Drugs. Liu D, Zeng X, Ding Z, Lv F, Mehta JL, Wang X. Front Pharmacol 12 699949 (2021)
  179. COVID-19: inflammatory responses, structure-based drug design and potential therapeutics. Tripathi N, Tripathi N, Goshisht MK. Mol Divers 26 629-645 (2022)
  180. Current and Future Direct-Acting Antivirals Against COVID-19. Chan SW. Front Microbiol 11 587944 (2020)
  181. Druggable targets from coronaviruses for designing new antiviral drugs. Silva LR, da Silva Santos-Júnior PF, de Andrade Brandão J, Anderson L, Bassi ÊJ, Xavier de Araújo-Júnior J, Cardoso SH, da Silva-Júnior EF. Bioorg Med Chem 28 115745 (2020)
  182. Nanoemulsions: Formulation, characterization, biological fate, and potential role against COVID-19 and other viral outbreaks. Tayeb HH, Felimban R, Almaghrabi S, Hasaballah N. Colloid Interface Sci Commun 45 100533 (2021)
  183. Preparedness needs research: How fundamental science and international collaboration accelerated the response to COVID-19. Kinsella CM, Santos PD, Postigo-Hidalgo I, Folgueiras-González A, Passchier TC, Szillat KP, Akello JO, Álvarez-Rodríguez B, Martí-Carreras J. PLoS Pathog 16 e1008902 (2020)
  184. Progress on SARS-CoV-2 3CLpro Inhibitors: Inspiration from SARS-CoV 3CLpro Peptidomimetics and Small-Molecule Anti-Inflammatory Compounds. Zhu J, Zhang H, Lin Q, Lyu J, Lu L, Chen H, Zhang X, Zhang Y, Chen K. Drug Des Devel Ther 16 1067-1082 (2022)
  185. Prophylactic effects of probiotics on respiratory viruses including COVID-19: a review. Lee NK, Paik HD. Food Sci Biotechnol 30 773-781 (2021)
  186. Races of small molecule clinical trials for the treatment of COVID-19: An up-to-date comprehensive review. Hu S, Jiang S, Qi X, Bai R, Ye XY, Xie T. Drug Dev Res 83 16-54 (2022)
  187. Reducing SARS-CoV-2 pathological protein activity with small molecules. Pluskota-Karwatka D, Hoffmann M, Barciszewski J. J Pharm Anal 11 383-397 (2021)
  188. Repurposing an Antiviral Drug against SARS-CoV-2 Main Protease. Sarkar A, Mandal K. Angew Chem Int Ed Engl 60 23492-23494 (2021)
  189. SARS-CoV-2: Insights into its structural intricacies and functional aspects for drug and vaccine development. Kaur M, Sharma A, Kumar S, Singh G, Barnwal RP. Int J Biol Macromol 179 45-60 (2021)
  190. Single-particle virology. Kiss B, Mudra D, Török G, Mártonfalvi Z, Csík G, Herényi L, Kellermayer M. Biophys Rev 12 1141-1154 (2020)
  191. The Alpha Keto Amide Moiety as a Privileged Motif in Medicinal Chemistry: Current Insights and Emerging Opportunities. Robello M, Barresi E, Baglini E, Salerno S, Taliani S, Settimo FD. J Med Chem 64 3508-3545 (2021)
  192. Viral Proteases as Targets for Coronavirus Disease 2019 Drug Development. Zhu W, Shyr Z, Lo DC, Zheng W. J Pharmacol Exp Ther 378 166-172 (2021)
  193. "Tomorrow Never Dies": Recent Advances in Diagnosis, Treatment, and Prevention Modalities against Coronavirus (COVID-19) amid Controversies. Laskar P, Yallapu MM, Chauhan SC. Diseases 8 E30 (2020)
  194. Advances in Pathogenesis, Progression, Potential Targets and Targeted Therapeutic Strategies in SARS-CoV-2-Induced COVID-19. Zhou H, Ni WJ, Huang W, Wang Z, Cai M, Sun YC. Front Immunol 13 834942 (2022)
  195. Elucidating the microscopic and computational techniques to study the structure and pathology of SARS-CoVs. Kaniyala Melanthota S, Banik S, Chakraborty I, Pallen S, Gopal D, Chakrabarti S, Mazumder N. Microsc Res Tech 83 1623-1638 (2020)
  196. Reviews on Biological Activity, Clinical Trial and Synthesis Progress of Small Molecules for the Treatment of COVID-19. Li D, Hu J, Li D, Yang W, Yin SF, Qiu R. Top Curr Chem (Cham) 379 4 (2021)
  197. Systematic review on role of structure based drug design (SBDD) in the identification of anti-viral leads against SARS-Cov-2. Bajad NG, Rayala S, Gutti G, Sharma A, Singh M, Kumar A, Singh SK. Curr Res Pharmacol Drug Discov 2 100026 (2021)
  198. While We Wait for a Vaccine Against SARS-CoV-2, Why Not Think About Available Drugs? Barrantes FJ. Front Physiol 11 820 (2020)
  199. Advances in research on 3C-like protease (3CLpro) inhibitors against SARS-CoV-2 since 2020. Chen R, Gao Y, Liu H, Li H, Chen W, Ma J. RSC Med Chem 14 9-21 (2023)
  200. COVID-19 and pregnancy: clinical outcomes; mechanisms, and vaccine efficacy. Kumar D, Verma S, Mysorekar IU. Transl Res 251 84-95 (2023)
  201. COVID-19: The Effect of Host Genetic Variations on Host-Virus Interactions. Chakravarty S. J Proteome Res 20 139-153 (2021)
  202. Can iron, zinc, copper and selenium status be a prognostic determinant in COVID-19 patients? Engin AB, Engin ED, Engin A. Environ Toxicol Pharmacol 95 103937 (2022)
  203. Emerging chemistry and biology in protein glutathionylation. Kukulage DSK, Matarage Don NNJ, Ahn YH. Curr Opin Chem Biol 71 102221 (2022)
  204. Monitoring Proteolytic Activity in Real Time: A New World of Opportunities for Biosensors. Oliveira-Silva R, Sousa-Jerónimo M, Botequim D, Silva NJO, Paulo PMR, Prazeres DMF. Trends Biochem Sci 45 604-618 (2020)
  205. Pharmacogenetics and Precision Medicine Approaches for the Improvement of COVID-19 Therapies. Biswas M, Sawajan N, Rungrotmongkol T, Sanachai K, Ershadian M, Sukasem C. Front Pharmacol 13 835136 (2022)
  206. Progress and Challenges Toward Generation and Maintenance of Long-Lived Memory T Lymphocyte Responses During COVID-19. Kumar S, Saxena SK, Maurya VK, Tripathi AK. Front Immunol 12 804808 (2021)
  207. Structure and function of SARS-CoV and SARS-CoV-2 main proteases and their inhibition: A comprehensive review. Li X, Song Y. Eur J Med Chem 260 115772 (2023)
  208. A Multidisciplinary Approach to Coronavirus Disease (COVID-19). Gediz Erturk A, Sahin A, Bati Ay E, Pelit E, Bagdatli E, Kulu I, Gul M, Mesci S, Eryilmaz S, Oba Ilter S, Yildirim T. Molecules 26 3526 (2021)
  209. Antimicrobial and Antiviral (SARS-CoV-2) Potential of Cannabinoids and Cannabis sativa: A Comprehensive Review. Mahmud MS, Hossain MS, Ahmed ATMF, Islam MZ, Sarker ME, Islam MR. Molecules 26 7216 (2021)
  210. Beyond the vaccines: a glance at the small molecule and peptide-based anti-COVID19 arsenal. Nepali K, Sharma R, Sharma S, Thakur A, Liou JP. J Biomed Sci 29 65 (2022)
  211. Brazilian essential oils as source for the discovery of new anti-COVID-19 drug: a review guided by in silico study. Amparo TR, Seibert JB, Silveira BM, Costa FSF, Almeida TC, Braga SFP, da Silva GN, Dos Santos ODH, de Souza GHB. Phytochem Rev 20 1013-1032 (2021)
  212. Coronavirus in Continuous Flux: From SARS-CoV to SARS-CoV-2. Dong Y, Dai T, Liu J, Zhang L, Zhou F. Adv Sci (Weinh) 7 2001474 (2020)
  213. Increased Risk of COVID-19 in Patients with Diabetes Mellitus-Current Challenges in Pathophysiology, Treatment and Prevention. Gęca T, Wojtowicz K, Guzik P, Góra T. Int J Environ Res Public Health 19 6555 (2022)
  214. Peptides and peptidomimetics as therapeutic agents for Covid-19. Dahal A, Sonju JJ, Kousoulas KG, Jois SD. Pept Sci (Hoboken) 114 e24245 (2022)
  215. Precursors of Viral Proteases as Distinct Drug Targets. Majerová T, Novotný P. Viruses 13 1981 (2021)
  216. Protein structure-based in-silico approaches to drug discovery: Guide to COVID-19 therapeutics. Gupta Y, Savytskyi OV, Coban M, Venugopal A, Pleqi V, Weber CA, Chitale R, Durvasula R, Hopkins C, Kempaiah P, Caulfield TR. Mol Aspects Med 91 101151 (2023)
  217. Science's Response to CoVID-19. Long MJC, Aye Y. ChemMedChem 16 2288-2314 (2021)
  218. Therapeutic approaches against coronaviruses acute respiratory syndrome. Servidio C, Stellacci F. Pharmacol Res Perspect 9 e00691 (2021)
  219. Understanding Severe Acute Respiratory Syndrome Coronavirus 2 Replication to Design Efficient Drug Combination Therapies. Ortega JT, Zambrano JL, Jastrzebska B, Liprandi F, Rangel HR, Pujol FH. Intervirology 63 2-9 (2020)
  220. Addressing the 'hypoxia paradox' in severe COVID-19: literature review and report of four cases treated with erythropoietin analogues. Begemann M, Gross O, Wincewicz D, Hardeland R, Daguano Gastaldi V, Vieta E, Weissenborn K, Miskowiak KW, Moerer O, Ehrenreich H. Mol Med 27 120 (2021)
  221. Allosteric Binding Sites of the SARS-CoV-2 Main Protease: Potential Targets for Broad-Spectrum Anti-Coronavirus Agents. Alzyoud L, Ghattas MA, Atatreh N. Drug Des Devel Ther 16 2463-2478 (2022)
  222. Based on Principles and Insights of COVID-19 Epidemiology, Genome Sequencing, and Pathogenesis: Retrospective Analysis of Sinigrin and ProlixinRX (Fluphenazine) Provides Off-Label Drug Candidates. Nazeam J, Mohammed EZ, Raafat M, Houssein M, Elkafoury A, Hamdy D, Jamil L. SLAS Discov 25 1123-1140 (2020)
  223. COVID-19 into Chemical Science Perspective: Chemical Preventive Measures and Drug Development. Adhikari B, Sahu N. ChemistrySelect 6 2010-2028 (2021)
  224. Coronavirus enzyme inhibitors-experimentally proven natural compounds from plants. Park J, Park R, Jang M, Park YI, Park Y. J Microbiol 60 347-354 (2022)
  225. Flavonoids as Molecules With Anti-Zika virus Activity. Cataneo AHD, Ávila EP, Mendes LAO, de Oliveira VG, Ferraz CR, de Almeida MV, Frabasile S, Duarte Dos Santos CN, Verri WA, Bordignon J, Wowk PF. Front Microbiol 12 710359 (2021)
  226. Human endeavor for anti-SARS-CoV-2 pharmacotherapy: A major strategy to fight the pandemic. Wang R, Stephen P, Tao Y, Zhang W, Lin SX. Biomed Pharmacother 137 111232 (2021)
  227. Induction of the Antiviral Immune Response and Its Circumvention by Coronaviruses. Liu P, Hong Y, Yang B, Shrestha P, Sajjad N, Chen JL. Viruses 12 E1039 (2020)
  228. Knowing and combating the enemy: a brief review on SARS-CoV-2 and computational approaches applied to the discovery of drug candidates. Serafim MSM, Gertrudes JC, Costa DMA, Oliveira PR, Maltarollo VG, Honorio KM. Biosci Rep 41 BSR20202616 (2021)
  229. Nuclear Medicine in Times of COVID-19: How Radiopharmaceuticals Could Help to Fight the Current and Future Pandemics. Neumaier F, Zlatopolskiy BD, Neumaier B. Pharmaceutics 12 E1247 (2020)
  230. Potential strategies for combating COVID-19. Shamim S, Khan M, Kharaba ZJ, Ijaz M, Murtaza G. Arch Virol 165 2419-2438 (2020)
  231. Recent advances in small-molecular therapeutics for COVID-19. Zhong L, Zhao Z, Peng X, Zou J, Yang S. Precis Clin Med 5 pbac024 (2022)
  232. Recent progress in the development of potential drugs against SARS-CoV-2. Chen J, Ali F, Khan I, Zhu YZ. Curr Res Pharmacol Drug Discov 2 100057 (2021)
  233. Structural biology in the time of COVID-19: perspectives on methods and milestones. Lynch ML, Snell EH, Bowman SEJ. IUCrJ 8 335-341 (2021)
  234. Structural insights of key enzymes into therapeutic intervention against SARS-CoV-2. Shahid M, Shahzad-Ul-Hussan S. J Struct Biol 213 107690 (2021)
  235. The New Coronavirus (SARS-CoV-2): A Comprehensive Review on Immunity and the Application of Bioinformatics and Molecular Modeling to the Discovery of Potential Anti-SARS-CoV-2 Agents. Villas-Boas GR, Rescia VC, Paes MM, Lavorato SN, Magalhães-Filho MF, Cunha MS, Simões RDC, Lacerda RB, Freitas-Júnior RS, Ramos BHDS, Mapeli AM, Henriques MDST, Freitas WR, Lopes LAF, Oliveira LGR, Silva JGD, Silva-Filho SE, Silveira APSD, Leão KV, Matos MMS, Fernandes JS, Cuman RKN, Silva-Comar FMS, Comar JF, Brasileiro LDA, Santos JND, Oesterreich SA. Molecules 25 E4086 (2020)
  236. A Review of Extracellular Vesicles in COVID-19 Diagnosis, Treatment, and Prevention. Su P, Wu Y, Xie F, Zheng Q, Chen L, Liu Z, Meng X, Zhou F, Zhang L. Adv Sci (Weinh) 10 e2206095 (2023)
  237. A pocket guide on how to structure SARS-CoV-2 drugs and therapies. Littler DR, MacLachlan BJ, Watson GM, Vivian JP, Gully BS. Biochem Soc Trans 48 2625-2641 (2020)
  238. A review on structural, non-structural, and accessory proteins of SARS-CoV-2: Highlighting drug target sites. Jahirul Islam M, Nawal Islam N, Siddik Alom M, Kabir M, Halim MA. Immunobiology 228 152302 (2023)
  239. A short survey of dengue protease inhibitor development in the past 6 years (2015-2020) with an emphasis on similarities between DENV and SARS-CoV-2 proteases. Murtuja S, Shilkar D, Sarkar B, Sinha BN, Jayaprakash V. Bioorg Med Chem 49 116415 (2021)
  240. An overview of viruses discovered over the last decades and drug development for the current pandemic. Mirza AZ, Shamshad H, Osra FA, Habeebullah TM, Morad M. Eur J Pharmacol 890 173746 (2021)
  241. Andrographolide: A Herbal-Chemosynthetic Approach for Enhancing Immunity, Combating Viral Infections, and Its Implication on Human Health. Mishra A, Shaik HA, Sinha RK, Shah BR. Molecules 26 7036 (2021)
  242. COVID-19 versus SARS: A comparative review. Keshta AS, Mallah SI, Al Zubaidi K, Ghorab OK, Keshta MS, Alarabi D, Abousaleh MA, Salman MT, Taha OE, Zeidan AA, Elsaid MF, Tang P. J Infect Public Health 14 967-977 (2021)
  243. Current Potential Therapeutic Approaches against SARS-CoV-2: A Review. Yadav DK, Singh DD, Han I, Kumar Y, Choi EH. Biomedicines 9 1620 (2021)
  244. Imaging and visualizing SARS-CoV-2 in a new era for structural biology. Leigh KE, Modis Y. Interface Focus 11 20210019 (2021)
  245. In Silico Evaluation of Natural Flavonoids as a Potential Inhibitor of Coronavirus Disease. Kashyap P, Thakur M, Singh N, Shikha D, Kumar S, Baniwal P, Yadav YS, Sharma M, Sridhar K, Inbaraj BS. Molecules 27 6374 (2022)
  246. Insights of Novel Coronavirus (SARS-CoV-2) disease outbreak, management and treatment. Kumar D, Batra L, Malik MT. AIMS Microbiol 6 183-203 (2020)
  247. Molecular targets and system biology approaches for drug repurposing against SARS-CoV-2. Singh RK, Yadav BS, Mohapatra TM. Bull Natl Res Cent 44 193 (2020)
  248. Nanoscale pathogens treated with nanomaterial-like peptides: a platform technology appropriate for future pandemics. F Nahhas A, F Nahhas A, J Webster T. Nanomedicine (Lond) 16 1237-1254 (2021)
  249. Pandemic strategies with computational and structural biology against COVID-19: A retrospective. Liu CH, Lu CH, Lin LT. Comput Struct Biotechnol J 20 187-192 (2022)
  250. Pharmacotherapeutics of SARS-CoV-2 Infections. Kevadiya BD, Machhi J, Herskovitz J, Oleynikov MD, Blomberg WR, Bajwa N, Soni D, Das S, Hasan M, Patel M, Senan AM, Gorantla S, McMillan J, Edagwa B, Eisenberg R, Gurumurthy CB, Reid SPM, Punyadeera C, Chang L, Gendelman HE. J Neuroimmune Pharmacol 16 12-37 (2021)
  251. Review of preclinical data of PF-07304814 and its active metabolite derivatives against SARS-CoV-2 infection. Chen W, Shao Y, Peng X, Liang B, Xu J, Xing D. Front Pharmacol 13 1035969 (2022)
  252. Structural insights into SARS-CoV-2 infection and therapeutics development. Sun G, Xue L, He Q, Zhao Y, Xu W, Wang Z. Stem Cell Res 52 102219 (2021)
  253. Study of the structural, chemical descriptors and optoelectronic properties of the drugs Hydroxychloroquine and Azithromycin. Ejuh GW, Fonkem C, Tadjouteu Assatse Y, Yossa Kamsi RA, Nya T, Ndukum LP, Ndjaka JMB. Heliyon 6 e04647 (2020)
  254. Targeting the Ubiquitylation and ISGylation Machinery for the Treatment of COVID-19. Vere G, Alam MR, Farrar S, Kealy R, Kessler BM, O'Brien DP, Pinto-Fernández A. Biomolecules 12 300 (2022)
  255. The relevant information about the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) using the five-question approach (when, where, what, why, and how) and its impact on the environment. AlMalki FA, Albukhaty S, Alyamani AA, Khalaf MN, Thomas S. Environ Sci Pollut Res Int 30 61430-61454 (2023)
  256. Three-Dimensional Visualization of Viral Structure, Entry, and Replication Underlying the Spread of SARS-CoV-2. Saville JW, Berezuk AM, Srivastava SS, Subramaniam S. Chem Rev 122 14066-14084 (2022)
  257. Tuaimenal A, a Meroterpene from the Irish Deep-Sea Soft Coral Duva florida, Displays Inhibition of the SARS-CoV-2 3CLpro Enzyme. Avalon NE, Nafie J, De Marco Verissimo C, Warrensford LC, Dietrick SG, Pittman AR, Young RM, Kearns FL, Smalley T, Binning JM, Dalton JP, Johnson MP, Woodcock HL, Allcock AL, Baker BJ. J Nat Prod 85 1315-1323 (2022)
  258. Antiviral peptides against SARS-CoV-2: therapeutic targets, mechanistic antiviral activity, and efficient delivery. Essa RZ, Wu YS, Batumalaie K, Sekar M, Poh CL. Pharmacol Rep 74 1166-1181 (2022)
  259. Biology and Pathogenesis of SARS-CoV-2: Understandings for Therapeutic Developments against COVID-19. Sharma HN, Latimore COD, Matthews QL. Pathogens 10 1218 (2021)
  260. Biomolecular interactions with nanoparticles: applications for coronavirus disease 2019. Farouq MAH, Al Qaraghuli MM, Kubiak-Ossowska K, Ferro VA, Mulheran PA. Curr Opin Colloid Interface Sci 54 101461 (2021)
  261. COVID-19: Vaccine Delivery System, Drug Repurposing and Application of Molecular Modeling Approach. Abd El Hadi SR, Zien El-Deen EE, Bahaa MM, Sadakah AA, Yassin HA. Drug Des Devel Ther 15 3313-3330 (2021)
  262. Credible Protein Targets and Curative Strategies for COVID-19: a Review. Singh P, Mishra N, Singh N, Nisha R, Pal RR, Singh S, Maurya P, Saraf SA. SN Compr Clin Med 2 2067-2076 (2020)
  263. Enteroviruses and coronaviruses: similarities and therapeutic targets. Marjomäki V, Kalander K, Hellman M, Permi P. Expert Opin Ther Targets 25 479-489 (2021)
  264. Hunting severe acute respiratory syndrome coronavirus 2 (2019 novel coronavirus): From laboratory testing back to basic research. Yang DM, Chang TJ, Wang ML, Tsai PH, Lin TH, Wang CT, Liang KH. J Chin Med Assoc 83 524-526 (2020)
  265. Implication of in silico studies in the search for novel inhibitors against SARS-CoV-2. Ali F, Alom S, Shakya A, Ghosh SK, Singh UP, Bhat HR. Arch Pharm (Weinheim) 355 e2100360 (2022)
  266. Insight into prognostics, diagnostics, and management strategies for SARS CoV-2. Amara U, Rashid S, Mahmood K, Nawaz MH, Hayat A, Hassan M. RSC Adv 12 8059-8094 (2022)
  267. Metallic Structures: Effective Agents to Fight Pathogenic Microorganisms. Pereira D, Carreira TS, Alves N, Sousa Â, Valente JFA. Int J Mol Sci 23 1165 (2022)
  268. Novel antiviral effects of chloroquine, hydroxychloroquine, and green tea catechins against SARS CoV-2 main protease (Mpro) and 3C-like protease for COVID-19 treatment. Shaik FB, Swarnalatha K, Mohan MC, Thomas A, Chikati R, Sandeep G, Maddu N. Clin Nutr Open Sci 42 62-72 (2022)
  269. Potential SARS-COV preclinical (in vivo) compounds targeting COVID-19 main protease: a meta-analysis and molecular docking studies. Ebenezer O, Jordaan MA, Ogunsakin RE, Shapi M. Hippokratia 24 99-106 (2020)
  270. Search, Identification, and Design of Effective Antiviral Drugs Against Pandemic Human Coronaviruses. Huang T, Sun L, Kang D, Poongavanam V, Liu X, Zhan P, Menéndez-Arias L. Adv Exp Med Biol 1322 219-260 (2021)
  271. The role of multi-omics in the diagnosis of COVID-19 and the prediction of new therapeutic targets. Ma J, Deng Y, Zhang M, Yu J. Virulence 13 1101-1110 (2022)
  272. Viral proteases as therapeutic targets. Majerová T, Konvalinka J. Mol Aspects Med 88 101159 (2022)
  273. anti-HCoV: A web resource to collect natural compounds against human coronaviruses. Monticolo F, Palomba E, De Santis R, Assentato L, Triscino V, Langella MC, Lanzotti V, Chiusano ML. Trends Food Sci Technol 106 1-11 (2020)
  274. A Narrative Review of a Pulmonary Aerosolized Formulation or a Nasal Drop Using Sera Containing Neutralizing Antibodies Collected from COVID-19-Recovered Patients as a Probable Therapy for COVID-19. Fatima N, Kaushik V, Ayoub A. Iran J Med Sci 46 151-168 (2021)
  275. A Review of Potential Therapeutic Strategies for COVID-19. Meng J, Li R, Zhang Z, Wang J, Huang Q, Nie D, Fan K, Guo W, Zhao Z, Han Z. Viruses 14 2346 (2022)
  276. A Review: The Antiviral Activity of Cyclic Peptides. Chia LY, Kumar PV, Maki MAA, Ravichandran G, Thilagar S. Int J Pept Res Ther 29 7 (2023)
  277. Antitarget, Anti-SARS-CoV-2 Leads, Drugs, and the Drug Discovery-Genetics Alliance Perspective. Pozzi C, Vanet A, Francesconi V, Tagliazucchi L, Tassone G, Venturelli A, Spyrakis F, Mazzorana M, Costi MP, Tonelli M. J Med Chem 66 3664-3702 (2023)
  278. Computer-aided discovery, design, and investigation of COVID-19 therapeutics. Chang CC, Hsu HJ, Wu TY, Liou JW. Tzu Chi Med J 34 276-286 (2022)
  279. Current Strategies in Treating Cytokine Release Syndrome Triggered by Coronavirus SARS-CoV-2. Wang LG, Wang L. Immunotargets Ther 11 23-35 (2022)
  280. Druggable targets and therapeutic development for COVID-19. Duan X, Lacko LA, Chen S. Front Chem 10 963701 (2022)
  281. Enzymes in the time of COVID-19: An overview about the effects in the human body, enzyme market, and perspectives for new drugs. Fé LXSGM, Cipolatti EP, Pinto MCC, Branco S, Nogueira FCS, Ortiz GMD, Pinheiro AS, Manoel EA. Med Res Rev 42 2126-2167 (2022)
  282. New Insights Into Drug Repurposing for COVID-19 Using Deep Learning. Lee CY, Chen YP. IEEE Trans Neural Netw Learn Syst 32 4770-4780 (2021)
  283. Peptide candidates for the development of therapeutics and vaccines against β-coronavirus infection. Chourasia R, Padhi S, Phukon LC, Abedin MM, Sirohi R, Singh SP, Rai AK. Bioengineered 13 9435-9454 (2022)
  284. Proteases and Their Potential Role as Biomarkers and Drug Targets in Dry Eye Disease and Ocular Surface Dysfunction. Ramos-Llorca A, Scarpellini C, Augustyns K. Int J Mol Sci 23 9795 (2022)
  285. The Mechanisms of Zinc Action as a Potent Anti-Viral Agent: The Clinical Therapeutic Implication in COVID-19. Prasad AS, Malysa A, Bepler G, Fribley A, Bao B. Antioxidants (Basel) 11 1862 (2022)
  286. The Novel Coronavirus - Latest Findings. Brüssow H. Microb Biotechnol 13 819-828 (2020)
  287. The effect of various compounds on the COVID mechanisms, from chemical to molecular aspects. Mahmoudi S, Dehkordi MM, Asgarshamsi MH. Biophys Chem 288 106824 (2022)
  288. Virus structure and structure-based antivirals. Plavec Z, Pöhner I, Poso A, Butcher SJ. Curr Opin Virol 51 16-24 (2021)
  289. Advanced approaches of developing targeted covalent drugs. Gai C, Harnor SJ, Zhang S, Cano C, Zhuang C, Zhao Q. RSC Med Chem 13 1460-1475 (2022)
  290. An update on the discovery and development of reversible covalent inhibitors. Faridoon, Ng R, Zhang G, Li JJ. Med Chem Res 32 1039-1062 (2023)
  291. COVID-19 therapeutics: Small-molecule drug development targeting SARS-CoV-2 main protease. Kronenberger T, Laufer SA, Pillaiyar T. Drug Discov Today 28 103579 (2023)
  292. Covalent Antiviral Agents. Mirzaie S, Abdi F, GhavamiNejad A, Lu B, Wu XY. Adv Exp Med Biol 1322 285-312 (2021)
  293. Covalent-reversible peptide-based protease inhibitors. Design, synthesis, and clinical success stories. Feral A, Martin AR, Desfoux A, Amblard M, Vezenkov LL. Amino Acids 55 1775-1800 (2023)
  294. Mpro-targeted anti-SARS-CoV-2 inhibitor-based drugs. She Z, Yao Y, Wang C, Li Y, Xiong X, Liu Y. J Chem Res 47 17475198231184799 (2023)
  295. Revisiting potential value of antitumor drugs in the treatment of COVID-19. Zheng W, Zeng Z, Lin S, Hou P. Cell Biosci 12 165 (2022)
  296. SARS-CoV-2 Spike-Mediated Entry and Its Regulation by Host Innate Immunity. Yu S, Hu H, Ai Q, Bai R, Ma K, Zhou M, Wang S. Viruses 15 639 (2023)
  297. The current state of validated small molecules inhibiting SARS-CoV-2 nonstructural proteins. Kocabaş F, Uslu M. Turk J Biol 45 469-483 (2021)
  298. The impact of high-resolution structural data on stemming the COVID-19 pandemic. Cox RM, Plemper RK. Curr Opin Virol 49 127-138 (2021)
  299. A Comprehensive Review of the Clinical Pharmacokinetics, Pharmacodynamics, and Drug Interactions of Nirmatrelvir/Ritonavir. Gerhart J, Cox DS, Singh RSP, Chan PLS, Rao R, Allen R, Shi H, Masters JC, Damle B. Clin Pharmacokinet (2024)
  300. A Comprehensive Update of Various Attempts by Medicinal Chemists to Combat COVID-19 through Natural Products. Rafiq A, Jabeen T, Aslam S, Ahmad M, Ashfaq UA, Mohsin NUA, Zaki MEA, Al-Hussain SA. Molecules 28 4860 (2023)
  301. A review on in silico virtual screening methods in COVID-19 using anticancer drugs and other natural/chemical inhibitors. Sokouti B. Explor Target Antitumor Ther 4 994-1026 (2023)
  302. A systematic review of RdRp of SARS-CoV-2 through artificial intelligence and machine learning utilizing structure-based drug design strategy. Imtiaz F, Pasha MK. Turk J Chem 46 583-594 (2022)
  303. Anurans against SARS-CoV-2: A review of the potential antiviral action of anurans cutaneous peptides. de Amaral M, Ienes-Lima J. Virus Res 315 198769 (2022)
  304. COVID-19 pandemic: the implications of the natural history, challenges of diagnosis and management for care in sub-Saharan Africa. Omo-Aghoja L, Moke EG, Anachuna KK, Omogbiya AI, Umukoro EK, Toloyai PY, Daubry TME, Eduviere AT. Beni Suef Univ J Basic Appl Sci 10 16 (2021)
  305. COVID-19 therapeutics: Clinical application of repurposed drugs and futuristic strategies for target-based drug discovery. Kumar S, Basu M, Ghosh P, Pal U, Ghosh MK. Genes Dis 10 1402-1428 (2023)
  306. Conserved Targets to Prevent Emerging Coronaviruses. Gonzalez Lomeli F, Elmaraghy N, Castro A, Osuna Guerrero CV, Newcomb LL. Viruses 14 563 (2022)
  307. Coronaviruses: What Should We Know About the Characteristics of Viruses? Ji W. Adv Exp Med Biol 1318 23-39 (2021)
  308. Drug development targeting SARS-CoV-2 main protease. Bulut H. Glob Health Med 4 296-300 (2022)
  309. Evolution of Sequence and Structure of SARS-CoV-2 Spike Protein: A Dynamic Perspective. Sinha A, Sangeet S, Roy S. ACS Omega 8 23283-23304 (2023)
  310. Main and papain-like proteases as prospective targets for pharmacological treatment of coronavirus SARS-CoV-2. Yevsieieva LV, Lohachova KO, Kyrychenko A, Kovalenko SM, Ivanov VV, Kalugin ON. RSC Adv 13 35500-35524 (2023)
  311. MicroRNAs in the Regulation of RIG-I-like Receptor Signaling Pathway: Possible Strategy for Viral Infection and Cancer. Chen D, Ji Q, Liu J, Cheng F, Zheng J, Ma Y, He Y, Zhang J, Song T. Biomolecules 13 1344 (2023)
  312. Nirmatrelvir combined with ritonavir for preventing and treating COVID-19. Reis S, Metzendorf MI, Kuehn R, Popp M, Gagyor I, Kranke P, Meybohm P, Skoetz N, Weibel S. Cochrane Database Syst Rev 11 CD015395 (2023)
  313. P1 Glutamine isosteres in the design of inhibitors of 3C/3CL protease of human viruses of the Pisoniviricetes class. Stubbing LA, Hubert JG, Bell-Tyrer J, Hermant YO, Yang SH, McSweeney AM, McKenzie-Goldsmith GM, Ward VK, Furkert DP, Brimble MA. RSC Chem Biol 4 533-547 (2023)
  314. Plant-Derived Antioxidants for Management of COVID-19: A Comprehensive Review of Molecular Mechanisms. Mokhtari T, Azizi M, Sheikhbahaei F, Sharifi H, Sadr M. Tanaffos 22 27-39 (2023)
  315. Recent Advances in SARS-CoV-2 Main Protease Inhibitors: From Nirmatrelvir to Future Perspectives. Citarella A, Dimasi A, Moi D, Passarella D, Scala A, Piperno A, Micale N. Biomolecules 13 1339 (2023)
  316. Recent progress of surface plasmon resonance in the development of coronavirus disease-2019 drug candidates. Wang Q, Liu Z. Eur J Med Chem Rep 1 100003 (2021)
  317. Redox stress in COVID-19: Implications for hematologic disorders. Yang M. Best Pract Res Clin Haematol 35 101373 (2022)
  318. Regulation of Peptidase Activity beyond the Active Site in Human Health and Disease. Obaha A, Novinec M. Int J Mol Sci 24 17120 (2023)
  319. Repurposing clinically available drugs and therapies for pathogenic targets to combat SARS-CoV-2. Xue Y, Mei H, Chen Y, Griffin JD, Liu Q, Weisberg E, Yang J. MedComm (2020) 4 e254 (2023)
  320. SARS-CoV-2 and the DNA damage response. Grand RJ. J Gen Virol 104 (2023)
  321. SARS-CoV-2 proteins structural studies using synchrotron radiation. Kosenko M, Onkhonova G, Susloparov I, Ryzhikov A. Biophys Rev 15 1185-1194 (2023)
  322. Scrutinizing Coronaviruses Using Publicly Available Bioinformatic Tools: The Viral Structural Proteins as a Case Study. Beeckmans S, Van Driessche E. Front Mol Biosci 8 671923 (2021)
  323. Selenium-More than Just a Fortuitous Sulfur Substitute in Redox Biology. Maia LB, Maiti BK, Moura I, Moura JJG. Molecules 29 120 (2023)
  324. Significant perspectives on various viral infections targeted antiviral drugs and vaccines including COVID-19 pandemicity. Arumugam GS, Damodharan K, Doble M, Thennarasu S. Mol Biomed 3 21 (2022)
  325. The research progress of SARS-CoV-2 main protease inhibitors from 2020 to 2022. Pang X, Xu W, Liu Y, Li H, Chen L. Eur J Med Chem 257 115491 (2023)
  326. Using AlphaFold Predictions in Viral Research. Gutnik D, Evseev P, Miroshnikov K, Shneider M. Curr Issues Mol Biol 45 3705-3732 (2023)
  327. What do we know about the function of SARS-CoV-2 proteins? Justo Arevalo S, Castillo-Chávez A, Uribe Calampa CS, Zapata Sifuentes D, Huallpa CJ, Landa Bianchi G, Garavito-Salini Casas R, Quiñones Aguilar M, Pineda Chavarría R. Front Immunol 14 1249607 (2023)
  328. [Applications of separation technology in novel coronavirus research, epidemic prevention and detection]. Li L, Zhu C, Zhao X, Qu F. Se Pu 39 679-685 (2021)

Articles citing this publication (1089)

  1. Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. Shin D, Mukherjee R, Grewe D, Bojkova D, Baek K, Bhattacharya A, Schulz L, Widera M, Mehdipour AR, Tascher G, Geurink PP, Wilhelm A, van der Heden van Noort GJ, Ovaa H, Müller S, Knobeloch KP, Rajalingam K, Schulman BA, Cinatl J, Hummer G, Ciesek S, Dikic I. Nature 587 657-662 (2020)
  2. Boceprevir, GC-376, and calpain inhibitors II, XII inhibit SARS-CoV-2 viral replication by targeting the viral main protease. Ma C, Sacco MD, Hurst B, Townsend JA, Hu Y, Szeto T, Zhang X, Tarbet B, Marty MT, Chen Y, Wang J. Cell Res 30 678-692 (2020)
  3. Geographic and Genomic Distribution of SARS-CoV-2 Mutations. Mercatelli D, Giorgi FM. Front Microbiol 11 1800 (2020)
  4. Prediction of the SARS-CoV-2 (2019-nCoV) 3C-like protease (3CL pro) structure: virtual screening reveals velpatasvir, ledipasvir, and other drug repurposing candidates. Chen YW, Yiu CB, Wong KY. F1000Res 9 129 (2020)
  5. Both Boceprevir and GC376 efficaciously inhibit SARS-CoV-2 by targeting its main protease. Fu L, Ye F, Feng Y, Yu F, Wang Q, Wu Y, Zhao C, Sun H, Huang B, Niu P, Song H, Shi Y, Li X, Tan W, Qi J, Gao GF. Nat Commun 11 4417 (2020)
  6. Discovery of Ketone-Based Covalent Inhibitors of Coronavirus 3CL Proteases for the Potential Therapeutic Treatment of COVID-19. Hoffman RL, Kania RS, Brothers MA, Davies JF, Ferre RA, Gajiwala KS, He M, Hogan RJ, Kozminski K, Li LY, Lockner JW, Lou J, Marra MT, Mitchell LJ, Murray BW, Nieman JA, Noell S, Planken SP, Rowe T, Ryan K, Smith GJ, Solowiej JE, Steppan CM, Taggart B. J Med Chem 63 12725-12747 (2020)
  7. Crystallographic and electrophilic fragment screening of the SARS-CoV-2 main protease. Douangamath A, Fearon D, Gehrtz P, Krojer T, Lukacik P, Owen CD, Resnick E, Strain-Damerell C, Aimon A, Ábrányi-Balogh P, Brandão-Neto J, Carbery A, Davison G, Dias A, Downes TD, Dunnett L, Fairhead M, Firth JD, Jones SP, Keeley A, Keserü GM, Klein HF, Martin MP, Noble MEM, O'Brien P, Powell A, Reddi RN, Skyner R, Snee M, Waring MJ, Wild C, London N, von Delft F, Walsh MA. Nat Commun 11 5047 (2020)
  8. Fast Identification of Possible Drug Treatment of Coronavirus Disease-19 (COVID-19) through Computational Drug Repurposing Study. Wang J. J Chem Inf Model 60 3277-3286 (2020)
  9. Virus-Host Interactome and Proteomic Survey Reveal Potential Virulence Factors Influencing SARS-CoV-2 Pathogenesis. Li J, Guo M, Tian X, Wang X, Yang X, Wu P, Liu C, Xiao Z, Qu Y, Yin Y, Wang C, Zhang Y, Zhu Z, Liu Z, Peng C, Zhu T, Liang Q. Med 2 99-112.e7 (2021)
  10. SARS-CoV-2 Mpro inhibitors with antiviral activity in a transgenic mouse model. Qiao J, Li YS, Zeng R, Liu FL, Luo RH, Huang C, Wang YF, Zhang J, Quan B, Shen C, Mao X, Mao X, Liu X, Sun W, Yang W, Ni X, Wang K, Xu L, Duan ZL, Zou QC, Zhang HL, Qu W, Long YH, Li MH, Yang RC, Liu X, You J, Zhou Y, Yao R, Li WP, Liu JM, Chen P, Liu Y, Lin GF, Yang X, Zou J, Li L, Hu Y, Lu GW, Li WM, Wei YQ, Zheng YT, Lei J, Yang S. Science 371 1374-1378 (2021)
  11. Structure and inhibition of the SARS-CoV-2 main protease reveal strategy for developing dual inhibitors against Mpro and cathepsin L. Sacco MD, Ma C, Lagarias P, Gao A, Townsend JA, Meng X, Dube P, Zhang X, Hu Y, Kitamura N, Hurst B, Tarbet B, Marty MT, Kolocouris A, Xiang Y, Chen Y, Wang J. Sci Adv 6 eabe0751 (2020)
  12. Andrographolide as a potential inhibitor of SARS-CoV-2 main protease: an in silico approach. Enmozhi SK, Raja K, Sebastine I, Joseph J. J Biomol Struct Dyn 39 3092-3098 (2021)
  13. An investigation into the identification of potential inhibitors of SARS-CoV-2 main protease using molecular docking study. Das S, Sarmah S, Lyndem S, Singha Roy A. J Biomol Struct Dyn 39 3347-3357 (2021)
  14. Peptide-like and small-molecule inhibitors against Covid-19. Pant S, Singh M, Ravichandiran V, Murty USN, Srivastava HK. J Biomol Struct Dyn 39 2904-2913 (2021)
  15. Identification of bioactive molecules from tea plant as SARS-CoV-2 main protease inhibitors. Bhardwaj VK, Singh R, Sharma J, Rajendran V, Purohit R, Kumar S. J Biomol Struct Dyn 39 3449-3458 (2021)
  16. Preclinical characterization of an intravenous coronavirus 3CL protease inhibitor for the potential treatment of COVID19. Boras B, Jones RM, Anson BJ, Arenson D, Aschenbrenner L, Bakowski MA, Beutler N, Binder J, Chen E, Eng H, Hammond H, Hammond J, Haupt RE, Hoffman R, Kadar EP, Kania R, Kimoto E, Kirkpatrick MG, Lanyon L, Lendy EK, Lillis JR, Logue J, Luthra SA, Ma C, Mason SW, McGrath ME, Noell S, Obach RS, O' Brien MN, O'Connor R, Ogilvie K, Owen D, Pettersson M, Reese MR, Rogers TF, Rosales R, Rossulek MI, Sathish JG, Shirai N, Steppan C, Ticehurst M, Updyke LW, Weston S, Zhu Y, White KM, García-Sastre A, Wang J, Chatterjee AK, Mesecar AD, Frieman MB, Anderson AS, Allerton C. Nat Commun 12 6055 (2021)
  17. Architecture and self-assembly of the SARS-CoV-2 nucleocapsid protein. Ye Q, West AMV, Silletti S, Corbett KD. Protein Sci 29 1890-1901 (2020)
  18. A molecular modeling approach to identify effective antiviral phytochemicals against the main protease of SARS-CoV-2. Islam R, Parves MR, Paul AS, Uddin N, Rahman MS, Mamun AA, Hossain MN, Ali MA, Halim MA. J Biomol Struct Dyn 39 3213-3224 (2021)
  19. X-ray screening identifies active site and allosteric inhibitors of SARS-CoV-2 main protease. Günther S, Reinke PYA, Fernández-García Y, Lieske J, Lane TJ, Ginn HM, Koua FHM, Ehrt C, Ewert W, Oberthuer D, Yefanov O, Meier S, Lorenzen K, Krichel B, Kopicki JD, Gelisio L, Brehm W, Dunkel I, Seychell B, Gieseler H, Norton-Baker B, Escudero-Pérez B, Domaracky M, Saouane S, Tolstikova A, White TA, Hänle A, Groessler M, Fleckenstein H, Trost F, Galchenkova M, Gevorkov Y, Li C, Awel S, Peck A, Barthelmess M, Schlünzen F, Lourdu Xavier P, Werner N, Andaleeb H, Ullah N, Falke S, Srinivasan V, França BA, Schwinzer M, Brognaro H, Rogers C, Melo D, Zaitseva-Doyle JJ, Knoska J, Peña-Murillo GE, Mashhour AR, Hennicke V, Fischer P, Hakanpää J, Meyer J, Gribbon P, Ellinger B, Kuzikov M, Wolf M, Beccari AR, Bourenkov G, von Stetten D, Pompidor G, Bento I, Panneerselvam S, Karpics I, Schneider TR, Garcia-Alai MM, Niebling S, Günther C, Schmidt C, Schubert R, Han H, Boger J, Monteiro DCF, Zhang L, Sun X, Pletzer-Zelgert J, Wollenhaupt J, Feiler CG, Weiss MS, Schulz EC, Mehrabi P, Karničar K, Usenik A, Loboda J, Tidow H, Chari A, Hilgenfeld R, Uetrecht C, Cox R, Zaliani A, Beck T, Rarey M, Günther S, Turk D, Hinrichs W, Chapman HN, Pearson AR, Betzel C, Meents A. Science 372 642-646 (2021)
  20. Furin Inhibitors Block SARS-CoV-2 Spike Protein Cleavage to Suppress Virus Production and Cytopathic Effects. Cheng YW, Chao TL, Li CL, Chiu MF, Kao HC, Wang SH, Pang YH, Lin CH, Tsai YM, Lee WH, Tao MH, Ho TC, Wu PY, Jang LT, Chen PJ, Chang SY, Yeh SH. Cell Rep 33 108254 (2020)
  21. Discovery of S-217622, a Noncovalent Oral SARS-CoV-2 3CL Protease Inhibitor Clinical Candidate for Treating COVID-19. Unoh Y, Uehara S, Nakahara K, Nobori H, Yamatsu Y, Yamamoto S, Maruyama Y, Taoda Y, Kasamatsu K, Suto T, Kouki K, Nakahashi A, Kawashima S, Sanaki T, Toba S, Uemura K, Mizutare T, Ando S, Sasaki M, Orba Y, Sawa H, Sato A, Sato T, Kato T, Tachibana Y. J Med Chem 65 6499-6512 (2022)
  22. SARS-CoV-2 nucleocapsid protein phase-separates with RNA and with human hnRNPs. Perdikari TM, Murthy AC, Ryan VH, Watters S, Naik MT, Fawzi NL. EMBO J 39 e106478 (2020)
  23. Scutellaria baicalensis extract and baicalein inhibit replication of SARS-CoV-2 and its 3C-like protease in vitro. Liu H, Ye F, Sun Q, Liang H, Li C, Li S, Lu R, Huang B, Tan W, Lai L. J Enzyme Inhib Med Chem 36 497-503 (2021)
  24. Structures of the SARS-CoV-2 nucleocapsid and their perspectives for drug design. Peng Y, Du N, Lei Y, Dorje S, Qi J, Luo T, Gao GF, Song H. EMBO J 39 e105938 (2020)
  25. Cholesterol 25-hydroxylase suppresses SARS-CoV-2 replication by blocking membrane fusion. Zang R, Case JB, Yutuc E, Ma X, Shen S, Gomez Castro MF, Liu Z, Zeng Q, Zhao H, Son J, Rothlauf PW, Kreutzberger AJB, Hou G, Zhang H, Bose S, Wang X, Vahey MD, Mani K, Griffiths WJ, Kirchhausen T, Fremont DH, Guo H, Diwan A, Wang Y, Diamond MS, Whelan SPJ, Ding S. Proc Natl Acad Sci U S A 117 32105-32113 (2020)
  26. SARS-CoV-2 proteases PLpro and 3CLpro cleave IRF3 and critical modulators of inflammatory pathways (NLRP12 and TAB1): implications for disease presentation across species. Moustaqil M, Ollivier E, Chiu HP, Van Tol S, Rudolffi-Soto P, Stevens C, Bhumkar A, Hunter DJB, Freiberg AN, Jacques D, Lee B, Sierecki E, Gambin Y. Emerg Microbes Infect 10 178-195 (2021)
  27. 3C-like protease inhibitors block coronavirus replication in vitro and improve survival in MERS-CoV-infected mice. Rathnayake AD, Zheng J, Kim Y, Perera KD, Mackin S, Meyerholz DK, Kashipathy MM, Battaile KP, Lovell S, Perlman S, Groutas WC, Chang KO. Sci Transl Med 12 eabc5332 (2020)
  28. COVID-19 severity associates with pulmonary redistribution of CD1c+ DCs and inflammatory transitional and nonclassical monocytes. Sánchez-Cerrillo I, Landete P, Aldave B, Sánchez-Alonso S, Sánchez-Azofra A, Marcos-Jiménez A, Ávalos E, Alcaraz-Serna A, de Los Santos I, Mateu-Albero T, Esparcia L, López-Sanz C, Martínez-Fleta P, Gabrie L, Del Campo Guerola L, de la Fuente H, Calzada MJ, González-Álvaro I, Alfranca A, Sánchez-Madrid F, Muñoz-Calleja C, Soriano JB, Ancochea J, Martín-Gayo E, REINMUN-COVID and EDEPIMIC groups. J Clin Invest 130 6290-6300 (2020)
  29. Potent Noncovalent Inhibitors of the Main Protease of SARS-CoV-2 from Molecular Sculpting of the Drug Perampanel Guided by Free Energy Perturbation Calculations. Zhang CH, Stone EA, Deshmukh M, Ippolito JA, Ghahremanpour MM, Tirado-Rives J, Spasov KA, Zhang S, Takeo Y, Kudalkar SN, Liang Z, Isaacs F, Lindenbach B, Miller SJ, Anderson KS, Jorgensen WL. ACS Cent Sci 7 467-475 (2021)
  30. De novo design of potent and resilient hACE2 decoys to neutralize SARS-CoV-2. Linsky TW, Vergara R, Codina N, Nelson JW, Walker MJ, Su W, Barnes CO, Hsiang TY, Esser-Nobis K, Yu K, Reneer ZB, Hou YJ, Priya T, Mitsumoto M, Pong A, Lau UY, Mason ML, Chen J, Chen A, Berrocal T, Peng H, Clairmont NS, Castellanos J, Lin YR, Josephson-Day A, Baric RS, Fuller DH, Walkey CD, Ross TM, Swanson R, Bjorkman PJ, Gale M, Blancas-Mejia LM, Yen HL, Silva DA. Science 370 1208-1214 (2020)
  31. Ebselen, Disulfiram, Carmofur, PX-12, Tideglusib, and Shikonin Are Nonspecific Promiscuous SARS-CoV-2 Main Protease Inhibitors. Ma C, Hu Y, Townsend JA, Lagarias PI, Marty MT, Kolocouris A, Wang J. ACS Pharmacol Transl Sci 3 1265-1277 (2020)
  32. Cryo-EM structure of SARS-CoV-2 ORF3a in lipid nanodiscs. Kern DM, Sorum B, Mali SS, Hoel CM, Sridharan S, Remis JP, Toso DB, Kotecha A, Bautista DM, Brohawn SG. Nat Struct Mol Biol 28 573-582 (2021)
  33. Identification of 14 Known Drugs as Inhibitors of the Main Protease of SARS-CoV-2. Ghahremanpour MM, Tirado-Rives J, Deshmukh M, Ippolito JA, Zhang CH, Cabeza de Vaca I, Liosi ME, Anderson KS, Jorgensen WL. ACS Med Chem Lett 11 2526-2533 (2020)
  34. Why Are Lopinavir and Ritonavir Effective against the Newly Emerged Coronavirus 2019? Atomistic Insights into the Inhibitory Mechanisms. Nutho B, Mahalapbutr P, Hengphasatporn K, Pattaranggoon NC, Simanon N, Shigeta Y, Hannongbua S, Rungrotmongkol T. Biochemistry 59 1769-1779 (2020)
  35. Identification of SARS-CoV-2 3CL Protease Inhibitors by a Quantitative High-Throughput Screening. Zhu W, Xu M, Chen CZ, Guo H, Shen M, Hu X, Shinn P, Klumpp-Thomas C, Michael SG, Zheng W. ACS Pharmacol Transl Sci 3 1008-1016 (2020)
  36. Identification of 3-chymotrypsin like protease (3CLPro) inhibitors as potential anti-SARS-CoV-2 agents. Mody V, Ho J, Wills S, Mawri A, Lawson L, Ebert MCCJC, Fortin GM, Rayalam S, Taval S. Commun Biol 4 93 (2021)
  37. The SARS-CoV-2 main protease Mpro causes microvascular brain pathology by cleaving NEMO in brain endothelial cells. Wenzel J, Lampe J, Müller-Fielitz H, Schuster R, Zille M, Müller K, Krohn M, Körbelin J, Zhang L, Özorhan Ü, Neve V, Wagner JUG, Bojkova D, Shumliakivska M, Jiang Y, Fähnrich A, Ott F, Sencio V, Robil C, Pfefferle S, Sauve F, Coêlho CFF, Franz J, Spiecker F, Lembrich B, Binder S, Feller N, König P, Busch H, Collin L, Villaseñor R, Jöhren O, Altmeppen HC, Pasparakis M, Dimmeler S, Cinatl J, Püschel K, Zelic M, Ofengeim D, Stadelmann C, Trottein F, Nogueiras R, Hilgenfeld R, Glatzel M, Prevot V, Schwaninger M. Nat Neurosci 24 1522-1533 (2021)
  38. Crystallographic structure of wild-type SARS-CoV-2 main protease acyl-enzyme intermediate with physiological C-terminal autoprocessing site. Lee J, Worrall LJ, Vuckovic M, Rosell FI, Gentile F, Ton AT, Caveney NA, Ban F, Cherkasov A, Paetzel M, Strynadka NCJ. Nat Commun 11 5877 (2020)
  39. Targeting COVID-19 (SARS-CoV-2) main protease through active phytochemicals of ayurvedic medicinal plants - Withania somnifera (Ashwagandha), Tinospora cordifolia (Giloy) and Ocimum sanctum (Tulsi) - a molecular docking study. Shree P, Mishra P, Selvaraj C, Singh SK, Chaube R, Garg N, Tripathi YB. J Biomol Struct Dyn 40 190-203 (2022)
  40. Identification of phytochemical inhibitors against main protease of COVID-19 using molecular modeling approaches. Kumar A, Choudhir G, Shukla SK, Sharma M, Tyagi P, Bhushan A, Rathore M. J Biomol Struct Dyn 39 3760-3770 (2021)
  41. Identification of potential molecules against COVID-19 main protease through structure-guided virtual screening approach. Mittal L, Kumari A, Srivastava M, Singh M, Asthana S. J Biomol Struct Dyn 39 3662-3680 (2021)
  42. Pathological features of COVID-19-associated lung injury: a preliminary proteomics report based on clinical samples. Leng L, Cao R, Ma J, Mou D, Zhu Y, Li W, Lv L, Gao D, Zhang S, Gong F, Zhao L, Qiu B, Xiang H, Hu Z, Feng Y, Dai Y, Zhao J, Wu Z, Li H, Zhong W. Signal Transduct Target Ther 5 240 (2020)
  43. Integrative analyses of SARS-CoV-2 genomes from different geographical locations reveal unique features potentially consequential to host-virus interaction, pathogenesis and clues for novel therapies. Sardar R, Satish D, Birla S, Gupta D. Heliyon 6 e04658 (2020)
  44. Essential Oils as Antiviral Agents. Potential of Essential Oils to Treat SARS-CoV-2 Infection: An In-Silico Investigation. Silva JKRD, Figueiredo PLB, Byler KG, Setzer WN. Int J Mol Sci 21 E3426 (2020)
  45. Metallodrug ranitidine bismuth citrate suppresses SARS-CoV-2 replication and relieves virus-associated pneumonia in Syrian hamsters. Yuan S, Wang R, Chan JF, Zhang AJ, Cheng T, Chik KK, Ye ZW, Wang S, Lee AC, Jin L, Li H, Jin DY, Yuen KY, Sun H. Nat Microbiol 5 1439-1448 (2020)
  46. Glycyrrhizin Effectively Inhibits SARS-CoV-2 Replication by Inhibiting the Viral Main Protease. van de Sand L, Bormann M, Alt M, Schipper L, Heilingloh CS, Steinmann E, Todt D, Dittmer U, Elsner C, Witzke O, Krawczyk A. Viruses 13 609 (2021)
  47. Identification of new anti-nCoV drug chemical compounds from Indian spices exploiting SARS-CoV-2 main protease as target. Kundu D, Selvaraj C, Singh SK, Dubey VK. J Biomol Struct Dyn 39 3428-3434 (2021)
  48. A small molecule compound with an indole moiety inhibits the main protease of SARS-CoV-2 and blocks virus replication. Hattori SI, Higashi-Kuwata N, Hayashi H, Allu SR, Raghavaiah J, Bulut H, Das D, Anson BJ, Lendy EK, Takamatsu Y, Takamune N, Kishimoto N, Murayama K, Hasegawa K, Li M, Davis DA, Kodama EN, Yarchoan R, Wlodawer A, Misumi S, Mesecar AD, Ghosh AK, Mitsuya H. Nat Commun 12 668 (2021)
  49. Prediction of Novel Inhibitors of the Main Protease (M-pro) of SARS-CoV-2 through Consensus Docking and Drug Reposition. Gimeno A, Mestres-Truyol J, Ojeda-Montes MJ, Macip G, Saldivar-Espinoza B, Cereto-Massagué A, Pujadas G, Garcia-Vallvé S. Int J Mol Sci 21 E3793 (2020)
  50. Computational Determination of Potential Inhibitors of SARS-CoV-2 Main Protease. Ngo ST, Quynh Anh Pham N, Thi Le L, Pham DH, Vu VV. J Chem Inf Model 60 5771-5780 (2020)
  51. Drugs repurposed for COVID-19 by virtual screening of 6,218 drugs and cell-based assay. Jang WD, Jeon S, Kim S, Lee SY. Proc Natl Acad Sci U S A 118 e2024302118 (2021)
  52. Expression profiling meta-analysis of ACE2 and TMPRSS2, the putative anti-inflammatory receptor and priming protease of SARS-CoV-2 in human cells, and identification of putative modulators. Gkogkou E, Barnasas G, Vougas K, Trougakos IP. Redox Biol 36 101615 (2020)
  53. FDA-Approved Drugs with Potent In Vitro Antiviral Activity against Severe Acute Respiratory Syndrome Coronavirus 2. Mostafa A, Kandeil A, A M M Elshaier Y, Kutkat O, Moatasim Y, Rashad AA, Shehata M, Gomaa MR, Mahrous N, Mahmoud SH, GabAllah M, Abbas H, Taweel AE, Kayed AE, Kamel MN, Sayes ME, Mahmoud DB, El-Shesheny R, Kayali G, Ali MA. Pharmaceuticals (Basel) 13 E443 (2020)
  54. Revealing the molecular mechanisms of proteolysis of SARS-CoV-2 Mpro by QM/MM computational methods. Świderek K, Moliner V. Chem Sci 11 10626-10630 (2020)
  55. Tea Polyphenols EGCG and Theaflavin Inhibit the Activity of SARS-CoV-2 3CL-Protease In Vitro. Jang M, Park YI, Cha YE, Park R, Namkoong S, Lee JI, Park J. Evid Based Complement Alternat Med 2020 5630838 (2020)
  56. Malleability of the SARS-CoV-2 3CL Mpro Active-Site Cavity Facilitates Binding of Clinical Antivirals. Kneller DW, Galanie S, Phillips G, O'Neill HM, Coates L, Kovalevsky A. Structure 28 1313-1320.e3 (2020)
  57. Recognition of Natural Products as Potential Inhibitors of COVID-19 Main Protease (Mpro): In-Silico Evidences. Narkhede RR, Pise AV, Cheke RS, Shinde SD. Nat Prod Bioprospect 10 297-306 (2020)
  58. Unravelling lead antiviral phytochemicals for the inhibition of SARS-CoV-2 Mpro enzyme through in silico approach. Gurung AB, Ali MA, Lee J, Farah MA, Al-Anazi KM. Life Sci 255 117831 (2020)
  59. A comparative analysis of SARS-CoV-2 antivirals characterizes 3CLpro inhibitor PF-00835231 as a potential new treatment for COVID-19. de Vries M, Mohamed AS, Prescott RA, Valero-Jimenez AM, Desvignes L, O'Connor R, Steppan C, Devlin JC, Ivanova E, Herrera A, Schinlever A, Loose P, Ruggles K, Koralov SB, Anderson AS, Binder J, Dittmann M. J Virol 95 JVI.01819-20 (2021)
  60. Potential bioactive glycosylated flavonoids as SARS-CoV-2 main protease inhibitors: A molecular docking and simulation studies. Cherrak SA, Merzouk H, Mokhtari-Soulimane N. PLoS One 15 e0240653 (2020)
  61. Glecaprevir and Maraviroc are high-affinity inhibitors of SARS-CoV-2 main protease: possible implication in COVID-19 therapy. Shamsi A, Mohammad T, Anwar S, AlAjmi MF, Hussain A, Rehman MT, Islam A, Hassan MI. Biosci Rep 40 BSR20201256 (2020)
  62. Quinolines-Based SARS-CoV-2 3CLpro and RdRp Inhibitors and Spike-RBD-ACE2 Inhibitor for Drug-Repurposing Against COVID-19: An in silico Analysis. Alexpandi R, De Mesquita JF, Pandian SK, Ravi AV. Front Microbiol 11 1796 (2020)
  63. Protein structure analysis of the interactions between SARS-CoV-2 spike protein and the human ACE2 receptor: from conformational changes to novel neutralizing antibodies. Mercurio I, Tragni V, Busto F, De Grassi A, Pierri CL. Cell Mol Life Sci 78 1501-1522 (2021)
  64. Chinese herbal medicine: Fighting SARS-CoV-2 infection on all fronts. Wang Z, Yang L. J Ethnopharmacol 270 113869 (2021)
  65. SARS-CoV-2 Main Protease: A Molecular Dynamics Study. Suárez D, Díaz N. J Chem Inf Model 60 5815-5831 (2020)
  66. Expedited Approach toward the Rational Design of Noncovalent SARS-CoV-2 Main Protease Inhibitors. Kitamura N, Sacco MD, Ma C, Hu Y, Townsend JA, Meng X, Zhang F, Zhang X, Ba M, Szeto T, Kukuljac A, Marty MT, Schultz D, Cherry S, Xiang Y, Chen Y, Wang J. J Med Chem 65 2848-2865 (2022)
  67. Identification of pyrogallol as a warhead in design of covalent inhibitors for the SARS-CoV-2 3CL protease. Su H, Yao S, Zhao W, Zhang Y, Liu J, Shao Q, Wang Q, Li M, Xie H, Shang W, Ke C, Feng L, Jiang X, Shen J, Xiao G, Jiang H, Zhang L, Ye Y, Xu Y. Nat Commun 12 3623 (2021)
  68. Allosteric Inhibition of the SARS-CoV-2 Main Protease: Insights from Mass Spectrometry Based Assays*. El-Baba TJ, Lutomski CA, Kantsadi AL, Malla TR, John T, Mikhailov V, Bolla JR, Schofield CJ, Zitzmann N, Vakonakis I, Robinson CV. Angew Chem Int Ed Engl 59 23544-23548 (2020)
  69. Computational evaluation of major components from plant essential oils as potent inhibitors of SARS-CoV-2 spike protein. Kulkarni SA, Nagarajan SK, Ramesh V, Palaniyandi V, Selvam SP, Madhavan T. J Mol Struct 1221 128823 (2020)
  70. Discovery of SARS-CoV-2 Papain-like Protease Inhibitors through a Combination of High-Throughput Screening and a FlipGFP-Based Reporter Assay. Ma C, Sacco MD, Xia Z, Lambrinidis G, Townsend JA, Hu Y, Meng X, Szeto T, Ba M, Zhang X, Gongora M, Zhang F, Marty MT, Xiang Y, Kolocouris A, Chen Y, Wang J. ACS Cent Sci 7 1245-1260 (2021)
  71. Identification of bioactive molecule from Withania somnifera (Ashwagandha) as SARS-CoV-2 main protease inhibitor. Tripathi MK, Singh P, Sharma S, Singh TP, Ethayathulla AS, Kaur P. J Biomol Struct Dyn 39 5668-5681 (2021)
  72. Unusual zwitterionic catalytic site of SARS-CoV-2 main protease revealed by neutron crystallography. Kneller DW, Phillips G, Weiss KL, Pant S, Zhang Q, O'Neill HM, Coates L, Kovalevsky A. J Biol Chem 295 17365-17373 (2020)
  73. A multiscale coarse-grained model of the SARS-CoV-2 virion. Yu A, Pak AJ, He P, Monje-Galvan V, Casalino L, Gaieb Z, Dommer AC, Amaro RE, Voth GA. Biophys J 120 1097-1104 (2021)
  74. Identification of potential natural inhibitors of SARS-CoV2 main protease by molecular docking and simulation studies. Gupta S, Singh AK, Kushwaha PP, Prajapati KS, Shuaib M, Senapati S, Kumar S. J Biomol Struct Dyn 39 4334-4345 (2021)
  75. In silico drug discovery of major metabolites from spices as SARS-CoV-2 main protease inhibitors. Ibrahim MAA, Abdelrahman AHM, Hussien TA, Badr EAA, Mohamed TA, El-Seedi HR, Pare PW, Efferth T, Hegazy MF. Comput Biol Med 126 104046 (2020)
  76. FDA-approved thiol-reacting drugs that potentially bind into the SARS-CoV-2 main protease, essential for viral replication. Lobo-Galo N, Terrazas-López M, Martínez-Martínez A, Díaz-Sánchez ÁG. J Biomol Struct Dyn 39 3419-3427 (2021)
  77. Evaluation of acridinedione analogs as potential SARS-CoV-2 main protease inhibitors and their comparison with repurposed anti-viral drugs. Bhardwaj VK, Singh R, Das P, Purohit R. Comput Biol Med 128 104117 (2021)
  78. High Throughput Virtual Screening to Discover Inhibitors of the Main Protease of the Coronavirus SARS-CoV-2. Olubiyi OO, Olagunju M, Keutmann M, Loschwitz J, Strodel B. Molecules 25 E3193 (2020)
  79. In silico investigation of phytoconstituents from Indian medicinal herb 'Tinospora cordifolia (giloy)' against SARS-CoV-2 (COVID-19) by molecular dynamics approach. Chowdhury P. J Biomol Struct Dyn 39 6792-6809 (2021)
  80. Rational approach toward COVID-19 main protease inhibitors via molecular docking, molecular dynamics simulation and free energy calculation. Keretsu S, Bhujbal SP, Cho SJ. Sci Rep 10 17716 (2020)
  81. Development of a Fluorescence-Based, High-Throughput SARS-CoV-2 3CLpro Reporter Assay. Froggatt HM, Heaton BE, Heaton NS. J Virol 94 e01265-20 (2020)
  82. Identification of SARS-CoV-2 inhibitors targeting Mpro and PLpro using in-cell-protease assay. Narayanan A, Narwal M, Majowicz SA, Varricchio C, Toner SA, Ballatore C, Brancale A, Murakami KS, Jose J. Commun Biol 5 169 (2022)
  83. Targeting the Main Protease of SARS-CoV-2: From the Establishment of High Throughput Screening to the Design of Tailored Inhibitors. Breidenbach J, Lemke C, Pillaiyar T, Schäkel L, Al Hamwi G, Diett M, Gedschold R, Geiger N, Lopez V, Mirza S, Namasivayam V, Schiedel AC, Sylvester K, Thimm D, Vielmuth C, Phuong Vu L, Zyulina M, Bodem J, Gütschow M, Müller CE, Müller CE. Angew Chem Int Ed Engl 60 10423-10429 (2021)
  84. A Quick Route to Multiple Highly Potent SARS-CoV-2 Main Protease Inhibitors*. Yang KS, Ma XR, Ma Y, Alugubelli YR, Scott DA, Vatansever EC, Drelich AK, Sankaran B, Geng ZZ, Blankenship LR, Ward HE, Sheng YJ, Hsu JC, Kratch KC, Zhao B, Hayatshahi HS, Liu J, Li P, Fierke CA, Tseng CK, Xu S, Liu WR. ChemMedChem 16 942-948 (2021)
  85. Crystal Structure of SARS-CoV-2 Main Protease in Complex with the Non-Covalent Inhibitor ML188. Lockbaum GJ, Reyes AC, Lee JM, Tilvawala R, Nalivaika EA, Ali A, Kurt Yilmaz N, Thompson PR, Schiffer CA. Viruses 13 174 (2021)
  86. Biochemical screening for SARS-CoV-2 main protease inhibitors. Coelho C, Gallo G, Campos CB, Hardy L, Würtele M. PLoS One 15 e0240079 (2020)
  87. Challenges for Targeting SARS-CoV-2 Proteases as a Therapeutic Strategy for COVID-19. Steuten K, Kim H, Widen JC, Babin BM, Onguka O, Lovell S, Bolgi O, Cerikan B, Neufeldt CJ, Cortese M, Muir RK, Bennett JM, Geiss-Friedlander R, Peters C, Bartenschlager R, Bogyo M. ACS Infect Dis 7 1457-1468 (2021)
  88. MolAICal: a soft tool for 3D drug design of protein targets by artificial intelligence and classical algorithm. Bai Q, Tan S, Xu T, Liu H, Huang J, Yao X. Brief Bioinform 22 bbaa161 (2021)
  89. Actionable Cytopathogenic Host Responses of Human Alveolar Type 2 Cells to SARS-CoV-2. Hekman RM, Hume AJ, Goel RK, Abo KM, Huang J, Blum BC, Werder RB, Suder EL, Paul I, Phanse S, Youssef A, Alysandratos KD, Padhorny D, Ojha S, Mora-Martin A, Kretov D, Ash PEA, Verma M, Zhao J, Patten JJ, Villacorta-Martin C, Bolzan D, Perea-Resa C, Bullitt E, Hinds A, Tilston-Lunel A, Varelas X, Farhangmehr S, Braunschweig U, Kwan JH, McComb M, Basu A, Saeed M, Perissi V, Burks EJ, Layne MD, Connor JH, Davey R, Cheng JX, Wolozin BL, Blencowe BJ, Wuchty S, Lyons SM, Kozakov D, Cifuentes D, Blower M, Kotton DN, Wilson AA, Mühlberger E, Emili A. Mol Cell 80 1104-1122.e9 (2020)
  90. In silico identification of potential inhibitors from Cinnamon against main protease and spike glycoprotein of SARS CoV-2. Prasanth DSNBK, Murahari M, Chandramohan V, Panda SP, Atmakuri LR, Guntupalli C. J Biomol Struct Dyn 39 4618-4632 (2021)
  91. Bepridil is potent against SARS-CoV-2 in vitro. Vatansever EC, Yang KS, Drelich AK, Kratch KC, Cho CC, Kempaiah KR, Hsu JC, Mellott DM, Xu S, Tseng CK, Liu WR. Proc Natl Acad Sci U S A 118 e2012201118 (2021)
  92. Boceprevir, Calpain Inhibitors II and XII, and GC-376 Have Broad-Spectrum Antiviral Activity against Coronaviruses. Hu Y, Ma C, Szeto T, Hurst B, Tarbet B, Wang J. ACS Infect Dis 7 586-597 (2021)
  93. In silico pharmacokinetic and molecular docking studies of natural flavonoids and synthetic indole chalcones against essential proteins of SARS-CoV-2. Vijayakumar BG, Ramesh D, Joji A, Jayachandra Prakasan J, Kannan T. Eur J Pharmacol 886 173448 (2020)
  94. Lead compounds for the development of SARS-CoV-2 3CL protease inhibitors. Iketani S, Forouhar F, Liu H, Hong SJ, Lin FY, Nair MS, Zask A, Huang Y, Xing L, Stockwell BR, Chavez A, Ho DD. Nat Commun 12 2016 (2021)
  95. Potential Drugs Targeting Early Innate Immune Evasion of SARS-Coronavirus 2 via 2'-O-Methylation of Viral RNA. Encinar JA, Menendez JA. Viruses 12 E525 (2020)
  96. The UCSC SARS-CoV-2 Genome Browser. Fernandes JD, Hinrichs AS, Clawson H, Gonzalez JN, Lee BT, Nassar LR, Raney BJ, Rosenbloom KR, Nerli S, Rao AA, Schmelter D, Fyfe A, Maulding N, Zweig AS, Lowe TM, Ares M, Corbet-Detig R, Kent WJ, Haussler D, Haeussler M. Nat Genet 52 991-998 (2020)
  97. Assessment of antiviral potencies of cannabinoids against SARS-CoV-2 using computational and in vitro approaches. Raj V, Park JG, Cho KH, Choi P, Kim T, Ham J, Lee J. Int J Biol Macromol 168 474-485 (2021)
  98. Highly Conserved Homotrimer Cavity Formed by the SARS-CoV-2 Spike Glycoprotein: A Novel Binding Site. Kalathiya U, Padariya M, Mayordomo M, Lisowska M, Nicholson J, Singh A, Baginski M, Fahraeus R, Carragher N, Ball K, Haas J, Daniels A, Hupp TR, Alfaro JA. J Clin Med 9 E1473 (2020)
  99. 3CL Protease Inhibitors with an Electrophilic Arylketone Moiety as Anti-SARS-CoV-2 Agents. Konno S, Kobayashi K, Senda M, Funai Y, Seki Y, Tamai I, Schäkel L, Sakata K, Pillaiyar T, Taguchi A, Taniguchi A, Gütschow M, Müller CE, Takeuchi K, Hirohama M, Kawaguchi A, Kojima M, Senda T, Shirasaka Y, Kamitani W, Hayashi Y. J Med Chem 65 2926-2939 (2022)
  100. Exploring the Binding Mechanism of PF-07321332 SARS-CoV-2 Protease Inhibitor through Molecular Dynamics and Binding Free Energy Simulations. Ahmad B, Batool M, Ain QU, Kim MS, Choi S. Int J Mol Sci 22 9124 (2021)
  101. Epigallocatechin-3-gallate, an active ingredient of Traditional Chinese Medicines, inhibits the 3CLpro activity of SARS-CoV-2. Du A, Zheng R, Disoma C, Li S, Chen Z, Li S, Liu P, Zhou Y, Shen Y, Liu S, Zhang Y, Dong Z, Yang Q, Alsaadawe M, Razzaq A, Peng Y, Chen X, Hu L, Peng J, Zhang Q, Jiang T, Mo L, Li S, Xia Z. Int J Biol Macromol 176 1-12 (2021)
  102. Exploration of natural compounds with anti-SARS-CoV-2 activity via inhibition of SARS-CoV-2 Mpro. Bharadwaj S, Dubey A, Yadava U, Mishra SK, Kang SG, Dwivedi VD. Brief Bioinform 22 1361-1377 (2021)
  103. Mechanism of inhibition of SARS-CoV-2 Mpro by N3 peptidyl Michael acceptor explained by QM/MM simulations and design of new derivatives with tunable chemical reactivity. Arafet K, Serrano-Aparicio N, Lodola A, Mulholland AJ, González FV, Świderek K, Moliner V. Chem Sci 12 1433-1444 (2020)
  104. Molecular docking, molecular dynamics, and in vitro studies reveal the potential of angiotensin II receptor blockers to inhibit the COVID-19 main protease. Alnajjar R, Mostafa A, Kandeil A, Al-Karmalawy AA. Heliyon 6 e05641 (2020)
  105. Potential of coronavirus 3C-like protease inhibitors for the development of new anti-SARS-CoV-2 drugs: Insights from structures of protease and inhibitors. He J, Hu L, Huang X, Wang C, Zhang Z, Wang Y, Zhang D, Ye W. Int J Antimicrob Agents 56 106055 (2020)
  106. Repositioning of 8565 Existing Drugs for COVID-19. Gao K, Nguyen DD, Chen J, Wang R, Wei GW. J Phys Chem Lett 11 5373-5382 (2020)
  107. SARS-CoV-2 suppresses IFNβ production mediated by NSP1, 5, 6, 15, ORF6 and ORF7b but does not suppress the effects of added interferon. Shemesh M, Aktepe TE, Deerain JM, McAuley JL, Audsley MD, David CT, Purcell DFJ, Urin V, Hartmann R, Moseley GW, Mackenzie JM, Schreiber G, Harari D. PLoS Pathog 17 e1009800 (2021)
  108. Structure-Based Optimization of ML300-Derived, Noncovalent Inhibitors Targeting the Severe Acute Respiratory Syndrome Coronavirus 3CL Protease (SARS-CoV-2 3CLpro). Han SH, Goins CM, Arya T, Shin WJ, Maw J, Hooper A, Sonawane DP, Porter MR, Bannister BE, Crouch RD, Lindsey AA, Lakatos G, Martinez SR, Alvarado J, Akers WS, Wang NS, Jung JU, Macdonald JD, Stauffer SR. J Med Chem 65 2880-2904 (2022)
  109. Hepatitis C virus drugs that inhibit SARS-CoV-2 papain-like protease synergize with remdesivir to suppress viral replication in cell culture. Bafna K, White K, Harish B, Rosales R, Ramelot TA, Acton TB, Moreno E, Kehrer T, Miorin L, Royer CA, García-Sastre A, Krug RM, Montelione GT. Cell Rep 35 109133 (2021)
  110. Identification of key interactions between SARS-CoV-2 main protease and inhibitor drug candidates. Yoshino R, Yasuo N, Sekijima M. Sci Rep 10 12493 (2020)
  111. Virtual screening and molecular dynamics simulation study of plant-derived compounds to identify potential inhibitors of main protease from SARS-CoV-2. Mahmud S, Uddin MAR, Paul GK, Shimu MSS, Islam S, Rahman E, Islam A, Islam MS, Promi MM, Emran TB, Saleh MA. Brief Bioinform 22 1402-1414 (2021)
  112. In silico Screening of Natural Compounds as Potential Inhibitors of SARS-CoV-2 Main Protease and Spike RBD: Targets for COVID-19. Teli DM, Shah MB, Chhabria MT. Front Mol Biosci 7 599079 (2020)
  113. Designing of improved drugs for COVID-19: Crystal structure of SARS-CoV-2 main protease Mpro. Mengist HM, Fan X, Jin T. Signal Transduct Target Ther 5 67 (2020)
  114. Docking Characterization and in vitro Inhibitory Activity of Flavan-3-ols and Dimeric Proanthocyanidins Against the Main Protease Activity of SARS-Cov-2. Zhu Y, Xie DY. Front Plant Sci 11 601316 (2020)
  115. Identification of Inhibitors of SARS-CoV-2 3CL-Pro Enzymatic Activity Using a Small Molecule in Vitro Repurposing Screen. Kuzikov M, Costanzi E, Reinshagen J, Esposito F, Vangeel L, Wolf M, Ellinger B, Claussen C, Geisslinger G, Corona A, Iaconis D, Talarico C, Manelfi C, Cannalire R, Rossetti G, Gossen J, Albani S, Musiani F, Herzog K, Ye Y, Giabbai B, Demitri N, Jochmans D, Jonghe S, Rymenants J, Summa V, Tramontano E, Beccari AR, Leyssen P, Storici P, Neyts J, Gribbon P, Zaliani A. ACS Pharmacol Transl Sci 4 1096-1110 (2021)
  116. Identification of high-affinity inhibitors of SARS-CoV-2 main protease: Towards the development of effective COVID-19 therapy. Mohammad T, Shamsi A, Anwar S, Umair M, Hussain A, Rehman MT, AlAjmi MF, Islam A, Hassan MI. Virus Res 288 198102 (2020)
  117. SARS-CoV-2 Nsp5 Demonstrates Two Distinct Mechanisms Targeting RIG-I and MAVS To Evade the Innate Immune Response. Liu Y, Qin C, Rao Y, Ngo C, Feng JJ, Zhao J, Zhang S, Wang TY, Carriere J, Savas AC, Zarinfar M, Rice S, Yang H, Yuan W, Camarero JA, Yu J, Chen XS, Zhang C, Feng P. mBio 12 e0233521 (2021)
  118. A computational prediction of SARS-CoV-2 structural protein inhibitors from Azadirachta indica (Neem). Borkotoky S, Banerjee M. J Biomol Struct Dyn 39 4111-4121 (2021)
  119. Covalent narlaprevir- and boceprevir-derived hybrid inhibitors of SARS-CoV-2 main protease. Kneller DW, Li H, Phillips G, Weiss KL, Zhang Q, Arnould MA, Jonsson CB, Surendranathan S, Parvathareddy J, Blakeley MP, Coates L, Louis JM, Bonnesen PV, Kovalevsky A. Nat Commun 13 2268 (2022)
  120. In silico molecular docking analysis for repurposing therapeutics against multiple proteins from SARS-CoV-2. Deshpande RR, Tiwari AP, Nyayanit N, Modak M. Eur J Pharmacol 886 173430 (2020)
  121. Lower COVID-19 mortality in Italian forested areas suggests immunoprotection by Mediterranean plants. Roviello V, Roviello GN. Environ Chem Lett 19 699-710 (2021)
  122. A Clinical-Stage Cysteine Protease Inhibitor blocks SARS-CoV-2 Infection of Human and Monkey Cells. Mellott DM, Tseng CT, Drelich A, Fajtová P, Chenna BC, Kostomiris DH, Hsu J, Zhu J, Taylor ZW, Kocurek KI, Tat V, Katzfuss A, Li L, Giardini MA, Skinner D, Hirata K, Yoon MC, Beck S, Carlin AF, Clark AE, Beretta L, Maneval D, Hook V, Frueh F, Hurst BL, Wang H, Raushel FM, O'Donoghue AJ, de Siqueira-Neto JL, Meek TD, McKerrow JH. ACS Chem Biol 16 642-650 (2021)
  123. Benchmark of Popular Free Energy Approaches Revealing the Inhibitors Binding to SARS-CoV-2 Mpro. Ngo ST, Tam NM, Pham MQ, Nguyen TH. J Chem Inf Model 61 2302-2312 (2021)
  124. Efficacy of Phytochemicals Derived from Avicennia officinalis for the Management of COVID-19: A Combined In Silico and Biochemical Study. Mahmud S, Paul GK, Afroze M, Islam S, Gupt SBR, Razu MH, Biswas S, Zaman S, Uddin MS, Khan M, Cacciola NA, Emran TB, Saleh MA, Capasso R, Simal-Gandara J. Molecules 26 2210 (2021)
  125. Structure-Based Virtual Screening to Discover Potential Lead Molecules for the SARS-CoV-2 Main Protease. Gahlawat A, Kumar N, Kumar R, Sandhu H, Singh IP, Singh S, Sjöstedt A, Garg P. J Chem Inf Model 60 5781-5793 (2020)
  126. Virtual screening of approved drugs as potential SARS-CoV-2 main protease inhibitors. Jiménez-Alberto A, Ribas-Aparicio RM, Aparicio-Ozores G, Castelán-Vega JA. Comput Biol Chem 88 107325 (2020)
  127. Comprehensive Virtual Screening of the Antiviral Potentialities of Marine Polycyclic Guanidine Alkaloids against SARS-CoV-2 (COVID-19). El-Demerdash A, Metwaly AM, Hassan A, Abd El-Aziz TM, Elkaeed EB, Eissa IH, Arafa RK, Stockand JD. Biomolecules 11 460 (2021)
  128. Drug Repurposing Approach against Novel Coronavirus Disease (COVID-19) through Virtual Screening Targeting SARS-CoV-2 Main Protease. Chowdhury KH, Chowdhury MR, Mahmud S, Tareq AM, Hanif NB, Banu N, Reza ASMA, Emran TB, Simal-Gandara J. Biology (Basel) 10 2 (2020)
  129. Nirmatrelvir-resistant SARS-CoV-2 variants with high fitness in an infectious cell culture system. Zhou Y, Gammeltoft KA, Ryberg LA, Pham LV, Tjørnelund HD, Binderup A, Duarte Hernandez CR, Fernandez-Antunez C, Offersgaard A, Fahnøe U, Peters GHJ, Ramirez S, Bukh J, Gottwein JM. Sci Adv 8 eadd7197 (2022)
  130. Remdesivir Strongly Binds to Both RNA-Dependent RNA Polymerase and Main Protease of SARS-CoV-2: Evidence from Molecular Simulations. Nguyen HL, Thai NQ, Truong DT, Li MS. J Phys Chem B 124 11337-11348 (2020)
  131. A molecular modelling approach for identifying antiviral selenium-containing heterocyclic compounds that inhibit the main protease of SARS-CoV-2: an in silico investigation. Rakib A, Nain Z, Sami SA, Mahmud S, Islam A, Ahmed S, Siddiqui ABF, Babu SMOF, Hossain P, Shahriar A, Nainu F, Emran TB, Simal-Gandara J. Brief Bioinform 22 1476-1498 (2021)
  132. Identifying the natural polyphenol catechin as a multi-targeted agent against SARS-CoV-2 for the plausible therapy of COVID-19: an integrated computational approach. Mishra CB, Pandey P, Sharma RD, Malik MZ, Mongre RK, Lynn AM, Prasad R, Jeon R, Prakash A. Brief Bioinform 22 1346-1360 (2021)
  133. A multi-pronged approach targeting SARS-CoV-2 proteins using ultra-large virtual screening. Gorgulla C, Padmanabha Das KM, Leigh KE, Cespugli M, Fischer PD, Wang ZF, Tesseyre G, Pandita S, Shnapir A, Calderaio A, Gechev M, Rose A, Lewis N, Hutcheson C, Yaffe E, Luxenburg R, Herce HD, Durmaz V, Halazonetis TD, Fackeldey K, Patten JJ, Chuprina A, Dziuba I, Plekhova A, Moroz Y, Radchenko D, Tarkhanova O, Yavnyuk I, Gruber C, Yust R, Payne D, Näär AM, Namchuk MN, Davey RA, Wagner G, Kinney J, Arthanari H. iScience 24 102021 (2021)
  134. Microbial Natural Products as Potential Inhibitors of SARS-CoV-2 Main Protease (Mpro). Sayed AM, Alhadrami HA, El-Gendy AO, Shamikh YI, Belbahri L, Hassan HM, Abdelmohsen UR, Rateb ME. Microorganisms 8 E970 (2020)
  135. Peptidomimetic α-Acyloxymethylketone Warheads with Six-Membered Lactam P1 Glutamine Mimic: SARS-CoV-2 3CL Protease Inhibition, Coronavirus Antiviral Activity, and in Vitro Biological Stability. Bai B, Belovodskiy A, Hena M, Kandadai AS, Joyce MA, Saffran HA, Shields JA, Khan MB, Arutyunova E, Lu J, Bajwa SK, Hockman D, Fischer C, Lamer T, Vuong W, van Belkum MJ, Gu Z, Lin F, Du Y, Xu J, Rahim M, Young HS, Vederas JC, Tyrrell DL, Lemieux MJ, Nieman JA. J Med Chem 65 2905-2925 (2022)
  136. Calendulaglycoside A showing potential activity against SARS-CoV-2 main protease: Molecular docking, molecular dynamics, and SAR studies. Zaki AA, Ashour A, Ashour A, Elhady SS, Darwish KM, Al-Karmalawy AA. J Tradit Complement Med 12 16-34 (2022)
  137. Ethnomedicines of Indian origin for combating COVID-19 infection by hampering the viral replication: using structure-based drug discovery approach. Alagu Lakshmi S, Shafreen RMB, Priya A, Shunmugiah KP. J Biomol Struct Dyn 39 4594-4609 (2021)
  138. High throughput virtual screening reveals SARS-CoV-2 multi-target binding natural compounds to lead instant therapy for COVID-19 treatment. Naik B, Gupta N, Ojha R, Singh S, Prajapati VK, Prusty D. Int J Biol Macromol 160 1-17 (2020)
  139. High-Throughput Virtual Screening and Validation of a SARS-CoV-2 Main Protease Noncovalent Inhibitor. Clyde A, Galanie S, Kneller DW, Ma H, Babuji Y, Blaiszik B, Brace A, Brettin T, Chard K, Chard R, Coates L, Foster I, Hauner D, Kertesz V, Kumar N, Lee H, Li Z, Merzky A, Schmidt JG, Tan L, Titov M, Trifan A, Turilli M, Van Dam H, Chennubhotla SC, Jha S, Kovalevsky A, Ramanathan A, Head MS, Stevens R. J Chem Inf Model 62 116-128 (2022)
  140. N-Terminomics for the Identification of In Vitro Substrates and Cleavage Site Specificity of the SARS-CoV-2 Main Protease. Koudelka T, Boger J, Henkel A, Schönherr R, Krantz S, Fuchs S, Rodríguez E, Redecke L, Tholey A. Proteomics 21 e2000246 (2021)
  141. Structural basis of SARS-CoV-2 main protease inhibition by a broad-spectrum anti-coronaviral drug. Wang YC, Yang WH, Yang CS, Hou MH, Tsai CL, Chou YZ, Hung MC, Chen Y. Am J Cancer Res 10 2535-2545 (2020)
  142. The global and local distribution of RNA structure throughout the SARS-CoV-2 genome. Tavares RCA, Mahadeshwar G, Wan H, Huston NC, Pyle AM. J Virol 95 JVI.02190-20 (2021)
  143. Drug binding dynamics of the dimeric SARS-CoV-2 main protease, determined by molecular dynamics simulation. Komatsu TS, Okimoto N, Koyama YM, Hirano Y, Morimoto G, Ohno Y, Taiji M. Sci Rep 10 16986 (2020)
  144. In Silico Evaluation of the Effectivity of Approved Protease Inhibitors against the Main Protease of the Novel SARS-CoV-2 Virus. Eleftheriou P, Amanatidou D, Petrou A, Geronikaki A. Molecules 25 E2529 (2020)
  145. Mechanistic insights into COVID-19 by global analysis of the SARS-CoV-2 3CLpro substrate degradome. Pablos I, Machado Y, de Jesus HCR, Mohamud Y, Kappelhoff R, Lindskog C, Vlok M, Bell PA, Butler GS, Grin PM, Cao QT, Nguyen JP, Solis N, Abbina S, Rut W, Vederas JC, Szekely L, Szakos A, Drag M, Kizhakkedathu JN, Mossman K, Hirota JA, Jan E, Luo H, Banerjee A, Overall CM. Cell Rep 109892 (2021)
  146. Proton-Coupled Conformational Activation of SARS Coronavirus Main Proteases and Opportunity for Designing Small-Molecule Broad-Spectrum Targeted Covalent Inhibitors. Verma N, Henderson JA, Shen J. J Am Chem Soc 142 21883-21890 (2020)
  147. Tannic acid suppresses SARS-CoV-2 as a dual inhibitor of the viral main protease and the cellular TMPRSS2 protease. Wang SC, Chen Y, Wang YC, Wang WJ, Yang CS, Tsai CL, Hou MH, Chen HF, Shen YC, Hung MC. Am J Cancer Res 10 4538-4546 (2020)
  148. The proteasome as a druggable target with multiple therapeutic potentialities: Cutting and non-cutting edges. Tundo GR, Sbardella D, Santoro AM, Coletta A, Oddone F, Grasso G, Milardi D, Lacal PM, Marini S, Purrello R, Graziani G, Coletta M. Pharmacol Ther 213 107579 (2020)
  149. Computational insights into tetracyclines as inhibitors against SARS-CoV-2 Mpro via combinatorial molecular simulation calculations. Bharadwaj S, Lee KE, Dwivedi VD, Kang SG. Life Sci 257 118080 (2020)
  150. Myricetin Inhibits SARS-CoV-2 Viral Replication by Targeting Mpro and Ameliorates Pulmonary Inflammation. Xiao T, Cui M, Zheng C, Wang M, Sun R, Gao D, Bao J, Ren S, Yang B, Lin J, Li X, Li D, Yang C, Zhou H. Front Pharmacol 12 669642 (2021)
  151. SARS-CoV-2 NSP5 and N protein counteract the RIG-I signaling pathway by suppressing the formation of stress granules. Zheng Y, Deng J, Han L, Zhuang MW, Xu Y, Zhang J, Nan ML, Xiao Y, Zhan P, Liu X, Gao C, Wang PH. Signal Transduct Target Ther 7 22 (2022)
  152. Simeprevir Potently Suppresses SARS-CoV-2 Replication and Synergizes with Remdesivir. Lo HS, Hui KPY, Lai HM, He X, Khan KS, Kaur S, Huang J, Li Z, Chan AKN, Cheung HH, Ng KC, Ho JCW, Chen YW, Ma B, Cheung PM, Shin D, Wang K, Lee MH, Selisko B, Eydoux C, Guillemot JC, Canard B, Wu KP, Liang PH, Dikic I, Zuo Z, Chan FKL, Hui DSC, Mok VCT, Wong KB, Mok CKP, Ko H, Aik WS, Chan MCW, Ng WL. ACS Cent Sci 7 792-802 (2021)
  153. Drug Repurposing for Candidate SARS-CoV-2 Main Protease Inhibitors by a Novel In Silico Method. Sencanski M, Perovic V, Pajovic SB, Adzic M, Paessler S, Glisic S. Molecules 25 E3830 (2020)
  154. Drug repurposing against SARS-CoV-2 using E-pharmacophore based virtual screening, molecular docking and molecular dynamics with main protease as the target. Arun KG, Sharanya CS, Abhithaj J, Francis D, Sadasivan C. J Biomol Struct Dyn 39 4647-4658 (2021)
  155. GRL-0920, an Indole Chloropyridinyl Ester, Completely Blocks SARS-CoV-2 Infection. Hattori SI, Higshi-Kuwata N, Raghavaiah J, Das D, Bulut H, Davis DA, Takamatsu Y, Matsuda K, Takamune N, Kishimoto N, Okamura T, Misumi S, Yarchoan R, Maeda K, Ghosh AK, Mitsuya H. mBio 11 e01833-20 (2020)
  156. Pharmacological inhibition of fatty acid synthesis blocks SARS-CoV-2 replication. Chu J, Xing C, Du Y, Duan T, Liu S, Zhang P, Cheng C, Henley J, Liu X, Qian C, Yin B, Wang HY, Wang RF. Nat Metab 3 1466-1475 (2021)
  157. Repurposing approved drugs as potential inhibitors of 3CL-protease of SARS-CoV-2: Virtual screening and structure based drug design. Meyer-Almes FJ. Comput Biol Chem 88 107351 (2020)
  158. Virtual screening, molecular dynamics and structure-activity relationship studies to identify potent approved drugs for Covid-19 treatment. Rahman MM, Saha T, Islam KJ, Suman RH, Biswas S, Rahat EU, Hossen MR, Islam R, Hossain MN, Mamun AA, Khan M, Ali MA, Halim MA. J Biomol Struct Dyn 39 6231-6241 (2021)
  159. Elucidating biophysical basis of binding of inhibitors to SARS-CoV-2 main protease by using molecular dynamics simulations and free energy calculations. Sk MF, Roy R, Jonniya NA, Poddar S, Kar P. J Biomol Struct Dyn 39 3649-3661 (2021)
  160. Molecular docking analysis of rutin reveals possible inhibition of SARS-CoV-2 vital proteins. Rahman F, Tabrez S, Ali R, Alqahtani AS, Ahmed MZ, Rub A. J Tradit Complement Med 11 173-179 (2021)
  161. Perspectives on SARS-CoV-2 Main Protease Inhibitors. Gao K, Wang R, Chen J, Tepe JJ, Huang F, Wei GW. J Med Chem 64 16922-16955 (2021)
  162. Structural basis for replicase polyprotein cleavage and substrate specificity of main protease from SARS-CoV-2. Zhao Y, Zhu Y, Liu X, Jin Z, Duan Y, Zhang Q, Wu C, Feng L, Du X, Zhao J, Shao M, Zhang B, Yang X, Wu L, Ji X, Guddat LW, Yang K, Rao Z, Yang H. Proc Natl Acad Sci U S A 119 e2117142119 (2022)
  163. An automatic pipeline for the design of irreversible derivatives identifies a potent SARS-CoV-2 Mpro inhibitor. Zaidman D, Gehrtz P, Filep M, Fearon D, Gabizon R, Douangamath A, Prilusky J, Duberstein S, Cohen G, Owen CD, Resnick E, Strain-Damerell C, Lukacik P, Covid-Moonshot Consortium, Barr H, Walsh MA, von Delft F, London N. Cell Chem Biol 28 1795-1806.e5 (2021)
  164. An orally available Mpro inhibitor is effective against wild-type SARS-CoV-2 and variants including Omicron. Quan BX, Shuai H, Xia AJ, Hou Y, Zeng R, Liu XL, Lin GF, Qiao JX, Li WP, Wang FL, Wang K, Zhou RJ, Yuen TT, Chen MX, Yoon C, Wu M, Zhang SY, Huang C, Wang YF, Yang W, Tian C, Li WM, Wei YQ, Yuen KY, Chan JF, Lei J, Chu H, Yang S. Nat Microbiol 7 716-725 (2022)
  165. Computational Studies of SARS-CoV-2 3CLpro: Insights from MD Simulations. Grottesi A, Bešker N, Emerson A, Manelfi C, Beccari AR, Frigerio F, Lindahl E, Cerchia C, Talarico C. Int J Mol Sci 21 E5346 (2020)
  166. In Silico Drug Repurposing for SARS-CoV-2 Main Proteinase and Spike Proteins. Maffucci I, Contini A. J Proteome Res 19 4637-4648 (2020)
  167. Repurposing the HCV NS3-4A protease drug boceprevir as COVID-19 therapeutics. Oerlemans R, Ruiz-Moreno AJ, Cong Y, Dinesh Kumar N, Velasco-Velazquez MA, Neochoritis CG, Smith J, Reggiori F, Groves MR, Dömling A. RSC Med Chem 12 370-379 (2020)
  168. SARS-CoV-2 3CLpro mutations selected in a VSV-based system confer resistance to nirmatrelvir, ensitrelvir, and GC376. Heilmann E, Costacurta F, Moghadasi SA, Ye C, Pavan M, Bassani D, Volland A, Ascher C, Weiss AKH, Bante D, Harris RS, Moro S, Rupp B, Martinez-Sobrido L, von Laer D. Sci Transl Med 15 eabq7360 (2023)
  169. Synergistic Inhibition of SARS-CoV-2 Replication Using Disulfiram/Ebselen and Remdesivir. Chen T, Fei CY, Chen YP, Sargsyan K, Chang CP, Yuan HS, Lim C. ACS Pharmacol Transl Sci 4 898-907 (2021)
  170. A traditional Chinese medicine formula NRICM101 to target COVID-19 through multiple pathways: A bedside-to-bench study. Tsai KC, Huang YC, Liaw CC, Tsai CI, Chiou CT, Lin CJ, Wei WC, Lin SJ, Tseng YH, Yeh KM, Lin YL, Jan JT, Liang JJ, Liao CC, Chiou WF, Kuo YH, Lee SM, Lee MY, Su YC. Biomed Pharmacother 133 111037 (2021)
  171. Effect of Systemic Inflammatory Response to SARS-CoV-2 on Lopinavir and Hydroxychloroquine Plasma Concentrations. Marzolini C, Stader F, Stoeckle M, Franzeck F, Egli A, Bassetti S, Hollinger A, Osthoff M, Weisser M, Gebhard CE, Baettig V, Geenen J, Khanna N, Tschudin-Sutter S, Mueller D, Hirsch HH, Battegay M, Sendi P. Antimicrob Agents Chemother 64 e01177-20 (2020)
  172. Evidence supporting the use of peptides and peptidomimetics as potential SARS-CoV-2 (COVID-19) therapeutics. VanPatten S, He M, Altiti A, F Cheng K, Ghanem MH, Al-Abed Y. Future Med Chem 12 1647-1656 (2020)
  173. Potent Anti-SARS-CoV-2 Activity by the Natural Product Gallinamide A and Analogues via Inhibition of Cathepsin L. Ashhurst AS, Tang AH, Fajtová P, Yoon MC, Aggarwal A, Bedding MJ, Stoye A, Beretta L, Pwee D, Drelich A, Skinner D, Li L, Meek TD, McKerrow JH, Hook V, Tseng CT, Larance M, Turville S, Gerwick WH, O'Donoghue AJ, Payne RJ. J Med Chem 65 2956-2970 (2022)
  174. Screening of phytochemical compounds of Tinospora cordifolia for their inhibitory activity on SARS-CoV-2: an in silico study. Krupanidhi S, Abraham Peele K, Venkateswarulu TC, Ayyagari VS, Nazneen Bobby M, John Babu D, Venkata Narayana A, Aishwarya G. J Biomol Struct Dyn 39 5799-5803 (2021)
  175. Use of repurposed and adjuvant drugs in hospital patients with covid-19: multinational network cohort study. Prats-Uribe A, Sena AG, Lai LYH, Ahmed WU, Alghoul H, Alser O, Alshammari TM, Areia C, Carter W, Casajust P, Dawoud D, Golozar A, Jonnagaddala J, Mehta PP, Gong M, Morales DR, Nyberg F, Posada JD, Recalde M, Roel E, Shah K, Shah NH, Schilling LM, Subbian V, Vizcaya D, Zhang L, Zhang Y, Zhu H, Liu L, Cho J, Lynch KE, Matheny ME, You SC, Rijnbeek PR, Hripcsak G, Lane JC, Burn E, Reich C, Suchard MA, Duarte-Salles T, Kostka K, Ryan PB, Prieto-Alhambra D. BMJ 373 n1038 (2021)
  176. Identification of potential inhibitors of three key enzymes of SARS-CoV2 using computational approach. Iftikhar H, Ali HN, Farooq S, Naveed H, Shahzad-Ul-Hussan S. Comput Biol Med 122 103848 (2020)
  177. Innovative Randomized Phase I Study and Dosing Regimen Selection to Accelerate and Inform Pivotal COVID-19 Trial of Nirmatrelvir. Singh RSP, Toussi SS, Hackman F, Chan PL, Rao R, Allen R, Van Eyck L, Pawlak S, Kadar EP, Clark F, Shi H, Anderson AS, Binks M, Menon S, Nucci G, Bergman A. Clin Pharmacol Ther 112 101-111 (2022)
  178. MPI8 is Potent against SARS-CoV-2 by Inhibiting Dually and Selectively the SARS-CoV-2 Main Protease and the Host Cathepsin L. Ma XR, Alugubelli YR, Ma Y, Vatansever EC, Scott DA, Qiao Y, Yu G, Xu S, Liu WR. ChemMedChem 17 e202100456 (2022)
  179. Plant-Based Phytochemical Screening by Targeting Main Protease of SARS-CoV-2 to Design Effective Potent Inhibitors. Mahmud S, Biswas S, Paul GK, Mita MA, Promi MM, Afrose S, Hasan MR, Zaman S, Uddin MS, Dhama K, Emran TB, Saleh MA, Simal-Gandara J. Biology (Basel) 10 589 (2021)
  180. Potent inhibitors of SARS-CoV-2 3C-like protease derived from N-substituted isatin compounds. Liu P, Liu H, Sun Q, Liang H, Li C, Deng X, Liu Y, Lai L. Eur J Med Chem 206 112702 (2020)
  181. Repurposing of Some Natural Product Isolates as SARS-COV-2 Main Protease Inhibitors via In Vitro Cell Free and Cell-Based Antiviral Assessments and Molecular Modeling Approaches. Abdallah HM, El-Halawany AM, Sirwi A, El-Araby AM, Mohamed GA, Ibrahim SRM, Koshak AE, Asfour HZ, Awan ZA, A Elfaky M. Pharmaceuticals (Basel) 14 213 (2021)
  182. Screening and evaluation of approved drugs as inhibitors of main protease of SARS-CoV-2. Tripathi PK, Upadhyay S, Singh M, Raghavendhar S, Bhardwaj M, Sharma P, Patel AK. Int J Biol Macromol 164 2622-2631 (2020)
  183. Structure-guided design of a perampanel-derived pharmacophore targeting the SARS-CoV-2 main protease. Deshmukh MG, Ippolito JA, Zhang CH, Stone EA, Reilly RA, Miller SJ, Jorgensen WL, Anderson KS. Structure 29 823-833.e5 (2021)
  184. A drug repurposing screen identifies hepatitis C antivirals as inhibitors of the SARS-CoV2 main protease. Baker JD, Uhrich RL, Kraemer GC, Love JE, Kraemer BC. PLoS One 16 e0245962 (2021)
  185. Gold Metallodrugs to Target Coronavirus Proteins: Inhibitory Effects on the Spike-ACE2 Interaction and on PLpro Protease Activity by Auranofin and Gold Organometallics*. Gil-Moles M, Basu U, Büssing R, Hoffmeister H, Türck S, Varchmin A, Ott I. Chemistry 26 15140-15144 (2020)
  186. Potential inhibitors of the interaction between ACE2 and SARS-CoV-2 (RBD), to develop a drug. Benítez-Cardoza CG, Vique-Sánchez JL. Life Sci 256 117970 (2020)
  187. Recognition of Divergent Viral Substrates by the SARS-CoV-2 Main Protease. MacDonald EA, Frey G, Namchuk MN, Harrison SC, Hinshaw SM, Windsor IW. ACS Infect Dis 7 2591-2595 (2021)
  188. SARS-CoV-2 Nsp5 Activates NF-κB Pathway by Upregulating SUMOylation of MAVS. Li W, Qiao J, You Q, Zong S, Peng Q, Liu Y, Hu S, Liu W, Li S, Shu X, Sun B. Front Immunol 12 750969 (2021)
  189. Transmissible SARS-CoV-2 variants with resistance to clinical protease inhibitors. Moghadasi SA, Heilmann E, Khalil AM, Nnabuife C, Kearns FL, Ye C, Moraes SN, Costacurta F, Esler MA, Aihara H, von Laer D, Martinez-Sobrido L, Palzkill T, Amaro RE, Harris RS. Sci Adv 9 eade8778 (2023)
  190. Virtual screening, ADME/Tox predictions and the drug repurposing concept for future use of old drugs against the COVID-19. Hage-Melim LIDS, Federico LB, de Oliveira NKS, Francisco VCC, Correia LC, de Lima HB, Gomes SQ, Barcelos MP, Francischini IAG, da Silva CHTP. Life Sci 256 117963 (2020)
  191. Design, Synthesis, and Biological Evaluation of Peptidomimetic Aldehydes as Broad-Spectrum Inhibitors against Enterovirus and SARS-CoV-2. Dai W, Jochmans D, Xie H, Yang H, Li J, Su H, Chang D, Wang J, Peng J, Zhu L, Nian Y, Hilgenfeld R, Jiang H, Chen K, Zhang L, Xu Y, Neyts J, Liu H. J Med Chem 65 2794-2808 (2022)
  192. Discovery and Mechanism of SARS-CoV-2 Main Protease Inhibitors. Huff S, Kummetha IR, Tiwari SK, Huante MB, Clark AE, Wang S, Bray W, Smith D, Carlin AF, Endsley M, Rana TM. J Med Chem 65 2866-2879 (2022)
  193. Raltegravir, Indinavir, Tipranavir, Dolutegravir, and Etravirine against main protease and RNA-dependent RNA polymerase of SARS-CoV-2: A molecular docking and drug repurposing approach. Indu P, Rameshkumar MR, Arunagirinathan N, Al-Dhabi NA, Valan Arasu M, Ignacimuthu S. J Infect Public Health 13 1856-1861 (2020)
  194. Comprehensive fitness landscape of SARS-CoV-2 Mpro reveals insights into viral resistance mechanisms. Flynn JM, Samant N, Schneider-Nachum G, Barkan DT, Yilmaz NK, Schiffer CA, Moquin SA, Dovala D, Bolon DNA. Elife 11 e77433 (2022)
  195. Discovery of chebulagic acid and punicalagin as novel allosteric inhibitors of SARS-CoV-2 3CLpro. Du R, Cooper L, Chen Z, Lee H, Rong L, Cui Q. Antiviral Res 190 105075 (2021)
  196. From quantum-derived principles underlying cysteine reactivity to combating the COVID-19 pandemic. Mazmanian K, Chen T, Sargsyan K, Lim C. Wiley Interdiscip Rev Comput Mol Sci 12 e1607 (2022)
  197. Structure-Based Discovery of Novel Nonpeptide Inhibitors Targeting SARS-CoV-2 Mpro. Yang J, Lin X, Xing N, Zhang Z, Zhang H, Wu H, Xue W. J Chem Inf Model 61 3917-3926 (2021)
  198. Conserved interactions required for inhibition of the main protease of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Shitrit A, Zaidman D, Kalid O, Bloch I, Doron D, Yarnizky T, Buch I, Segev I, Ben-Zeev E, Segev E, Kobiler O. Sci Rep 10 20808 (2020)
  199. Development of a Cell-Based Luciferase Complementation Assay for Identification of SARS-CoV-2 3CLpro Inhibitors. Rawson JMO, Duchon A, Nikolaitchik OA, Pathak VK, Hu WS. Viruses 13 173 (2021)
  200. DockCoV2: a drug database against SARS-CoV-2. Chen TF, Chang YC, Hsiao Y, Lee KH, Hsiao YC, Lin YH, Tu YE, Huang HC, Chen CY, Juan HF. Nucleic Acids Res 49 D1152-D1159 (2021)
  201. Drug repurposing studies targeting SARS-CoV-2: an ensemble docking approach on drug target 3C-like protease (3CLpro). Koulgi S, Jani V, Uppuladinne M, Sonavane U, Nath AK, Darbari H, Joshi R. J Biomol Struct Dyn 39 5735-5755 (2021)
  202. Dual targeting of 3CLpro and PLpro of SARS-CoV-2: A novel structure-based design approach to treat COVID-19. Rajpoot S, Alagumuthu M, Baig MS. Curr Res Struct Biol 3 9-18 (2021)
  203. Ebsulfur and Ebselen as highly potent scaffolds for the development of potential SARS-CoV-2 antivirals. Sun LY, Chen C, Su J, Li JQ, Jiang Z, Gao H, Chigan JZ, Ding HH, Zhai L, Yang KW. Bioorg Chem 112 104889 (2021)
  204. Identification of saquinavir as a potent inhibitor of dimeric SARS-CoV2 main protease through MM/GBSA. Bello M, Martínez-Muñoz A, Balbuena-Rebolledo I. J Mol Model 26 340 (2020)
  205. Potential COVID-19 papain-like protease PLpro inhibitors: repurposing FDA-approved drugs. Kouznetsova VL, Zhang A, Tatineni M, Miller MA, Tsigelny IF. PeerJ 8 e9965 (2020)
  206. Promising Antiviral Activities of Natural Flavonoids against SARS-CoV-2 Targets: Systematic Review. Kaul R, Paul P, Kumar S, Büsselberg D, Dwivedi VD, Chaari A. Int J Mol Sci 22 11069 (2021)
  207. Rutin and flavone analogs as prospective SARS-CoV-2 main protease inhibitors: In silico drug discovery study. Ibrahim MAA, Mohamed EAR, Abdelrahman AHM, Allemailem KS, Moustafa MF, Shawky AM, Mahzari A, Hakami AR, Abdeljawaad KAA, Atia MAM. J Mol Graph Model 105 107904 (2021)
  208. Screening of plant-based natural compounds as a potential COVID-19 main protease inhibitor: an in silico docking and molecular dynamics simulation approach. Majumder R, Mandal M. J Biomol Struct Dyn 40 696-711 (2022)
  209. A Comprehensive, Flexible Collection of SARS-CoV-2 Coding Regions. Kim DK, Knapp JJ, Kuang D, Chawla A, Cassonnet P, Lee H, Sheykhkarimli D, Samavarchi-Tehrani P, Abdouni H, Rayhan A, Li R, Pogoutse O, Coyaud É, van der Werf S, Demeret C, Gingras AC, Taipale M, Raught B, Jacob Y, Roth FP. G3 (Bethesda) 10 3399-3402 (2020)
  210. Defining the substrate envelope of SARS-CoV-2 main protease to predict and avoid drug resistance. Shaqra AM, Zvornicanin SN, Huang QYJ, Lockbaum GJ, Knapp M, Tandeske L, Bakan DT, Flynn J, Bolon DNA, Moquin S, Dovala D, Kurt Yilmaz N, Schiffer CA. Nat Commun 13 3556 (2022)
  211. Lack of Effectiveness of Repurposed Drugs for COVID-19 Treatment. Martinez MA. Front Immunol 12 635371 (2021)
  212. ReI Tricarbonyl Complexes as Coordinate Covalent Inhibitors for the SARS-CoV-2 Main Cysteine Protease. Karges J, Kalaj M, Gembicky M, Cohen SM. Angew Chem Int Ed Engl 60 10716-10723 (2021)
  213. Remdesivir (GS-5734) as a therapeutic option of 2019-nCOV main protease - in silico approach. Naik VR, Munikumar M, Ramakrishna U, Srujana M, Goudar G, Naresh P, Kumar BN, Hemalatha R. J Biomol Struct Dyn 39 4701-4714 (2021)
  214. Targeting SARS-CoV-2 Main Protease: A Computational Drug Repurposing Study. Baby K, Maity S, Mehta CH, Suresh A, Nayak UY, Nayak Y. Arch Med Res 52 38-47 (2021)
  215. ALG-097111, a potent and selective SARS-CoV-2 3-chymotrypsin-like cysteine protease inhibitor exhibits in vivo efficacy in a Syrian Hamster model. Vandyck K, Abdelnabi R, Gupta K, Jochmans D, Jekle A, Deval J, Misner D, Bardiot D, Foo CS, Liu C, Ren S, Beigelman L, Blatt LM, Boland S, Vangeel L, Dejonghe S, Chaltin P, Marchand A, Serebryany V, Stoycheva A, Chanda S, Symons JA, Raboisson P, Neyts J. Biochem Biophys Res Commun 555 134-139 (2021)
  216. Benchmarking the Ability of Common Docking Programs to Correctly Reproduce and Score Binding Modes in SARS-CoV-2 Protease Mpro. Zev S, Raz K, Schwartz R, Tarabeh R, Gupta PK, Major DT. J Chem Inf Model 61 2957-2966 (2021)
  217. Crystal structure of SARS-CoV-2 main protease in complex with the natural product inhibitor shikonin illuminates a unique binding mode. Li J, Zhou X, Zhang Y, Zhong F, Lin C, McCormick PJ, Jiang F, Luo J, Zhou H, Wang Q, Fu Y, Duan J, Zhang J. Sci Bull (Beijing) 66 661-663 (2021)
  218. Discovery of SARS-CoV-2 Mpro peptide inhibitors from modelling substrate and ligand binding. Chan HTH, Moesser MA, Walters RK, Malla TR, Twidale RM, John T, Deeks HM, Johnston-Wood T, Mikhailov V, Sessions RB, Dawson W, Salah E, Lukacik P, Strain-Damerell C, Owen CD, Nakajima T, Świderek K, Lodola A, Moliner V, Glowacki DR, Spencer J, Walsh MA, Schofield CJ, Genovese L, Shoemark DK, Mulholland AJ, Duarte F, Morris GM. Chem Sci 12 13686-13703 (2021)
  219. Molecular docking reveals the potential of Salvadora persica flavonoids to inhibit COVID-19 virus main protease. Owis AI, El-Hawary MS, El Amir D, Aly OM, Abdelmohsen UR, Kamel MS. RSC Adv 10 19570-19575 (2020)
  220. Molecular structure analyses suggest strategies to therapeutically target SARS-CoV-2. Zhang Y, Kutateladze TG. Nat Commun 11 2920 (2020)
  221. Naturally Available Flavonoid Aglycones as Potential Antiviral Drug Candidates against SARS-CoV-2. Al-Karmalawy AA, Farid MM, Mostafa A, Ragheb AY, H Mahmoud S, Shehata M, Shama NMA, GabAllah M, Mostafa-Hedeab G, Marzouk MM. Molecules 26 6559 (2021)
  222. Structural and Biochemical Analysis of the Dual Inhibition of MG-132 against SARS-CoV-2 Main Protease (Mpro/3CLpro) and Human Cathepsin-L. Costanzi E, Kuzikov M, Esposito F, Albani S, Demitri N, Giabbai B, Camasta M, Tramontano E, Rossetti G, Zaliani A, Storici P. Int J Mol Sci 22 11779 (2021)
  223. An overview of the safety, clinical application and antiviral research of the COVID-19 therapeutics. Wang D, Li Z, Liu Y. J Infect Public Health 13 1405-1414 (2020)
  224. Antitussive noscapine and antiviral drug conjugates as arsenal against COVID-19: a comprehensive chemoinformatics analysis. Kumar N, Kumar N, Awasthi A, Kumari A, Sood D, Jain P, Singh T, Sharma N, Grover A, Chandra R. J Biomol Struct Dyn 40 101-116 (2022)
  225. Aptamer Conjugated Gold Nanostar-Based Distance-Dependent Nanoparticle Surface Energy Transfer Spectroscopy for Ultrasensitive Detection and Inactivation of Corona Virus. Pramanik A, Gao Y, Patibandla S, Mitra D, McCandless MG, Fassero LA, Gates K, Tandon R, Ray PC. J Phys Chem Lett 12 2166-2171 (2021)
  226. Computationally Optimized SARS-CoV-2 MHC Class I and II Vaccine Formulations Predicted to Target Human Haplotype Distributions. Liu G, Carter B, Bricken T, Jain S, Viard M, Carrington M, Gifford DK. Cell Syst 11 131-144.e6 (2020)
  227. Development of optimized drug-like small molecule inhibitors of the SARS-CoV-2 3CL protease for treatment of COVID-19. Liu H, Iketani S, Zask A, Khanizeman N, Bednarova E, Forouhar F, Fowler B, Hong SJ, Mohri H, Nair MS, Huang Y, Tay NES, Lee S, Karan C, Resnick SJ, Quinn C, Li W, Shion H, Xia X, Daniels JD, Bartolo-Cruz M, Farina M, Rajbhandari P, Jurtschenko C, Lauber MA, McDonald T, Stokes ME, Hurst BL, Rovis T, Chavez A, Ho DD, Stockwell BR. Nat Commun 13 1891 (2022)
  228. In Silico Studies of Some Isoflavonoids as Potential Candidates against COVID-19 Targeting Human ACE2 (hACE2) and Viral Main Protease (Mpro). Alesawy MS, Abdallah AE, Taghour MS, Elkaeed EB, H Eissa I, Metwaly AM. Molecules 26 2806 (2021)
  229. Pharmacophore based virtual screening, molecular docking, molecular dynamics and MM-GBSA approach for identification of prospective SARS-CoV-2 inhibitor from natural product databases. Kumar BK, Faheem, Sekhar KVGC, Ojha R, Prajapati VK, Pai A, Murugesan S. J Biomol Struct Dyn 40 1363-1386 (2022)
  230. Silibinin and SARS-CoV-2: Dual Targeting of Host Cytokine Storm and Virus Replication Machinery for Clinical Management of COVID-19 Patients. Bosch-Barrera J, Martin-Castillo B, Buxó M, Brunet J, Encinar JA, Menendez JA. J Clin Med 9 E1770 (2020)
  231. Targeting COVID-19 (SARS-CoV-2) main protease through active phytocompounds of ayurvedic medicinal plants - Emblica officinalis (Amla), Phyllanthus niruri Linn. (Bhumi Amla) and Tinospora cordifolia (Giloy) - A molecular docking and simulation study. Murugesan S, Kottekad S, Crasta I, Sreevathsan S, Usharani D, Perumal MK, Mudliar SN. Comput Biol Med 136 104683 (2021)
  232. Unveiling the molecular mechanism of SARS-CoV-2 main protease inhibition from 137 crystal structures using algebraic topology and deep learning. Nguyen DD, Gao K, Chen J, Wang R, Wei GW. Chem Sci 11 12036-12046 (2020)
  233. Hepatitis C Virus Protease Inhibitors Show Differential Efficacy and Interactions with Remdesivir for Treatment of SARS-CoV-2 In Vitro. Gammeltoft KA, Zhou Y, Duarte Hernandez CR, Galli A, Offersgaard A, Costa R, Pham LV, Fahnøe U, Feng S, Scheel TKH, Ramirez S, Bukh J, Gottwein JM. Antimicrob Agents Chemother 65 e0268020 (2021)
  234. Identification of multipotent drugs for COVID-19 therapeutics with the evaluation of their SARS-CoV2 inhibitory activity. Kumar S, Singh B, Kumari P, Kumar PV, Agnihotri G, Khan S, Kant Beuria T, Syed GH, Dixit A. Comput Struct Biotechnol J 19 1998-2017 (2021)
  235. Predicting Mutational Effects on Receptor Binding of the Spike Protein of SARS-CoV-2 Variants. Bai C, Wang J, Chen G, Zhang H, An K, Xu P, Du Y, Ye RD, Saha A, Zhang A, Warshel A. J Am Chem Soc 143 17646-17654 (2021)
  236. Repurposing existing drugs: identification of SARS-CoV-2 3C-like protease inhibitors. Chiou WC, Hsu MS, Chen YT, Yang JM, Tsay YG, Huang HC, Huang C. J Enzyme Inhib Med Chem 36 147-153 (2021)
  237. Structure-Guided Design of Conformationally Constrained Cyclohexane Inhibitors of Severe Acute Respiratory Syndrome Coronavirus-2 3CL Protease. Dampalla CS, Kim Y, Bickmeier N, Rathnayake AD, Nguyen HN, Zheng J, Kashipathy MM, Baird MA, Battaile KP, Lovell S, Perlman S, Chang KO, Groutas WC. J Med Chem 64 10047-10058 (2021)
  238. The Cellular basis of loss of smell in 2019-nCoV-infected individuals. Gupta K, Mohanty SK, Mohanty SK, Mittal A, Kalra S, Kumar S, Mishra T, Ahuja J, Sengupta D, Ahuja G. Brief Bioinform 22 873-881 (2021)
  239. β-Blockers bearing hydroxyethylamine and hydroxyethylene as potential SARS-CoV-2 Mpro inhibitors: rational based design, in silico, in vitro, and SAR studies for lead optimization. Hamed MIA, Darwish KM, Soltane R, Chrouda A, Mostafa A, Abo Shama NM, Elhady SS, Abulkhair HS, Khodir AE, Elmaaty AA, Al-Karmalawy AA. RSC Adv 11 35536-35558 (2021)
  240. Amantadine Inhibits SARS-CoV-2 In Vitro. Fink K, Nitsche A, Neumann M, Grossegesse M, Eisele KH, Danysz W. Viruses 13 539 (2021)
  241. Anti-COVID-19 terpenoid from marine sources: A docking, admet and molecular dynamics study. Sepay N, Sekar A, Halder UC, Alarifi A, Afzal M. J Mol Struct 1228 129433 (2021)
  242. Bioactive Terpenes and Their Derivatives as Potential SARS-CoV-2 Proteases Inhibitors from Molecular Modeling Studies. Diniz LRL, Perez-Castillo Y, Elshabrawy HA, Filho CDSMB, de Sousa DP. Biomolecules 11 74 (2021)
  243. Comprehensive virtual screening of 4.8 k flavonoids reveals novel insights into allosteric inhibition of SARS-CoV-2 MPRO. Jiménez-Avalos G, Vargas-Ruiz AP, Delgado-Pease NE, Olivos-Ramirez GE, Sheen P, Fernández-Díaz M, Quiliano M, Zimic M, COVID-19 Working Group in Perú. Sci Rep 11 15452 (2021)
  244. Evaluation of SARS-CoV-2 3C-like protease inhibitors using self-assembled monolayer desorption ionization mass spectrometry. Gurard-Levin ZA, Liu C, Jekle A, Jaisinghani R, Ren S, Vandyck K, Jochmans D, Leyssen P, Neyts J, Blatt LM, Beigelman L, Symons JA, Raboisson P, Scholle MD, Deval J. Antiviral Res 182 104924 (2020)
  245. In-silico strategies for probing chloroquine based inhibitors against SARS-CoV-2. Beura S, Chetti P. J Biomol Struct Dyn 39 3747-3759 (2021)
  246. Inhibitor binding influences the protonation states of histidines in SARS-CoV-2 main protease. Pavlova A, Lynch DL, Daidone I, Zanetti-Polzi L, Smith MD, Chipot C, Kneller DW, Kovalevsky A, Coates L, Golosov AA, Dickson CJ, Velez-Vega C, Duca JS, Vermaas JV, Pang YT, Acharya A, Parks JM, Smith JC, Gumbart JC. Chem Sci 12 1513-1527 (2021)
  247. Olive-Derived Triterpenes Suppress SARS COV-2 Main Protease: A Promising Scaffold for Future Therapeutics. Alhadrami HA, Sayed AM, Sharif AM, Azhar EI, Rateb ME. Molecules 26 2654 (2021)
  248. Optimization Rules for SARS-CoV-2 Mpro Antivirals: Ensemble Docking and Exploration of the Coronavirus Protease Active Site. Stoddard SV, Stoddard SD, Oelkers BK, Fitts K, Whalum K, Whalum K, Hemphill AD, Manikonda J, Martinez LM, Riley EG, Roof CM, Sarwar N, Thomas DM, Ulmer E, Wallace FE, Pandey P, Roy S. Viruses 12 E942 (2020)
  249. Pathogenesis of SARS-CoV-2 induced cardiac injury from the perspective of the virus. Knowlton KU. J Mol Cell Cardiol 147 12-17 (2020)
  250. Congress Report of the National Institutes of Health SARS-CoV-2 Antiviral Therapeutics Summit. Hall MD, Anderson JM, Anderson A, Baker D, Bradner J, Brimacombe KR, Campbell EA, Corbett KS, Carter K, Cherry S, Chiang L, Cihlar T, de Wit E, Denison M, Disney M, Fletcher CV, Ford-Scheimer SL, Götte M, Grossman AC, Hayden FG, Hazuda DJ, Lanteri CA, Marston H, Mesecar AD, Moore S, Nwankwo JO, O'Rear J, Painter G, Singh Saikatendu K, Schiffer CA, Sheahan TP, Shi PY, Smyth HD, Sofia MJ, Weetall M, Weller SK, Whitley R, Fauci AS, Austin CP, Collins FS, Conley AJ, Davis MI. J Infect Dis 224 S1-S21 (2021)
  251. Vitamin D and lumisterol novel metabolites can inhibit SARS-CoV-2 replication machinery enzymes. Qayyum S, Mohammad T, Slominski RM, Hassan MI, Tuckey RC, Raman C, Slominski AT. Am J Physiol Endocrinol Metab 321 E246-E251 (2021)
  252. In silico investigation of spice molecules as potent inhibitor of SARS-CoV-2. Rout J, Swain BC, Tripathy U. J Biomol Struct Dyn 40 860-874 (2022)
  253. Antiviral peptides against the main protease of SARS-CoV-2: A molecular docking and dynamics study. Mahmud S, Biswas S, Kumar Paul G, Mita MA, Afrose S, Robiul Hasan M, Sharmin Sultana Shimu M, Uddin MAR, Salah Uddin M, Zaman S, Kaderi Kibria KM, Arif Khan M, Bin Emran T, Abu Saleh M. Arab J Chem 14 103315 (2021)
  254. Biomolecular modeling thrives in the age of technology. Schlick T, Portillo-Ledesma S. Nat Comput Sci 1 321-331 (2021)
  255. Characterization of the non-covalent interaction between the PF-07321332 inhibitor and the SARS-CoV-2 main protease. Macchiagodena M, Pagliai M, Procacci P. J Mol Graph Model 110 108042 (2022)
  256. Exploring active ingredients and function mechanisms of Ephedra-bitter almond for prevention and treatment of Corona virus disease 2019 (COVID-19) based on network pharmacology. Gao K, Song YP, Song A. BioData Min 13 19 (2020)
  257. Exploring the Mechanism of Covalent Inhibition: Simulating the Binding Free Energy of α-Ketoamide Inhibitors of the Main Protease of SARS-CoV-2. Mondal D, Warshel A. Biochemistry 59 4601-4608 (2020)
  258. First structure-activity relationship analysis of SARS-CoV-2 virus main protease (Mpro) inhibitors: an endeavor on COVID-19 drug discovery. Amin SA, Banerjee S, Singh S, Qureshi IA, Gayen S, Jha T. Mol Divers 25 1827-1838 (2021)
  259. In silico analysis of selected alkaloids against main protease (Mpro) of SARS-CoV-2. Garg S, Roy A. Chem Biol Interact 332 109309 (2020)
  260. Molecular Docking and Dynamics Simulation Study of Hyrtios erectus Isolated Scalarane Sesterterpenes as Potential SARS-CoV-2 Dual Target Inhibitors. Elhady SS, Abdelhameed RFA, Malatani RT, Alahdal AM, Bogari HA, Almalki AJ, Mohammad KA, Ahmed SA, Khedr AIM, Darwish KM. Biology (Basel) 10 389 (2021)
  261. Peptidomimetic nitrile warheads as SARS-CoV-2 3CL protease inhibitors. Bai B, Arutyunova E, Khan MB, Lu J, Joyce MA, Saffran HA, Shields JA, Kandadai AS, Belovodskiy A, Hena M, Vuong W, Lamer T, Young HS, Vederas JC, Tyrrell DL, Lemieux MJ, Nieman JA. RSC Med Chem 12 1722-1730 (2021)
  262. Promising phytochemicals of traditional Indian herbal steam inhalation therapy to combat COVID-19 - An in silico study. Gowrishankar S, Muthumanickam S, Kamaladevi A, Karthika C, Jothi R, Boomi P, Maniazhagu D, Pandian SK. Food Chem Toxicol 148 111966 (2021)
  263. Prospective Role of Peptide-Based Antiviral Therapy Against the Main Protease of SARS-CoV-2. Mahmud S, Paul GK, Biswas S, Afrose S, Mita MA, Hasan MR, Shimu MSS, Hossain A, Promi MM, Ema FK, Chidambaram K, Chandrasekaran B, Alqahtani AM, Emran TB, Saleh MA. Front Mol Biosci 8 628585 (2021)
  264. Computational studies reveal mechanism by which quinone derivatives can inhibit SARS-CoV-2. Study of embelin and two therapeutic compounds of interest, methyl prednisolone and dexamethasone. Caruso F, Rossi M, Pedersen JZ, Incerpi S. J Infect Public Health 13 1868-1877 (2020)
  265. Design, synthesis and in vitro evaluation of novel SARS-CoV-2 3CLpro covalent inhibitors. Stille JK, Tjutrins J, Wang G, Venegas FA, Hennecker C, Rueda AM, Sharon I, Blaine N, Miron CE, Pinus S, Labarre A, Plescia J, Burai Patrascu M, Zhang X, Wahba AS, Vlaho D, Huot MJ, Schmeing TM, Mittermaier AK, Moitessier N. Eur J Med Chem 229 114046 (2022)
  266. Direct Observation of Protonation State Modulation in SARS-CoV-2 Main Protease upon Inhibitor Binding with Neutron Crystallography. Kneller DW, Phillips G, Weiss KL, Zhang Q, Coates L, Kovalevsky A. J Med Chem 64 4991-5000 (2021)
  267. Ethacridine inhibits SARS-CoV-2 by inactivating viral particles. Li X, Lidsky PV, Xiao Y, Wu CT, Garcia-Knight M, Yang J, Nakayama T, Nayak JV, Jackson PK, Andino R, Shu X. PLoS Pathog 17 e1009898 (2021)
  268. Identification of alkaloids from Justicia adhatoda as potent SARS CoV-2 main protease inhibitors: An in silico perspective. Ghosh R, Chakraborty A, Biswas A, Chowdhuri S. J Mol Struct 1229 129489 (2021)
  269. Identification of potential inhibitors of SARS-CoV-2 main protease and spike receptor from 10 important spices through structure-based virtual screening and molecular dynamic study. Sen D, Debnath P, Debnath B, Bhaumik S, Debnath S. J Biomol Struct Dyn 40 941-962 (2022)
  270. In Silico Mining of Terpenes from Red-Sea Invertebrates for SARS-CoV-2 Main Protease (Mpro) Inhibitors. Ibrahim MAA, Abdelrahman AHM, Mohamed TA, Atia MAM, Al-Hammady MAM, Abdeljawaad KAA, Elkady EM, Moustafa MF, Alrumaihi F, Allemailem KS, El-Seedi HR, Paré PW, Efferth T, Hegazy MF. Molecules 26 2082 (2021)
  271. Interaction of small molecules with the SARS-CoV-2 main protease in silico and in vitro validation of potential lead compounds using an enzyme-linked immunosorbent assay. Pitsillou E, Liang J, Karagiannis C, Ververis K, Darmawan KK, Ng K, Hung A, Karagiannis TC. Comput Biol Chem 89 107408 (2020)
  272. Mass spectrometry reveals potential of β-lactams as SARS-CoV-2 Mpro inhibitors. Malla TR, Tumber A, John T, Brewitz L, Strain-Damerell C, Owen CD, Lukacik P, Chan HTH, Maheswaran P, Salah E, Duarte F, Yang H, Rao Z, Walsh MA, Schofield CJ. Chem Commun (Camb) 57 1430-1433 (2021)
  273. Molecular interaction analysis of Sulawesi propolis compounds with SARS-CoV-2 main protease as preliminary study for COVID-19 drug discovery. Sahlan M, Irdiani R, Flamandita D, Aditama R, Alfarraj S, Ansari MJ, Khayrani AC, Pratami DK, Lischer K. J King Saud Univ Sci 33 101234 (2021)
  274. Non-covalent SARS-CoV-2 Mpro inhibitors developed from in silico screen hits. Rossetti GG, Ossorio MA, Rempel S, Kratzel A, Dionellis VS, Barriot S, Tropia L, Gorgulla C, Arthanari H, Thiel V, Mohr P, Gamboni R, Halazonetis TD. Sci Rep 12 2505 (2022)
  275. Optimization of Triarylpyridinone Inhibitors of the Main Protease of SARS-CoV-2 to Low-Nanomolar Antiviral Potency. Zhang CH, Spasov KA, Reilly RA, Hollander K, Stone EA, Ippolito JA, Liosi ME, Deshmukh MG, Tirado-Rives J, Zhang S, Liang Z, Miller SJ, Isaacs F, Lindenbach BD, Anderson KS, Jorgensen WL. ACS Med Chem Lett 12 1325-1332 (2021)
  276. Scaffold morphing of arbidol (umifenovir) in search of multi-targeting therapy halting the interaction of SARS-CoV-2 with ACE2 and other proteases involved in COVID-19. Choudhary S, Silakari O. Virus Res 289 198146 (2020)
  277. Structural Basis of the Main Proteases of Coronavirus Bound to Drug Candidate PF-07321332. Li J, Lin C, Zhou X, Zhong F, Zeng P, Yang Y, Zhang Y, Yu B, Fan X, McCormick PJ, Fu R, Fu Y, Jiang H, Zhang J. J Virol 96 e0201321 (2022)
  278. The Inhibitory Effects of Plant Derivate Polyphenols on the Main Protease of SARS Coronavirus 2 and Their Structure-Activity Relationship. Nguyen TTH, Jung JH, Kim MK, Lim S, Choi JM, Chung B, Kim DW, Kim D. Molecules 26 1924 (2021)
  279. Concordance of X-ray and AlphaFold2 Models of SARS-CoV-2 Main Protease with Residual Dipolar Couplings Measured in Solution. Robertson AJ, Courtney JM, Shen Y, Ying J, Bax A. J Am Chem Soc 143 19306-19310 (2021)
  280. Dynamic Profiling of β-Coronavirus 3CL Mpro Protease Ligand-Binding Sites. Cho E, Rosa M, Anjum R, Mehmood S, Soban M, Mujtaba M, Bux K, Moin ST, Tanweer M, Dantu S, Pandini A, Yin J, Ma H, Ramanathan A, Islam B, Mey ASJS, Bhowmik D, Haider S. J Chem Inf Model 61 3058-3073 (2021)
  281. Effectiveness of Natural Antioxidants against SARS-CoV-2? Insights from the In-Silico World. Rehman MFU, Akhter S, Batool AI, Selamoglu Z, Sevindik M, Eman R, Mustaqeem M, Akram MS, Kanwal F, Lu C, Aslam M. Antibiotics (Basel) 10 1011 (2021)
  282. Exploring the new potential antiviral constituents of Moringa oliefera for SARS-COV-2 pathogenesis: An in silico molecular docking and dynamic studies. Muhammad S, Hassan SH, Al-Sehemi AG, Shakir HA, Khan M, Irfan M, Iqbal J. Chem Phys Lett 767 138379 (2021)
  283. Genetic Surveillance of SARS-CoV-2 Mpro Reveals High Sequence and Structural Conservation Prior to the Introduction of Protease Inhibitor Paxlovid. Lee JT, Yang Q, Gribenko A, Perrin BS, Zhu Y, Cardin R, Liberator PA, Anderson AS, Hao L. mBio 13 e0086922 (2022)
  284. Investigating the structure-activity relationship of marine natural polyketides as promising SARS-CoV-2 main protease inhibitors. El-Demerdash A, Al-Karmalawy AA, Abdel-Aziz TM, Elhady SS, Darwish KM, Hassan AHE. RSC Adv 11 31339-31363 (2021)
  285. Molecular docking and dynamics study of natural compound for potential inhibition of main protease of SARS-CoV-2. Mahmud S, Uddin MAR, Zaman M, Sujon KM, Rahman ME, Shehab MN, Islam A, Alom MW, Amin A, Akash AS, Saleh MA. J Biomol Struct Dyn 39 6281-6289 (2021)
  286. Repurposing of Sitagliptin- Melittin Optimized Nanoformula against SARS-CoV-2: Antiviral Screening and Molecular Docking Studies. Al-Rabia MW, Alhakamy NA, Ahmed OAA, Eljaaly K, Alaofi AL, Mostafa A, Asfour HZ, Aldarmahi AA, Darwish KM, Ibrahim TS, Fahmy UA. Pharmaceutics 13 307 (2021)
  287. Structure-Activity Relationships of Benzamides and Isoindolines Designed as SARS-CoV Protease Inhibitors Effective against SARS-CoV-2. Welker A, Kersten C, Müller C, Madhugiri R, Zimmer C, Müller P, Zimmermann R, Hammerschmidt S, Maus H, Ziebuhr J, Sotriffer C, Schirmeister T. ChemMedChem 16 340-354 (2021)
  288. The Repurposed Drugs Suramin and Quinacrine Cooperatively Inhibit SARS-CoV-2 3CLpro In Vitro. Eberle RJ, Olivier DS, Amaral MS, Gering I, Willbold D, Arni RK, Coronado MA. Viruses 13 873 (2021)
  289. The in-vitro effect of famotidine on sars-cov-2 proteases and virus replication. Loffredo M, Lucero H, Chen DY, O'Connell A, Bergqvist S, Munawar A, Bandara A, De Graef S, Weeks SD, Douam F, Saeed M, Munawar AH. Sci Rep 11 5433 (2021)
  290. A microscopic description of SARS-CoV-2 main protease inhibition with Michael acceptors. Strategies for improving inhibitor design. Ramos-Guzmán CA, Ruiz-Pernía JJ, Tuñón I. Chem Sci 12 3489-3496 (2021)
  291. COVID-19: Living through Another Pandemic. Osman EEA, Toogood PL, Neamati N. ACS Infect Dis 6 1548-1552 (2020)
  292. Coronavirus Disease-2019 (COVID-19): An Updated Review. Rudrapal M, Khairnar SJ, Borse LB, Jadhav AG. Drug Res (Stuttg) 70 389-400 (2020)
  293. De novo design of novel protease inhibitor candidates in the treatment of SARS-CoV-2 using deep learning, docking, and molecular dynamic simulations. Arshia AH, Shadravan S, Solhjoo A, Sakhteman A, Sami A. Comput Biol Med 139 104967 (2021)
  294. Discovery and Crystallographic Studies of Trisubstituted Piperazine Derivatives as Non-Covalent SARS-CoV-2 Main Protease Inhibitors with High Target Specificity and Low Toxicity. Gao S, Sylvester K, Song L, Claff T, Jing L, Woodson M, Weiße RH, Cheng Y, Schäkel L, Petry M, Gütschow M, Schiedel AC, Sträter N, Kang D, Xu S, Toth K, Tavis J, Tollefson AE, Müller CE, Liu X, Zhan P. J Med Chem 65 13343-13364 (2022)
  295. Functional map of SARS-CoV-2 3CL protease reveals tolerant and immutable sites. Iketani S, Hong SJ, Sheng J, Bahari F, Culbertson B, Atanaki FF, Aditham AK, Kratz AF, Luck MI, Tian R, Goff SP, Montazeri H, Sabo Y, Ho DD, Chavez A. Cell Host Microbe 30 1354-1362.e6 (2022)
  296. Identification of mutation resistance coldspots for targeting the SARS-CoV2 main protease. Krishnamoorthy N, Fakhro K. IUBMB Life 73 670-675 (2021)
  297. In Silico Evaluation of Iranian Medicinal Plant Phytoconstituents as Inhibitors against Main Protease and the Receptor-Binding Domain of SARS-CoV-2. Mousavi SS, Karami A, Haghighi TM, Tumilaar SG, Fatimawali, Idroes R, Mahmud S, Celik I, Ağagündüz D, Tallei TE, Emran TB, Capasso R. Molecules 26 5724 (2021)
  298. Lopinavir-ritonavir versus hydroxychloroquine for viral clearance and clinical improvement in patients with mild to moderate coronavirus disease 2019. Kim JW, Kim EJ, Kwon HH, Jung CY, Kim KC, Choe JY, Hong HL. Korean J Intern Med 36 S253-S263 (2021)
  299. Modeling SARS-CoV-2 spike/ACE2 protein-protein interactions for predicting the binding affinity of new spike variants for ACE2, and novel ACE2 structurally related human protein targets, for COVID-19 handling in the 3PM context. Tragni V, Preziusi F, Laera L, Onofrio A, Mercurio I, Todisco S, Volpicella M, De Grassi A, Pierri CL. EPMA J 13 149-175 (2022)
  300. Multiscale Simulations of SARS-CoV-2 3CL Protease Inhibition with Aldehyde Derivatives. Role of Protein and Inhibitor Conformational Changes in the Reaction Mechanism. Ramos-Guzmán CA, Ruiz-Pernía JJ, Tuñón I. ACS Catal 11 4157-4168 (2021)
  301. Repurposing of FDA-approved drugs against active site and potential allosteric drug-binding sites of COVID-19 main protease. Yuce M, Cicek E, Inan T, Dag AB, Kurkcuoglu O, Sungur FA. Proteins 89 1425-1441 (2021)
  302. Structural, Electronic, and Electrostatic Determinants for Inhibitor Binding to Subsites S1 and S2 in SARS-CoV-2 Main Protease. Kneller DW, Li H, Galanie S, Phillips G, Labbé A, Weiss KL, Zhang Q, Arnould MA, Clyde A, Ma H, Ramanathan A, Jonsson CB, Head MS, Coates L, Louis JM, Bonnesen PV, Kovalevsky A. J Med Chem 64 17366-17383 (2021)
  303. The FDA-Approved Drug Cobicistat Synergizes with Remdesivir To Inhibit SARS-CoV-2 Replication In Vitro and Decreases Viral Titers and Disease Progression in Syrian Hamsters. Shytaj IL, Fares M, Gallucci L, Lucic B, Tolba MM, Zimmermann L, Adler JM, Xing N, Bushe J, Gruber AD, Ambiel I, Taha Ayoub A, Cortese M, Neufeldt CJ, Stolp B, Sobhy MH, Fathy M, Zhao M, Laketa V, Diaz RS, Sutton RE, Chlanda P, Boulant S, Bartenschlager R, Stanifer ML, Fackler OT, Trimpert J, Savarino A, Lusic M. mBio 13 e0370521 (2022)
  304. Thermodynamic equilibrium dose-response models for MERS-CoV infection reveal a potential protective role of human lung mucus but not for SARS-CoV-2. Gale P. Microb Risk Anal 16 100140 (2020)
  305. An in silico approach for identification of novel inhibitors as potential therapeutics targeting COVID-19 main protease. Havranek B, Islam SM. J Biomol Struct Dyn 39 4304-4315 (2021)
  306. Computational Determination of Potential Multiprotein Targeting Natural Compounds for Rational Drug Design Against SARS-COV-2. Muhseen ZT, Hameed AR, Al-Hasani HMH, Ahmad S, Li G. Molecules 26 674 (2021)
  307. Drugs Repurposing Using QSAR, Docking and Molecular Dynamics for Possible Inhibitors of the SARS-CoV-2 Mpro Protease. Tejera E, Munteanu CR, López-Cortés A, Cabrera-Andrade A, Pérez-Castillo Y. Molecules 25 E5172 (2020)
  308. Ensemble Docking Coupled to Linear Interaction Energy Calculations for Identification of Coronavirus Main Protease (3CLpro) Non-Covalent Small-Molecule Inhibitors. Jukič M, Janežič D, Bren U. Molecules 25 E5808 (2020)
  309. Evaluation of SARS-CoV-2 Main Protease Inhibitors Using a Novel Cell-Based Assay. Cao W, Cho CD, Geng ZZ, Shaabani N, Ma XR, Vatansever EC, Alugubelli YR, Ma Y, Chaki SP, Ellenburg WH, Yang KS, Qiao Y, Allen R, Neuman BW, Ji H, Xu S, Liu WR. ACS Cent Sci 8 192-204 (2022)
  310. Interaction of 8-anilinonaphthalene-1-sulfonate with SARS-CoV-2 main protease and its application as a fluorescent probe for inhibitor identification. Deetanya P, Hengphasatporn K, Wilasluck P, Shigeta Y, Rungrotmongkol T, Wangkanont K. Comput Struct Biotechnol J 19 3364-3371 (2021)
  311. Investigation of beta-lactoglobulin derived bioactive peptides against SARS-CoV-2 (COVID-19): In silico analysis. Çakır B, Okuyan B, Şener G, Tunali-Akbay T. Eur J Pharmacol 891 173781 (2021)
  312. Kinetic Characterization and Inhibitor Screening for the Proteases Leading to Identification of Drugs against SARS-CoV-2. Kuo CJ, Chao TL, Kao HC, Tsai YM, Liu YK, Wang LH, Hsieh MC, Chang SY, Liang PH. Antimicrob Agents Chemother 65 e02577-20 (2021)
  313. Michaelis-like complex of SARS-CoV-2 main protease visualized by room-temperature X-ray crystallography. Kneller DW, Zhang Q, Coates L, Louis JM, Kovalevsky A. IUCrJ 8 973-979 (2021)
  314. Site mapping and small molecule blind docking reveal a possible target site on the SARS-CoV-2 main protease dimer interface. Liang J, Karagiannis C, Pitsillou E, Darmawan KK, Ng K, Hung A, Karagiannis TC. Comput Biol Chem 89 107372 (2020)
  315. Targeting the 3CLpro and RdRp of SARS-CoV-2 with phytochemicals from medicinal plants of the Andean Region: molecular docking and molecular dynamics simulations. Mosquera-Yuqui F, Lopez-Guerra N, Moncayo-Palacio EA. J Biomol Struct Dyn 40 2010-2023 (2022)
  316. The SARS-unique domain (SUD) of SARS-CoV and SARS-CoV-2 interacts with human Paip1 to enhance viral RNA translation. Lei J, Ma-Lauer Y, Han Y, Thoms M, Buschauer R, Jores J, Thiel V, Beckmann R, Deng W, Leonhardt H, Hilgenfeld R, von Brunn A. EMBO J 40 e102277 (2021)
  317. In silico Analysis Revealed Potential Anti-SARS-CoV-2 Main Protease Activity by the Zonulin Inhibitor Larazotide Acetate. Di Micco S, Musella S, Scala MC, Sala M, Campiglia P, Bifulco G, Fasano A. Front Chem 8 628609 (2020)
  318. A network pharmacology based approach for predicting active ingredients and potential mechanism of Lianhuaqingwen capsule in treating COVID-19. Zhang X, Gao R, Zhou Z, Tang X, Lin J, Wang L, Zhou X, Shen T. Int J Med Sci 18 1866-1876 (2021)
  319. CORDITE: The Curated CORona Drug InTERactions Database for SARS-CoV-2. Martin R, Löchel HF, Welzel M, Hattab G, Hauschild AC, Heider D. iScience 23 101297 (2020)
  320. Cheminformatics-Based Identification of Potential Novel Anti-SARS-CoV-2 Natural Compounds of African Origin. Kwofie SK, Broni E, Asiedu SO, Kwarko GB, Dankwa B, Enninful KS, Tiburu EK, Wilson MD. Molecules 26 E406 (2021)
  321. Crippling life support for SARS-CoV-2 and other viruses through synthetic lethality. Mast FD, Navare AT, van der Sloot AM, Coulombe-Huntington J, Rout MP, Baliga NS, Kaushansky A, Chait BT, Aderem A, Rice CM, Sali A, Tyers M, Aitchison JD. J Cell Biol 219 e202006159 (2020)
  322. Design and Evaluation of Bispidine-Based SARS-CoV-2 Main Protease Inhibitors. Shcherbakov D, Baev D, Kalinin M, Dalinger A, Chirkova V, Belenkaya S, Khvostov A, Krut'ko D, Medved'ko A, Volosnikova E, Sharlaeva E, Shanshin D, Tolstikova T, Yarovaya O, Maksyutov R, Salakhutdinov N, Vatsadze S. ACS Med Chem Lett 13 140-147 (2022)
  323. Detecting SARS-CoV-2 3CLpro expression and activity using a polyclonal antiserum and a luciferase-based biosensor. O'Brien A, Chen DY, Hackbart M, Close BJ, O'Brien TE, Saeed M, Baker SC. Virology 556 73-78 (2021)
  324. Drug Repurposing to Identify Nilotinib as a Potential SARS-CoV-2 Main Protease Inhibitor: Insights from a Computational and In Vitro Study. Banerjee S, Yadav S, Banerjee S, Fakayode SO, Parvathareddy J, Reichard W, Surendranathan S, Mahmud F, Whatcott R, Thammathong J, Meibohm B, Miller DD, Jonsson CB, Dubey KD. J Chem Inf Model 61 5469-5483 (2021)
  325. Evolving geographic diversity in SARS-CoV2 and in silico analysis of replicating enzyme 3CLpro targeting repurposed drug candidates. Chitranshi N, Gupta VK, Rajput R, Godinez A, Pushpitha K, Shen T, Mirzaei M, You Y, Basavarajappa D, Gupta V, Graham SL. J Transl Med 18 278 (2020)
  326. Flavonoids in Ampelopsis grossedentata as covalent inhibitors of SARS-CoV-2 3CLpro: Inhibition potentials, covalent binding sites and inhibitory mechanisms. Xiong Y, Zhu GH, Zhang YN, Hu Q, Wang HN, Yu HN, Qin XY, Guan XQ, Xiang YW, Tang H, Ge GB. Int J Biol Macromol 187 976-987 (2021)
  327. High-Throughput Screening for Inhibitors of the SARS-CoV-2 Protease Using a FRET-Biosensor. Brown AS, Ackerley DF, Calcott MJ. Molecules 25 E4666 (2020)
  328. High-resolution mining of the SARS-CoV-2 main protease conformational space: supercomputer-driven unsupervised adaptive sampling. Jaffrelot Inizan T, Célerse F, Adjoua O, El Ahdab D, Jolly LH, Liu C, Ren P, Montes M, Lagarde N, Lagardère L, Monmarché P, Piquemal JP. Chem Sci 12 4889-4907 (2021)
  329. Identification of Host Cellular Protein Substrates of SARS-COV-2 Main Protease. Miczi M, Golda M, Kunkli B, Nagy T, Tőzsér J, Mótyán JA. Int J Mol Sci 21 E9523 (2020)
  330. Identification of natural compounds as potent inhibitors of SARS-CoV-2 main protease using combined docking and molecular dynamics simulations. Jairajpuri DS, Hussain A, Nasreen K, Mohammad T, Anjum F, Tabish Rehman M, Mustafa Hasan G, Alajmi MF, Imtaiyaz Hassan M. Saudi J Biol Sci 28 2423-2431 (2021)
  331. Identification of natural inhibitors against prime targets of SARS-CoV-2 using molecular docking, molecular dynamics simulation and MM-PBSA approaches. Sharma A, Vora J, Patel D, Sinha S, Jha PC, Shrivastava N. J Biomol Struct Dyn 40 3296-3311 (2022)
  332. In Silico and In Vitro Identification of Pan-Coronaviral Main Protease Inhibitors from a Large Natural Product Library. Shahhamzehei N, Abdelfatah S, Efferth T. Pharmaceuticals (Basel) 15 308 (2022)
  333. Phytochemicals from Leucas zeylanica Targeting Main Protease of SARS-CoV-2: Chemical Profiles, Molecular Docking, and Molecular Dynamics Simulations. Dutta M, Tareq AM, Rakib A, Mahmud S, Sami SA, Mallick J, Islam MN, Majumder M, Uddin MZ, Alsubaie A, Almalki ASA, Khandaker MU, Bradley DA, Rana MS, Emran TB. Biology (Basel) 10 789 (2021)
  334. Ritonavir may inhibit exoribonuclease activity of nsp14 from the SARS-CoV-2 virus and potentiate the activity of chain terminating drugs. Narayanan N, Nair DT. Int J Biol Macromol 168 272-278 (2021)
  335. The natural way forward: Molecular dynamics simulation analysis of phytochemicals from Indian medicinal plants as potential inhibitors of SARS-CoV-2 targets. Parida PK, Paul D, Chakravorty D. Phytother Res 34 3420-3433 (2020)
  336. Therapeutic Potential of EGCG, a Green Tea Polyphenol, for Treatment of Coronavirus Diseases. Park J, Park R, Jang M, Park YI. Life (Basel) 11 197 (2021)
  337. Tomatidine and Patchouli Alcohol as Inhibitors of SARS-CoV-2 Enzymes (3CLpro, PLpro and NSP15) by Molecular Docking and Molecular Dynamics Simulations. Zrieq R, Ahmad I, Snoussi M, Noumi E, Noumi E, Iriti M, Algahtani FD, Patel H, Saeed M, Tasleem M, Sulaiman S, Aouadi K, Kadri A. Int J Mol Sci 22 10693 (2021)
  338. A Potential Peptide From Soy Cheese Produced Using Lactobacillus delbrueckii WS4 for Effective Inhibition of SARS-CoV-2 Main Protease and S1 Glycoprotein. Chourasia R, Padhi S, Chiring Phukon L, Abedin MM, Singh SP, Rai AK. Front Mol Biosci 7 601753 (2020)
  339. A computational drug repurposing approach in identifying the cephalosporin antibiotic and anti-hepatitis C drug derivatives for COVID-19 treatment. Kumar R, Kumar V, Lee KW. Comput Biol Med 130 104186 (2021)
  340. Activatable Carbocyanine Dimers for Photoacoustic and Fluorescent Detection of Protease Activity. Moore C, Borum RM, Mantri Y, Xu M, Fajtová P, O'Donoghue AJ, Jokerst JV. ACS Sens 6 2356-2365 (2021)
  341. Benchmarking the ability of novel compounds to inhibit SARS-CoV-2 main protease using steered molecular dynamics simulations. Singh R, Bhardwaj VK, Das P, Bhattacherjee D, Zyryanov GV, Purohit R. Comput Biol Med 146 105572 (2022)
  342. Colorimetric and Electrochemical Methods for the Detection of SARS-CoV-2 Main Protease by Peptide-Triggered Assembly of Gold Nanoparticles. Feng Y, Liu G, La M, Liu L. Molecules 27 615 (2022)
  343. DNA-encoded chemistry technology yields expedient access to SARS-CoV-2 Mpro inhibitors. Chamakuri S, Lu S, Ucisik MN, Bohren KM, Chen YC, Du HC, Faver JC, Jimmidi R, Li F, Li JY, Nyshadham P, Palmer SS, Pollet J, Qin X, Ronca SE, Sankaran B, Sharma KL, Tan Z, Versteeg L, Yu Z, Matzuk MM, Palzkill T, Young DW. Proc Natl Acad Sci U S A 118 e2111172118 (2021)
  344. Design and optimization of a subunit vaccine targeting COVID-19 molecular shreds using an immunoinformatics framework. Kumar N, Kumar N, Sood D, Chandra R. RSC Adv 10 35856-35872 (2020)
  345. Dual inhibition of SARS-CoV-2 spike and main protease through a repurposed drug, rutin. Kumari A, Rajput VS, Nagpal P, Kukrety H, Grover S, Grover A. J Biomol Struct Dyn 40 4987-4999 (2022)
  346. Interactive Molecular Dynamics in Virtual Reality Is an Effective Tool for Flexible Substrate and Inhibitor Docking to the SARS-CoV-2 Main Protease. Deeks HM, Walters RK, Barnoud J, Glowacki DR, Mulholland AJ. J Chem Inf Model 60 5803-5814 (2020)
  347. Microsecond MD Simulation and Multiple-Conformation Virtual Screening to Identify Potential Anti-COVID-19 Inhibitors Against SARS-CoV-2 Main Protease. Selvaraj C, Panwar U, Dinesh DC, Boura E, Singh P, Dubey VK, Singh SK. Front Chem 8 595273 (2020)
  348. New Anti SARS-Cov-2 Targets for Quinoline Derivatives Chloroquine and Hydroxychloroquine. Gentile D, Fuochi V, Rescifina A, Furneri PM. Int J Mol Sci 21 E5856 (2020)
  349. Plant-derived chemicals as potential inhibitors of SARS-CoV-2 main protease (6LU7), a virtual screening study. Sisakht M, Mahmoodzadeh A, Darabian M. Phytother Res 35 3262-3274 (2021)
  350. Repurposing potential of Ayurvedic medicinal plants derived active principles against SARS-CoV-2 associated target proteins revealed by molecular docking, molecular dynamics and MM-PBSA studies. Kumar Verma A, Kumar V, Singh S, Goswami BC, Camps I, Sekar A, Yoon S, Lee KW. Biomed Pharmacother 137 111356 (2021)
  351. SARS-CoV-2 Mpro inhibitors: identification of anti-SARS-CoV-2 Mpro compounds from FDA approved drugs. Bharadwaj S, Azhar EI, Kamal MA, Bajrai LH, Dubey A, Jha K, Yadava U, Kang SG, Dwivedi VD. J Biomol Struct Dyn 40 2769-2784 (2022)
  352. Screening and druggability analysis of some plant metabolites against SARS-CoV-2: An integrative computational approach. Azim KF, Ahmed SR, Banik A, Khan MMR, Deb A, Somana SR. Inform Med Unlocked 20 100367 (2020)
  353. Targeting SARS-CoV-2 main protease: structure based virtual screening, in silico ADMET studies and molecular dynamics simulation for identification of potential inhibitors. Uniyal A, Mahapatra MK, Tiwari V, Tiwari V, Sandhir R, Kumar R. J Biomol Struct Dyn 40 3609-3625 (2022)
  354. X-ray crystallographic characterization of the SARS-CoV-2 main protease polyprotein cleavage sites essential for viral processing and maturation. Lee J, Kenward C, Worrall LJ, Vuckovic M, Gentile F, Ton AT, Ng M, Cherkasov A, Strynadka NCJ, Paetzel M. Nat Commun 13 5196 (2022)
  355. ABBV-744 as a potential inhibitor of SARS-CoV-2 main protease enzyme against COVID-19. Fakhar Z, Khan S, AlOmar SY, Alkhuriji A, Ahmad A. Sci Rep 11 234 (2021)
  356. Biflavonoids from Rhus succedanea as probable natural inhibitors against SARS-CoV-2: a molecular docking and molecular dynamics approach. Lokhande K, Nawani N, K Venkateswara S, Pawar S. J Biomol Struct Dyn 40 4376-4388 (2022)
  357. COVID-19: molecular targets, drug repurposing and new avenues for drug discovery. Senger MR, Evangelista TCS, Dantas RF, Santana MVDS, Gonçalves LCS, de Souza Neto LR, Ferreira SB, Silva-Junior FP. Mem Inst Oswaldo Cruz 115 e200254 (2020)
  358. Computational Prediction of Potential Inhibitors of the Main Protease of SARS-CoV-2. Abel R, Paredes Ramos M, Chen Q, Pérez-Sánchez H, Coluzzi F, Rocco M, Marchetti P, Mura C, Simmaco M, Bourne PE, Preissner R, Banerjee P. Front Chem 8 590263 (2020)
  359. Computational discovery of small drug-like compounds as potential inhibitors of SARS-CoV-2 main protease. Andrianov AM, Kornoushenko YV, Karpenko AD, Bosko IP, Tuzikov AV. J Biomol Struct Dyn 39 5779-5791 (2021)
  360. Computational study on peptidomimetic inhibitors against SARS-CoV-2 main protease. Somboon T, Mahalapbutr P, Sanachai K, Maitarad P, Lee VS, Hannongbua S, Rungrotmongkol T. J Mol Liq 322 114999 (2021)
  361. Computer aided identification of potential SARS CoV-2 main protease inhibitors from diterpenoids and biflavonoids of Torreya nucifera leaves. Ghosh R, Chakraborty A, Biswas A, Chowdhuri S. J Biomol Struct Dyn 40 2647-2662 (2022)
  362. Coronaviruses Nsp5 Antagonizes Porcine Gasdermin D-Mediated Pyroptosis by Cleaving Pore-Forming p30 Fragment. Shi F, Lv Q, Wang T, Xu J, Xu W, Shi Y, Fu X, Yang T, Yang Y, Zhuang L, Fang W, Gu J, Li X. mBio 13 e0273921 (2022)
  363. Discovery of novel inhibitors against main protease (Mpro) of SARS-CoV-2 via virtual screening and biochemical evaluation. Guo S, Xie H, Lei Y, Liu B, Zhang L, Xu Y, Zuo Z. Bioorg Chem 110 104767 (2021)
  364. Exploring nature's bounty: identification of Withania somnifera as a promising source of therapeutic agents against COVID-19 by virtual screening and in silico evaluation. Srivastava A, Siddiqui S, Ahmad R, Mehrotra S, Ahmad B, Srivastava AN. J Biomol Struct Dyn 40 1858-1908 (2022)
  365. Highly Neutralizing COVID-19 Convalescent Plasmas Potently Block SARS-CoV-2 Replication and Pneumonia in Syrian Hamsters. Takamatsu Y, Imai M, Maeda K, Nakajima N, Higashi-Kuwata N, Iwatsuki-Horimoto K, Ito M, Kiso M, Maemura T, Takeda Y, Omata K, Suzuki T, Kawaoka Y, Mitsuya H. J Virol 96 e0155121 (2022)
  366. Identification and evaluation of the inhibitory effect of Prunella vulgaris extract on SARS-coronavirus 2 virus entry. Ao Z, Chan M, Ouyang MJ, Olukitibi TA, Mahmoudi M, Kobasa D, Yao X. PLoS One 16 e0251649 (2021)
  367. Inhibition Potencies of Phytochemicals Derived from Sesame Against SARS-CoV-2 Main Protease: A Molecular Docking and Simulation Study. Kumar A, Mishra DC, Angadi UB, Yadav R, Rai A, Kumar D. Front Chem 9 744376 (2021)
  368. Molecular Docking and Molecular Dynamics Aided Virtual Search of OliveNet™ Directory for Secoiridoids to Combat SARS-CoV-2 Infection and Associated Hyperinflammatory Responses. Thangavel N, Al Bratty M, Al Hazmi HA, Najmi A, Ali Alaqi RO. Front Mol Biosci 7 627767 (2020)
  369. Molecular docking, binding mode analysis, molecular dynamics, and prediction of ADMET/toxicity properties of selective potential antiviral agents against SARS-CoV-2 main protease: an effort toward drug repurposing to combat COVID-19. Rai H, Barik A, Singh YP, Suresh A, Singh L, Singh G, Nayak UY, Dubey VK, Modi G. Mol Divers 25 1905-1927 (2021)
  370. N-Terminal Finger Stabilizes the S1 Pocket for the Reversible Feline Drug GC376 in the SARS-CoV-2 Mpro Dimer. Arutyunova E, Khan MB, Fischer C, Lu J, Lamer T, Vuong W, van Belkum MJ, McKay RT, Tyrrell DL, Vederas JC, Young HS, Lemieux MJ. J Mol Biol 433 167003 (2021)
  371. Novel inhibitors of the main protease enzyme of SARS-CoV-2 identified via molecular dynamics simulation-guided in vitro assay. Loschwitz J, Jäckering A, Keutmann M, Olagunju M, Eberle RJ, Coronado MA, Olubiyi OO, Strodel B. Bioorg Chem 111 104862 (2021)
  372. Quinazoline-Schiff base conjugates: in silico study and ADMET predictions as multi-target inhibitors of coronavirus (SARS-CoV-2) proteins. Mansour MA, AboulMagd AM, Abdel-Rahman HM. RSC Adv 10 34033-34045 (2020)
  373. Rapid prediction of possible inhibitors for SARS-CoV-2 main protease using docking and FPL simulations. Pham MQ, Pham MQ, Vu KB, Han Pham TN, Thuy Huong LT, Tran LH, Tung NT, Vu VV, Nguyen TH, Ngo ST. RSC Adv 10 31991-31996 (2020)
  374. Role of RNA Guanine Quadruplexes in Favoring the Dimerization of SARS Unique Domain in Coronaviruses. Hognon C, Miclot T, Garcı A-Iriepa C, Francés-Monerris A, Grandemange S, Terenzi A, Marazzi M, Barone G, Monari A. J Phys Chem Lett 11 5661-5667 (2020)
  375. Room-temperature neutron and X-ray data collection of 3CL Mpro from SARS-CoV-2. Kneller DW, Phillips G, Kovalevsky A, Coates L. Acta Crystallogr F Struct Biol Commun 76 483-487 (2020)
  376. Letter Structural basis for the inhibition of the SARS-CoV-2 main protease by the anti-HCV drug narlaprevir. Bai Y, Ye F, Feng Y, Liao H, Song H, Qi J, Gao GF, Tan W, Fu L, Shi Y. Signal Transduct Target Ther 6 51 (2021)
  377. Structure-Based Virtual Screening and Biochemical Validation to Discover a Potential Inhibitor of the SARS-CoV-2 Main Protease. Gupta A, Rani C, Pant P, Vijayan V, Vikram N, Kaur P, Singh TP, Sharma S, Sharma P. ACS Omega 5 33151-33161 (2020)
  378. Targeted design of drug binding sites in the main protease of SARS-CoV-2 reveals potential signatures of adaptation. Padhi AK, Tripathi T. Biochem Biophys Res Commun 555 147-153 (2021)
  379. The effect of COVID-19 pandemic on domestic tourism: A DEMATEL method analysis on quarantine decisions. Altuntas F, Gok MS. Int J Hosp Manag 92 102719 (2021)
  380. Treatment of COVID-19 patients with quercetin: a prospective, single center, randomized, controlled trial. Önal H, Arslan B, Üçüncü Ergun N, Topuz Ş, Yilmaz Semerci S, Kurnaz ME, Molu YM, Bozkurt MA, Süner N, Kocataş A. Turk J Biol 45 518-529 (2021)
  381. Using thermodynamic equilibrium models to predict the effect of antiviral agents on infectivity: Theoretical application to SARS-CoV-2 and other viruses. Gale P. Microb Risk Anal 21 100198 (2022)
  382. Challenges of short substrate analogues as SARS-CoV-2 main protease inhibitors. Ullrich S, Sasi VM, Mahawaththa MC, Ekanayake KB, Morewood R, George J, Shuttleworth L, Zhang X, Whitefield C, Otting G, Jackson C, Nitsche C. Bioorg Med Chem Lett 50 128333 (2021)
  383. Computational insight of dexamethasone against potential targets of SARS-CoV-2. Fadaka AO, Sibuyi NRS, Madiehe AM, Meyer M. J Biomol Struct Dyn 40 875-885 (2022)
  384. Determination of potential inhibitors based on isatin derivatives against SARS-CoV-2 main protease (mpro): a molecular docking, molecular dynamics and structure-activity relationship studies. Badavath VN, Kumar A, Samanta PK, Maji S, Das A, Blum G, Jha A, Sen A. J Biomol Struct Dyn 40 3110-3128 (2022)
  385. Exploring the role of triazole functionalized heteroatom co-doped carbon quantum dots against human coronaviruses. Garg P, Sangam S, Kochhar D, Pahari S, Kar C, Mukherjee M. Nano Today 35 101001 (2020)
  386. Identification of potential drug candidates to combat COVID-19: a structural study using the main protease (mpro) of SARS-CoV-2. Sharma P, Vijayan V, Pant P, Sharma M, Vikram N, Kaur P, Singh TP, Sharma S. J Biomol Struct Dyn 39 6649-6659 (2021)
  387. Investigating Potential Inhibitory Effect of Uncaria tomentosa (Cat's Claw) against the Main Protease 3CLpro of SARS-CoV-2 by Molecular Modeling. Yepes-Pérez AF, Herrera-Calderon O, Sánchez-Aparicio JE, Tiessler-Sala L, Maréchal JD, Cardona-G W. Evid Based Complement Alternat Med 2020 4932572 (2020)
  388. Knowledge-based structural models of SARS-CoV-2 proteins and their complexes with potential drugs. Hijikata A, Shionyu-Mitsuyama C, Nakae S, Shionyu M, Ota M, Kanaya S, Shirai T. FEBS Lett 594 1960-1973 (2020)
  389. Molecular dynamics and in silico mutagenesis on the reversible inhibitor-bound SARS-CoV-2 main protease complexes reveal the role of lateral pocket in enhancing the ligand affinity. Weng YL, Naik SR, Dingelstad N, Lugo MR, Kalyaanamoorthy S, Ganesan A. Sci Rep 11 7429 (2021)
  390. Pharmacophore modelling of vanillin derivatives, favipiravir, chloroquine, hydroxychloroquine, monolaurin and tetrodotoxin as MPro inhibitors of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Law WY, Asaruddin MR, Bhawani SA, Mohamad S. BMC Res Notes 13 527 (2020)
  391. Several coumarin derivatives and their Pd(ii) complexes as potential inhibitors of the main protease of SARS-CoV-2, an in silico approach. Milenković DA, Dimić DS, Avdović EH, Marković ZS, Marković ZS. RSC Adv 10 35099-35108 (2020)
  392. Structure-based identification of potential SARS-CoV-2 main protease inhibitors. Khan S, Fakhar Z, Hussain A, Ahmad A, Jairajpuri DS, Alajmi MF, Hassan MI. J Biomol Struct Dyn 40 3595-3608 (2022)
  393. Synthetic flavonoids as potential antiviral agents against SARS-CoV-2 main protease. Batool F, Mughal EU, Mughal EU, Zia K, Sadiq A, Naeem N, Javid A, Ul-Haq Z, Saeed M. J Biomol Struct Dyn 40 3777-3788 (2022)
  394. The Effect of Allicin on the Proteome of SARS-CoV-2 Infected Calu-3 Cells. Mösbauer K, Fritsch VN, Adrian L, Bernhardt J, Gruhlke MCH, Slusarenko AJ, Niemeyer D, Antelmann H. Front Microbiol 12 746795 (2021)
  395. Widespread occurrence of covalent lysine-cysteine redox switches in proteins. Rabe von Pappenheim F, Wensien M, Ye J, Uranga J, Irisarri I, de Vries J, Funk LM, Mata RA, Tittmann K. Nat Chem Biol 18 368-375 (2022)
  396. 2-Pyridone natural products as inhibitors of SARS-CoV-2 main protease. Forrestall KL, Burley DE, Cash MK, Pottie IR, Darvesh S. Chem Biol Interact 335 109348 (2021)
  397. A Nanomechanical Study on Deciphering the Stickiness of SARS-CoV-2 on Inanimate Surfaces. Xie L, Liu F, Liu J, Zeng H. ACS Appl Mater Interfaces 12 58360-58368 (2020)
  398. All-Trans Retinoic Acid Exhibits Antiviral Effect against SARS-CoV-2 by Inhibiting 3CLpro Activity. Morita T, Miyakawa K, Jeremiah SS, Yamaoka Y, Sada M, Kuniyoshi T, Yang J, Kimura H, Ryo A. Viruses 13 1669 (2021)
  399. Aminoglycosides as potential inhibitors of SARS-CoV-2 main protease: an in silico drug repurposing study on FDA-approved antiviral and anti-infection agents. Ahmed MZ, Zia Q, Haque A, Alqahtani AS, Almarfadi OM, Banawas S, Alqahtani MS, Ameta KL, Haque S. J Infect Public Health 14 611-619 (2021)
  400. An in-silico evaluation of dietary components for structural inhibition of SARS-Cov-2 main protease. Pandey AK, Verma S. J Biomol Struct Dyn 40 136-142 (2022)
  401. Antiviral Effects of Artemisinin and Its Derivatives against SARS-CoV-2 Main Protease: Computational Evidences and Interactions with ACE2 Allelic Variants. Badraoui R, Saoudi M, Hamadou WS, Elkahoui S, Siddiqui AJ, Alam JM, Jamal A, Adnan M, Suliemen AME, Alreshidi MM, Yadav DK, Naïli H, Ben-Nasr H. Pharmaceuticals (Basel) 15 129 (2022)
  402. Binding of inhibitors to the monomeric and dimeric SARS-CoV-2 Mpro. Tam NM, Nam PC, Quang DT, Tung NT, Vu VV, Ngo ST. RSC Adv 11 2926-2934 (2021)
  403. Colloidal Aggregators in Biochemical SARS-CoV-2 Repurposing Screens. O'Donnell HR, Tummino TA, Bardine C, Craik CS, Shoichet BK. J Med Chem 64 17530-17539 (2021)
  404. Computational Simulations Identified Marine-Derived Natural Bioactive Compounds as Replication Inhibitors of SARS-CoV-2. Kumar V, Parate S, Yoon S, Lee G, Lee KW. Front Microbiol 12 647295 (2021)
  405. Computationally driven discovery of SARS-CoV-2 Mpro inhibitors: from design to experimental validation. El Khoury L, Jing Z, Cuzzolin A, Deplano A, Loco D, Sattarov B, Hédin F, Wendeborn S, Ho C, El Ahdab D, Jaffrelot Inizan T, Sturlese M, Sosic A, Volpiana M, Lugato A, Barone M, Gatto B, Macchia ML, Bellanda M, Battistutta R, Salata C, Kondratov I, Iminov R, Khairulin A, Mykhalonok Y, Pochepko A, Chashka-Ratushnyi V, Kos I, Moro S, Montes M, Ren P, Ponder JW, Lagardère L, Piquemal JP, Sabbadin D. Chem Sci 13 3674-3687 (2022)
  406. Constituents of buriti oil (Mauritia flexuosa L.) like inhibitors of the SARS-Coronavirus main peptidase: an investigation by docking and molecular dynamics. Costa AN, de Sá ÉRA, Bezerra RDS, Souza JL, Lima FDCA. J Biomol Struct Dyn 39 4610-4617 (2021)
  407. Development of a simple and miniaturized sandwich-like fluorescence polarization assay for rapid screening of SARS-CoV-2 main protease inhibitors. Yan G, Li D, Lin Y, Fu Z, Qi H, Liu X, Zhang J, Si S, Chen Y. Cell Biosci 11 199 (2021)
  408. Discovery of juglone and its derivatives as potent SARS-CoV-2 main proteinase inhibitors. Cui J, Jia J. Eur J Med Chem 225 113789 (2021)
  409. Dynamic landscape mapping of humoral immunity to SARS-CoV-2 identifies non-structural protein antibodies associated with the survival of critical COVID-19 patients. Cheng L, Zhang X, Chen Y, Wang D, Zhang D, Yan S, Wang H, Xiao M, Liang T, Li H, Xu M, Hou X, Dai J, Wu X, Li M, Lu M, Wu D, Tian R, Zhao J, Zhang Y, Cao W, Wang J, Yan X, Zhou X, Liu Z, Xu Y, He F, Li Y, Yu X, Zhang S. Signal Transduct Target Ther 6 304 (2021)
  410. Evaluation of potency of the selected bioactive molecules from Indian medicinal plants with MPro of SARS-CoV-2 through in silico analysis. Halder P, Pal U, Paladhi P, Dutta S, Paul P, Pal S, Das D, Ganguly A, Dutta I, Mandal S, Ray A, Ghosh S. J Ayurveda Integr Med 13 100449 (2022)
  411. Hit Expansion of a Noncovalent SARS-CoV-2 Main Protease Inhibitor. Glaser J, Sedova A, Galanie S, Kneller DW, Davidson RB, Maradzike E, Del Galdo S, Labbé A, Hsu DJ, Agarwal R, Bykov D, Tharrington A, Parks JM, Smith DMA, Daidone I, Coates L, Kovalevsky A, Smith JC. ACS Pharmacol Transl Sci 5 255-265 (2022)
  412. Molecular docking and ADMET studies of Allium cepa, Azadirachta indica and Xylopia aethiopica isolates as potential anti-viral drugs for Covid-19. Adegbola PI, Semire B, Fadahunsi OS, Adegoke AE. Virusdisease 32 85-97 (2021)
  413. Molecular mechanism of anti-SARS-CoV2 activity of Ashwagandha-derived withanolides. Dhanjal JK, Kumar V, Garg S, Subramani C, Agarwal S, Wang J, Zhang H, Kaul A, Kalra RS, Kaul SC, Vrati S, Sundar D, Wadhwa R. Int J Biol Macromol 184 297-312 (2021)
  414. Natural Products-Based Drug Design against SARS-CoV-2 Mpro 3CLpro. Silva RC, Freitas HF, Campos JM, Kimani NM, Silva CHTP, Borges RS, Pita SSR, Santos CBR. Int J Mol Sci 22 11739 (2021)
  415. Paromomycin: A potential dual targeted drug effectively inhibits both spike (S1) and main protease of COVID-19. Tariq A, Mateen RM, Afzal MS, Saleem M. Int J Infect Dis 98 166-175 (2020)
  416. Possibility of HIV-1 protease inhibitors-clinical trial drugs as repurposed drugs for SARS-CoV-2 main protease: a molecular docking, molecular dynamics and binding free energy simulation study. Ancy I, Sivanandam M, Kumaradhas P. J Biomol Struct Dyn 39 5368-5375 (2021)
  417. Prioritisation of Compounds for 3CLpro Inhibitor Development on SARS-CoV-2 Variants. Jukič M, Škrlj B, Tomšič G, Pleško S, Podlipnik Č, Bren U. Molecules 26 3003 (2021)
  418. Repurposing of phytomedicine-derived bioactive compounds with promising anti-SARS-CoV-2 potential: Molecular docking, MD simulation and drug-likeness/ADMET studies. Rudrapal M, Gogoi N, Chetia D, Khan J, Banwas S, Alshehri B, Alaidarous MA, Laddha UD, Khairnar SJ, Walode SG. Saudi J Biol Sci 29 2432-2446 (2022)
  419. SARS-CoV-2 Main Protease Drug Design, Assay Development, and Drug Resistance Studies. Tan B, Joyce R, Tan H, Hu Y, Wang J. Acc Chem Res 56 157-168 (2023)
  420. Screening Malaria-box compounds to identify potential inhibitors against SARS-CoV-2 Mpro, using molecular docking and dynamics simulation studies. Ahamad S, Kanipakam H, Birla S, Ali MS, Gupta D. Eur J Pharmacol 890 173664 (2021)
  421. Structure-Guided Design of Potent Inhibitors of SARS-CoV-2 3CL Protease: Structural, Biochemical, and Cell-Based Studies. Dampalla CS, Rathnayake AD, Perera KD, Jesri AM, Nguyen HN, Miller MJ, Thurman HA, Zheng J, Kashipathy MM, Battaile KP, Lovell S, Perlman S, Kim Y, Groutas WC, Chang KO. J Med Chem 64 17846-17865 (2021)
  422. Structure-based drug design of an inhibitor of the SARS-CoV-2 (COVID-19) main protease using free software: A tutorial for students and scientists. Zhang S, Krumberger M, Morris MA, Parrocha CMT, Kreutzer AG, Nowick JS. Eur J Med Chem 218 113390 (2021)
  423. Targeting multiple conformations of SARS-CoV2 Papain-Like Protease for drug repositioning: An in-silico study. Ismail MI, Ragab HM, Bekhit AA, Ibrahim TM. Comput Biol Med 131 104295 (2021)
  424. The Mpro structure-based modifications of ebselen derivatives for improved antiviral activity against SARS-CoV-2 virus. Qiao Z, Wei N, Jin L, Zhang H, Luo J, Zhang Y, Wang K. Bioorg Chem 117 105455 (2021)
  425. The sprint to solve coronavirus protein structures - and disarm them with drugs. Scudellari M. Nature 581 252-255 (2020)
  426. Virtual Double-System Single-Box: A Nonequilibrium Alchemical Technique for Absolute Binding Free Energy Calculations: Application to Ligands of the SARS-CoV-2 Main Protease. Macchiagodena M, Pagliai M, Karrenbrock M, Guarnieri G, Iannone F, Procacci P. J Chem Theory Comput 16 7160-7172 (2020)
  427. Scutellaria barbata D. Don Inhibits the Main Proteases (Mpro and TMPRSS2) of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection. Huang ST, Chen Y, Chang WC, Chen HF, Lai HC, Lin YC, Wang WJ, Wang YC, Yang CS, Wang SC, Hung MC. Viruses 13 826 (2021)
  428. Combined deep learning and molecular docking simulations approach identifies potentially effective FDA approved drugs for repurposing against SARS-CoV-2. Anwaar MU, Adnan F, Abro A, Khan RA, Rehman AU, Osama M, Rainville C, Kumar S, Sterner DE, Javed S, Jamal SB, Baig A, Shabbir MR, Ahsan W, Butt TR, Assir MZ. Comput Biol Med 141 105049 (2022)
  429. Cordycepin: a bioactive metabolite of Cordyceps militaris and polyadenylation inhibitor with therapeutic potential against COVID-19. Verma AK. J Biomol Struct Dyn 40 3745-3752 (2022)
  430. Drug repurposing against SARS-CoV-1, SARS-CoV-2 and MERS-CoV. Aherfi S, Pradines B, Devaux C, Honore S, Colson P, Scola B, Raoult D. Future Microbiol 16 1341-1370 (2021)
  431. Gain-of-Signal Assays for Probing Inhibition of SARS-CoV-2 Mpro/3CLpro in Living Cells. Moghadasi SA, Esler MA, Otsuka Y, Becker JT, Moraes SN, Anderson CB, Chamakuri S, Belica C, Wick C, Harki DA, Young DW, Scampavia L, Spicer TP, Shi K, Aihara H, Brown WL, Harris RS. mBio 13 e0078422 (2022)
  432. Identification of a novel inhibitor of SARS-CoV-2 3CL-PRO through virtual screening and molecular dynamics simulation. Bepari AK, Reza HM. PeerJ 9 e11261 (2021)
  433. Identification of doxorubicin as a potential therapeutic against SARS-CoV-2 (COVID-19) protease: a molecular docking and dynamics simulation studies. Sajid Jamal QM, Alharbi AH, Ahmad V. J Biomol Struct Dyn 40 7960-7974 (2022)
  434. In Silico Insights into the SARS CoV-2 Main Protease Suggest NADH Endogenous Defences in the Control of the Pandemic Coronavirus Infection. Martorana A, Gentile C, Lauria A. Viruses 12 E805 (2020)
  435. Inhibition Mechanism of SARS-CoV-2 Main Protease with Ketone-Based Inhibitors Unveiled by Multiscale Simulations: Insights for Improved Designs*. Ramos-Guzmán CA, Ruiz-Pernía JJ, Tuñón I. Angew Chem Int Ed Engl 60 25933-25941 (2021)
  436. No small matter: a perspective on nanotechnology-enabled solutions to fight COVID-19. Jones GW, Monopoli MP, Campagnolo L, Pietroiusti A, Tran L, Fadeel B. Nanomedicine (Lond) 15 2411-2427 (2020)
  437. Phycobilins as Potent Food Bioactive Broad-Spectrum Inhibitors Against Proteases of SARS-CoV-2 and Other Coronaviruses: A Preliminary Study. Pendyala B, Patras A, Dash C. Front Microbiol 12 645713 (2021)
  438. Screening marine algae metabolites as high-affinity inhibitors of SARS-CoV-2 main protease (3CLpro): an in silico analysis to identify novel drug candidates to combat COVID-19 pandemic. Muteeb G, Alshoaibi A, Aatif M, Rehman MT, Qayyum MZ. Appl Biol Chem 63 79 (2020)
  439. Structural insight to hydroxychloroquine-3C-like proteinase complexation from SARS-CoV-2: inhibitor modelling study through molecular docking and MD-simulation study. Mukherjee S, Dasgupta S, Adhikary T, Adhikari U, Panja SS. J Biomol Struct Dyn 39 7322-7334 (2021)
  440. Structure-Based Discovery and Structural Basis of a Novel Broad-Spectrum Natural Product against the Main Protease of Coronavirus. Zhang Y, Gao H, Hu X, Wang Q, Zhong F, Zhou X, Lin C, Yang Y, Wei J, Du W, Huang H, Zhou H, He W, Zhang H, Zhang Y, McCormick PJ, Fu J, Wang D, Fu Y, Lu X, Zhang T, Duan J, Qin B, Jiang H, Luo J, Zhang Y, Chen Q, Luo Q, Cheng L, Zhang Z, Zhang J, Li J. J Virol 96 e0125321 (2022)
  441. Structure-Based Identification of Natural Products as SARS-CoV-2 Mpro Antagonist from Echinacea angustifolia Using Computational Approaches. Bharadwaj S, El-Kafrawy SA, Alandijany TA, Bajrai LH, Shah AA, Dubey A, Sahoo AK, Yadava U, Kamal MA, Azhar EI, Kang SG, Dwivedi VD. Viruses 13 305 (2021)
  442. Synthetic Peptides That Antagonize the Angiotensin-Converting Enzyme-2 (ACE-2) Interaction with SARS-CoV-2 Receptor Binding Spike Protein. Sadremomtaz A, Al-Dahmani ZM, Ruiz-Moreno AJ, Monti A, Wang C, Azad T, Bell JC, Doti N, Velasco-Velázquez MA, de Jong D, de Jonge J, Smit J, Dömling A, van Goor H, Groves MR. J Med Chem 65 2836-2847 (2022)
  443. Targeting SARS-CoV-2 main protease by teicoplanin: A mechanistic insight by docking, MM/GBSA and molecular dynamics simulation. Azam F, Eid EEM, Almutairi A. J Mol Struct 1246 131124 (2021)
  444. In silico Analyses of Immune System Protein Interactome Network, Single-Cell RNA Sequencing of Human Tissues, and Artificial Neural Networks Reveal Potential Therapeutic Targets for Drug Repurposing Against COVID-19. López-Cortés A, Guevara-Ramírez P, Kyriakidis NC, Barba-Ostria C, León Cáceres Á, Guerrero S, Ortiz-Prado E, Munteanu CR, Tejera E, Cevallos-Robalino D, Gómez-Jaramillo AM, Simbaña-Rivera K, Granizo-Martínez A, Pérez-M G, Moreno S, García-Cárdenas JM, Zambrano AK, Pérez-Castillo Y, Cabrera-Andrade A, Puig San Andrés L, Proaño-Castro C, Bautista J, Quevedo A, Varela N, Quiñones LA, Paz-Y-Miño C. Front Pharmacol 12 598925 (2021)
  445. In silico Exploration of Inhibitors for SARS-CoV-2's Papain-Like Protease. Huynh T, Cornell W, Luan B. Front Chem 8 624163 (2020)
  446. In silico study of natural compounds from sesame against COVID-19 by targeting Mpro, PLpro and RdRp. Allam AE, Amen Y, Ashour A, Assaf HK, Hassan HA, Abdel-Rahman IM, Sayed AM, Shimizu K. RSC Adv 11 22398-22408 (2021)
  447. A computational approach to drug repurposing against SARS-CoV-2 RNA dependent RNA polymerase (RdRp). Ribaudo G, Ongaro A, Oselladore E, Zagotto G, Memo M, Gianoncelli A. J Biomol Struct Dyn 40 1101-1108 (2022)
  448. Allosteric inhibitors of the main protease of SARS-CoV-2. Samrat SK, Xu J, Xie X, Gianti E, Chen H, Zou J, Pattis JG, Elokely K, Lee H, Li Z, Klein ML, Shi PY, Zhou J, Li H. Antiviral Res 205 105381 (2022)
  449. Anti-COVID-19 activity of some benzofused 1,2,3-triazolesulfonamide hybrids using in silico and in vitro analyses. Alzahrani AY, Shaaban MM, Elwakil BH, Hamed MT, Rezki N, Aouad MR, Zakaria MA, Hagar M. Chemometr Intell Lab Syst 217 104421 (2021)
  450. Anti-inflammatory, antiallergic and COVID-19 protease inhibitory activities of phytochemicals from the Jordanian hawksbeard: identification, structure-activity relationships, molecular modeling and impact on its folk medicinal uses. Ebada SS, Al-Jawabri NA, Youssef FS, El-Kashef DH, Knedel TO, Albohy A, Korinek M, Hwang TL, Chen BH, Lin GH, Lin CY, Aldalaien SM, Disi AM, Janiak C, Proksch P. RSC Adv 10 38128-38141 (2020)
  451. Atazanavir Is a Competitive Inhibitor of SARS-CoV-2 Mpro, Impairing Variants Replication In Vitro and In Vivo. Chaves OA, Sacramento CQ, Ferreira AC, Mattos M, Fintelman-Rodrigues N, Temerozo JR, Vazquez L, Pinto DP, da Silveira GPE, da Fonseca LB, Pereira HM, Carlos AS, d'Avila JC, Viola JPB, Monteiro RQ, Bozza PT, Castro-Faria-Neto HC, Souza TML. Pharmaceuticals (Basel) 15 21 (2021)
  452. Candidate Binding Sites for Allosteric Inhibition of the SARS-CoV-2 Main Protease from the Analysis of Large-Scale Molecular Dynamics Simulations. Carli M, Sormani G, Rodriguez A, Laio A. J Phys Chem Lett 12 65-72 (2021)
  453. Computational modeling predicts potential effects of the herbal infusion "horchata" against COVID-19. Tejera E, Pérez-Castillo Y, Toscano G, Noboa AL, Ochoa-Herrera V, Giampieri F, Álvarez-Suarez JM. Food Chem 366 130589 (2022)
  454. Decoding the proteome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) for cell-penetrating peptides involved in pathogenesis or applicable as drug delivery vectors. Hemmati S, Behzadipour Y, Haddad M. Infect Genet Evol 85 104474 (2020)
  455. Design of SARS-CoV-2 Mpro, PLpro dual-target inhibitors based on deep reinforcement learning and virtual screening. Zhang LC, Zhao HL, Liu J, He L, Yu RL, Kang CM. Future Med Chem 14 393-405 (2022)
  456. Dual Inhibitors of Main Protease (MPro) and Cathepsin L as Potent Antivirals against SARS-CoV2. Mondal S, Chen Y, Lockbaum GJ, Sen S, Chaudhuri S, Reyes AC, Lee JM, Kaur AN, Sultana N, Cameron MD, Shaffer SA, Schiffer CA, Fitzgerald KA, Thompson PR. J Am Chem Soc 144 21035-21045 (2022)
  457. Exploiting cheminformatic and machine learning to navigate the available chemical space of potential small molecule inhibitors of SARS-CoV-2. Kumar A, Loharch S, Kumar S, Ringe RP, Parkesh R. Comput Struct Biotechnol J 19 424-438 (2021)
  458. Identification of Anti-SARS-CoV-2 Compounds from Food Using QSAR-Based Virtual Screening, Molecular Docking, and Molecular Dynamics Simulation Analysis. Zaki MEA, Al-Hussain SA, Masand VH, Akasapu S, Bajaj SO, El-Sayed NNE, Ghosh A, Lewaa I. Pharmaceuticals (Basel) 14 357 (2021)
  459. Identification of potential plant-based inhibitor against viral proteases of SARS-CoV-2 through molecular docking, MM-PBSA binding energy calculations and molecular dynamics simulation. Gogoi B, Chowdhury P, Goswami N, Gogoi N, Naiya T, Chetia P, Mahanta S, Chetia D, Tanti B, Borah P, Handique PJ. Mol Divers 25 1963-1977 (2021)
  460. In silico analysis of SARS-CoV-2 proteins as targets for clinically available drugs. Chan WKB, Olson KM, Wotring JW, Sexton JZ, Carlson HA, Traynor JR. Sci Rep 12 5320 (2022)
  461. Molecular docking and dynamics studies on propolis sulabiroin-A as a potential inhibitor of SARS-CoV-2. Fatriansyah JF, Rizqillah RK, Yandi MY, Fadilah, Sahlan M. J King Saud Univ Sci 34 101707 (2022)
  462. New Acaciin-Loaded Self-Assembled Nanofibers as MPro Inhibitors Against BCV as a Surrogate Model for SARS-CoV-2. Mohamad SA, Zahran EM, Abdel Fadeel MR, Albohy A, Safwat MA. Int J Nanomedicine 16 1789-1804 (2021)
  463. Novel dynamic residue network analysis approaches to study allosteric modulation: SARS-CoV-2 Mpro and its evolutionary mutations as a case study. Sheik Amamuddy O, Afriyie Boateng R, Barozi V, Wavinya Nyamai D, Tastan Bishop Ö. Comput Struct Biotechnol J 19 6431-6455 (2021)
  464. Penicillin Derivatives Inhibit the SARS-CoV-2 Main Protease by Reaction with Its Nucleophilic Cysteine. Malla TR, Brewitz L, Muntean DG, Aslam H, Owen CD, Salah E, Tumber A, Lukacik P, Strain-Damerell C, Mikolajek H, Walsh MA, Schofield CJ. J Med Chem 65 7682-7696 (2022)
  465. Pharmacokinetics of Oral Nirmatrelvir/Ritonavir, a Protease Inhibitor for Treatment of COVID-19, in Subjects With Renal Impairment. Toussi SS, Neutel JM, Navarro J, Preston RA, Shi H, Kavetska O, LaBadie RR, Binks M, Chan PLS, Demers N, Corrigan B, Damle B. Clin Pharmacol Ther 112 892-900 (2022)
  466. Potential In Vitro Inhibition of Selected Plant Extracts against SARS-CoV-2 Chymotripsin-Like Protease (3CLPro) Activity. Guijarro-Real C, Plazas M, Rodríguez-Burruezo A, Prohens J, Fita A. Foods 10 1503 (2021)
  467. Potential inhibitors interacting in Neuropilin-1 to develop an adjuvant drug against COVID-19, by molecular docking. Vique-Sánchez JL. Bioorg Med Chem 33 116040 (2021)
  468. Proposition of a new allosteric binding site for potential SARS-CoV-2 3CL protease inhibitors by utilizing molecular dynamics simulations and ensemble docking. Novak J, Rimac H, Kandagalla S, Pathak P, Naumovich V, Grishina M, Potemkin V. J Biomol Struct Dyn 40 9347-9360 (2022)
  469. Reprofiling of approved drugs against SARS-CoV-2 main protease: an in-silico study. Kumar P, Bhardwaj T, Kumar A, Gehi BR, Kapuganti SK, Garg N, Nath G, Giri R. J Biomol Struct Dyn 40 3170-3184 (2022)
  470. Scaffold Hopping of α-Rubromycin Enables Direct Access to FDA-Approved Cromoglicic Acid as a SARS-CoV-2 MPro Inhibitor. Alhadrami HA, Sayed AM, Al-Khatabi H, Alhakamy NA, Rateb ME. Pharmaceuticals (Basel) 14 541 (2021)
  471. Structural basis for the inhibition of SARS-CoV2 main protease by Indian medicinal plant-derived antiviral compounds. Saravanan KM, Zhang H, Senthil R, Vijayakumar KK, Sounderrajan V, Wei Y, Shakila H. J Biomol Struct Dyn 40 1970-1978 (2022)
  472. Structural insights on the interaction potential of natural leads against major protein targets of SARS-CoV-2: Molecular modelling, docking and dynamic simulation studies. Skariyachan S, Gopal D, Muddebihalkar AG, Uttarkar A, Niranjan V. Comput Biol Med 132 104325 (2021)
  473. Theobroma cacao L. compounds: Theoretical study and molecular modeling as inhibitors of main SARS-CoV-2 protease. Yañez O, Osorio MI, Areche C, Vasquez-Espinal A, Bravo J, Sandoval-Aldana A, Pérez-Donoso JM, González-Nilo F, Matos MJ, Osorio E, García-Beltrán O, Tiznado W. Biomed Pharmacother 140 111764 (2021)
  474. In silico identification of drug candidates against COVID-19. Wu Y, Chang KY, Lou L, Edwards LG, Doma BK, Xie ZR. Inform Med Unlocked 21 100461 (2020)
  475. A Paper-Based Near-Infrared Optical Biosensor for Quantitative Detection of Protease Activity Using Peptide-Encapsulated SWCNTs. Shumeiko V, Paltiel Y, Bisker G, Hayouka Z, Shoseyov O. Sensors (Basel) 20 E5247 (2020)
  476. A Warhead Substitution Study on the Coronavirus Main Protease Inhibitor Nirmatrelvir. Vankadara S, Dawson MD, Fong JY, Oh QY, Ang QA, Liu B, Chang HY, Koh J, Koh X, Tan QW, Joy J, Chia CSB. ACS Med Chem Lett 13 1345-1350 (2022)
  477. A molecular docking study of SARS-CoV-2 main protease against phytochemicals of Boerhavia diffusa Linn. for novel COVID-19 drug discovery. Rutwick Surya U, Praveen N. Virusdisease 32 46-54 (2021)
  478. Allosteric inhibition of SARS-CoV-2 3CL protease by colloidal bismuth subcitrate. Tao X, Zhang L, Du L, Liao R, Cai H, Lu K, Zhao Z, Xie Y, Wang PH, Pan JA, Zhang Y, Li G, Dai J, Mao ZW, Xia W. Chem Sci 12 14098-14102 (2021)
  479. An in silico perception for newly isolated flavonoids from peach fruit as privileged avenue for a countermeasure outbreak of COVID-19. Allam AE, Assaf HK, Hassan HA, Shimizu K, Elshaier YAMM. RSC Adv 10 29983-29998 (2020)
  480. Both Baicalein and Gallocatechin Gallate Effectively Inhibit SARS-CoV-2 Replication by Targeting Mpro and Sepsis in Mice. Xiao T, Cui M, Zheng C, Zhang P, Ren S, Bao J, Gao D, Sun R, Wang M, Lin J, Zhang L, Li M, Li D, Zhou H, Yang C. Inflammation 45 1076-1088 (2022)
  481. COVID-19 Trend Estimation in the Elderly Italian Region of Sardinia. Puci MV, Loi F, Ferraro OE, Cappai S, Rolesu S, Montomoli C. Front Public Health 8 153 (2020)
  482. Discovery of potent thrombin inhibitors from a protease-focused DNA-encoded chemical library. Dawadi S, Simmons N, Miklossy G, Bohren KM, Faver JC, Ucisik MN, Nyshadham P, Yu Z, Matzuk MM. Proc Natl Acad Sci U S A 117 16782-16789 (2020)
  483. Dual targeting of cytokine storm and viral replication in COVID-19 by plant-derived steroidal pregnanes: An in silico perspective. Gyebi GA, Ogunyemi OM, Ibrahim IM, Afolabi SO, Adebayo JO. Comput Biol Med 134 104406 (2021)
  484. Efficiency Improvements and Discovery of New Substrates for a SARS-CoV-2 Main Protease FRET Assay. Dražić T, Kühl N, Leuthold MM, Behnam MAM, Klein CD. SLAS Discov 26 1189-1199 (2021)
  485. Features of ZED1227: The First-In-Class Tissue Transglutaminase Inhibitor Undergoing Clinical Evaluation for the Treatment of Celiac Disease. Büchold C, Hils M, Gerlach U, Weber J, Pelzer C, Heil A, Aeschlimann D, Pasternack R. Cells 11 1667 (2022)
  486. Identification of Vitamin K3 and its analogues as covalent inhibitors of SARS-CoV-2 3CLpro. Wang R, Hu Q, Wang H, Zhu G, Wang M, Zhang Q, Zhao Y, Li C, Zhang Y, Ge G, Chen H, Chen L. Int J Biol Macromol 183 182-192 (2021)
  487. Identification of novel inhibitors of SARS-CoV-2 main protease (Mpro ) from Withania sp. by molecular docking and molecular dynamics simulation. Verma S, Patel CN, Chandra M. J Comput Chem 42 1861-1872 (2021)
  488. In Silico Identification of Potential Inhibitors of ADP-Ribose Phosphatase of SARS-CoV-2 nsP3 by Combining E-Pharmacophore- and Receptor-Based Virtual Screening of Database. Debnath P, Debnath B, Bhaumik S, Debnath S. ChemistrySelect 5 9388-9398 (2020)
  489. In silico molecular docking analysis for repurposing approved antiviral drugs against SARS-CoV-2 main protease. Khater I, Nassar A. Biochem Biophys Rep 27 101032 (2021)
  490. Inhibitory potential of repurposed drugs against the SARS-CoV-2 main protease: a computational-aided approach. Fadaka AO, Aruleba RT, Sibuyi NRS, Klein A, Madiehe AM, Meyer M. J Biomol Struct Dyn 40 3416-3427 (2022)
  491. Insights into the binding and covalent inhibition mechanism of PF-07321332 to SARS-CoV-2 Mpro. Ngo ST, Nguyen TH, Tung NT, Mai BK. RSC Adv 12 3729-3737 (2022)
  492. Natural phyto, compounds as possible noncovalent inhibitors against SARS-CoV2 protease: computational approach. Ogidigo JO, Iwuchukwu EA, Ibeji CU, Okpalefe O, Soliman MES. J Biomol Struct Dyn 40 2284-2301 (2022)
  493. News Potent SARS-CoV-2 Direct-Acting Antivirals Provide an Important Complement to COVID-19 Vaccines. Pelly S, Liotta D. ACS Cent Sci 7 396-399 (2021)
  494. Potential mechanism underlying the effect of matrine on COVID-19 patients revealed through network pharmacological approaches and molecular docking analysis. Peng W, Xu Y, Han D, Feng F, Wang Z, Gu C, Zhou X, Wu Q. Arch Physiol Biochem 129 253-260 (2023)
  495. Potential of NO donor furoxan as SARS-CoV-2 main protease (Mpro) inhibitors: in silico analysis. Al-Sehemi AG, Pannipara M, Parulekar RS, Patil O, Choudhari PB, Bhatia MS, Zubaidha PK, Tamboli Y. J Biomol Struct Dyn 39 5804-5818 (2021)
  496. Pro108Ser mutation of SARS-CoV-2 3CLpro reduces the enzyme activity and ameliorates the clinical severity of COVID-19. Abe K, Kabe Y, Uchiyama S, Iwasaki YW, Ishizu H, Uwamino Y, Takenouchi T, Uno S, Ishii M, Maruno T, Noda M, Murata M, Hasegawa N, Saya H, Kitagawa Y, Fukunaga K, Amagai M, Siomi H, Suematsu M, Kosaki K, Keio Donner Project. Sci Rep 12 1299 (2022)
  497. Regulation of the Dimerization and Activity of SARS-CoV-2 Main Protease through Reversible Glutathionylation of Cysteine 300. Davis DA, Bulut H, Shrestha P, Yaparla A, Jaeger HK, Hattori SI, Wingfield PT, Mieyal JJ, Mitsuya H, Yarchoan R. mBio 12 e0209421 (2021)
  498. SARS-CoV-2 nsp5 Exhibits Stronger Catalytic Activity and Interferon Antagonism than Its SARS-CoV Ortholog. Chen J, Li Z, Guo J, Xu S, Zhou J, Chen Q, Tong X, Wang D, Peng G, Fang L, Xiao S. J Virol 96 e0003722 (2022)
  499. Serological Testing for COVID-19, Immunological Surveillance, and Exploration of Protective Antibodies. Peroni LA, Toscaro JM, Canateli C, Tonoli CCC, de Olivera RR, Benedetti CE, Coimbra LD, Pereira AB, Marques RE, Proença-Modena JL, Lima GC, Viana R, Borges JB, Lin-Wang HT, Abboud CS, Gun C, Franchini KG, Bajgelman MC. Front Immunol 12 635701 (2021)
  500. Structure-Guided Design of Potent Spirocyclic Inhibitors of Severe Acute Respiratory Syndrome Coronavirus-2 3C-like Protease. Dampalla CS, Rathnayake AD, Galasiti Kankanamalage AC, Kim Y, Perera KD, Nguyen HN, Miller MJ, Madden TK, Picard HR, Thurman HA, Kashipathy MM, Liu L, Battaile KP, Lovell S, Chang KO, Groutas WC. J Med Chem 65 7818-7832 (2022)
  501. TAT-peptide conjugated repurposing drug against SARS-CoV-2 main protease (3CLpro): Potential therapeutic intervention to combat COVID-19. Ansari MA, Jamal QMS, Rehman S, Almatroudi A, Alzohairy MA, Alomary MN, Tripathi T, Alharbi AH, Adil SF, Khan M, Shaheer Malik M. Arab J Chem 13 8069-8079 (2020)
  502. The good, the bad, and the ugly in chemical and biological data for machine learning. Rodrigues T. Drug Discov Today Technol 32-33 3-8 (2019)
  503. The novel coronavirus SARS-CoV-2: From a zoonotic infection to coronavirus disease 2019. Dos Santos Bezerra R, Valença IN, de Cassia Ruy P, Ximenez JPB, da Silva Junior WA, Covas DT, Kashima S, Slavov SN. J Med Virol 92 2607-2615 (2020)
  504. Editorial A deadly spillover: SARS-CoV-2 outbreak. Mori M, Capasso C, Carta F, Donald WA, Supuran CT. Expert Opin Ther Pat 30 481-485 (2020)
  505. A multi-stage virtual screening of FDA-approved drugs reveals potential inhibitors of SARS-CoV-2 main protease. Mandour YM, Zlotos DP, Alaraby Salem M. J Biomol Struct Dyn 40 2327-2338 (2022)
  506. An extended conformation of SARS-CoV-2 main protease reveals allosteric targets. Sun Z, Wang L, Li X, Fan C, Xu J, Shi Z, Qiao H, Lan Z, Zhang X, Li L, Zhou X, Geng Y. Proc Natl Acad Sci U S A 119 e2120913119 (2022)
  507. COVID-19 Multi-Targeted Drug Repurposing Using Few-Shot Learning. Liu Y, Wu Y, Shen X, Xie L. Front Bioinform 1 693177 (2021)
  508. Carbon fullerene and nanotube are probable binders to multiple targets of SARS-CoV-2: Insights from computational modeling and molecular dynamic simulation studies. Skariyachan S, Gopal D, Deshpande D, Joshi A, Uttarkar A, Niranjan V. Infect Genet Evol 96 105155 (2021)
  509. Circadian clock modulating small molecules repurposing as inhibitors of SARS-CoV-2 Mpro for pharmacological interventions in COVID-19 pandemic. Sultan A, Ali R, Sultan T, Ali S, Khan NJ, Parganiha A. Chronobiol Int 38 971-985 (2021)
  510. Computational screening for potential drug candidates against the SARS-CoV-2 main protease. Silva Andrade B, Ghosh P, Barh D, Tiwari S, José Santana Silva R, Rodrigues de Assis Soares W, Silva Melo T, Santos Freitas A, González-Grande P, Sousa Palmeira L, Carlos Junior Alcantara L, Giovanetti M, Góes-Neto A, Ariston de Carvalho Azevedo V. F1000Res 9 ISCB Comm J-514 (2020)
  511. Development of Highly Potent Noncovalent Inhibitors of SARS-CoV-2 3CLpro. Hou N, Shuai L, Zhang L, Xie X, Tang K, Zhu Y, Yu Y, Zhang W, Tan Q, Zhong G, Wen Z, Wang C, He X, Huo H, Gao H, Xu Y, Xue J, Peng C, Zou J, Schindewolf C, Menachery V, Su W, Yuan Y, Shen Z, Zhang R, Yuan S, Yu H, Shi PY, Bu Z, Huang J, Hu Q. ACS Cent Sci 9 217-227 (2023)
  512. Discovery of 9,10-dihydrophenanthrene derivatives as SARS-CoV-2 3CLpro inhibitors for treating COVID-19. Zhang JW, Xiong Y, Wang F, Zhang FM, Yang X, Lin GQ, Tian P, Ge G, Gao D. Eur J Med Chem 228 114030 (2022)
  513. Drug repurposing and computational modeling for discovery of inhibitors of the main protease (Mpro) of SARS-CoV-2. Silva JRA, Kruger HG, Molfetta FA. RSC Adv 11 23450-23458 (2021)
  514. Global landscape of SARS-CoV-2 mutations and conserved regions. Abbasian MH, Mahmanzar M, Rahimian K, Mahdavi B, Tokhanbigli S, Moradi B, Sisakht MM, Deng Y. J Transl Med 21 152 (2023)
  515. Global variation in SARS-CoV-2 proteome and its implication in pre-lockdown emergence and dissemination of 5 dominant SARS-CoV-2 clades. Patro LPP, Sathyaseelan C, Uttamrao PP, Rathinavelan T. Infect Genet Evol 93 104973 (2021)
  516. Hepatitis C virus NS3/4A inhibitors and other drug-like compounds as covalent binders of SARS-CoV-2 main protease. Andi B, Kumaran D, Kreitler DF, Soares AS, Keereetaweep J, Jakoncic J, Lazo EO, Shi W, Fuchs MR, Sweet RM, Shanklin J, Adams PD, Schmidt JG, Head MS, McSweeney S. Sci Rep 12 12197 (2022)
  517. Identifying and repurposing antiviral drugs against severe acute respiratory syndrome coronavirus 2 with in silico and in vitro approaches. Watashi K. Biochem Biophys Res Commun 538 137-144 (2021)
  518. Metabolomic profiling of three Araucaria species, and their possible potential role against COVID-19. El-Hawary SS, Rabeh MA, Raey MAE, El-Kadder EMA, Sobeh M, Abdelmohsen UR, Albohy A, Andrianov AM, Bosko IP, Al-Sanea MM, El-Kolobby DG. J Biomol Struct Dyn 40 6426-6438 (2022)
  519. NMR Spectroscopy of the Main Protease of SARS-CoV-2 and Fragment-Based Screening Identify Three Protein Hotspots and an Antiviral Fragment. Cantrelle FX, Boll E, Brier L, Moschidi D, Belouzard S, Landry V, Leroux F, Dewitte F, Landrieu I, Dubuisson J, Deprez B, Charton J, Hanoulle X. Angew Chem Int Ed Engl 60 25428-25435 (2021)
  520. New Perspectives on Antimicrobial Agents: Molnupiravir and Nirmatrelvir/Ritonavir for Treatment of COVID-19. Atmar RL, Finch N. Antimicrob Agents Chemother 66 e0240421 (2022)
  521. New α-Hydrazinophosphonic acid: Synthesis, characterization, DFT study and in silico prediction of its potential inhibition of SARS-CoV-2 main protease. Benbouguerra K, Chafai N, Chafaa S, Touahria YI, Tlidjane H. J Mol Struct 1239 130480 (2021)
  522. Nonstructural protein 7 and 8 complexes of SARS-CoV-2. Zhang C, Li L, He J, Chen C, Su D. Protein Sci 30 873-881 (2021)
  523. Phytochemicals as potential drug candidates for targeting SARS CoV 2 proteins, an in silico study. Nag A, Banerjee R, Chowdhury RR, Krishnapura Venkatesh C. Virusdisease 32 98-107 (2021)
  524. Potential treatment of COVID-19 by inhibitors of human dihydroorotate dehydrogenase. Xu Y, Jiang H. Protein Cell 11 699-702 (2020)
  525. Repurposing of Drugs for SARS-CoV-2 Using Inverse Docking Fingerprints. Jukič M, Kores K, Janežič D, Bren U. Front Chem 9 757826 (2021)
  526. Selective covalent targeting of SARS-CoV-2 main protease by enantiopure chlorofluoroacetamide. Yamane D, Onitsuka S, Re S, Isogai H, Hamada R, Hiramoto T, Kawanishi E, Mizuguchi K, Shindo N, Ojida A. Chem Sci 13 3027-3034 (2022)
  527. Structure-Based Identification of Naphthoquinones and Derivatives as Novel Inhibitors of Main Protease Mpro and Papain-like Protease PLpro of SARS-CoV-2. Santos LH, Kronenberger T, Almeida RG, Silva EB, Rocha REO, Oliveira JC, Barreto LV, Skinner D, Fajtová P, Giardini MA, Woodworth B, Bardine C, Lourenço AL, Craik CS, Poso A, Podust LM, McKerrow JH, Siqueira-Neto JL, O'Donoghue AJ, da Silva Júnior EN, Ferreira RS. J Chem Inf Model 62 6553-6573 (2022)
  528. In Silico Elucidation of Potent Inhibitors and Rational Drug Design against SARS-CoV-2 Papain-like Protease. Sanachai K, Mahalapbutr P, Sanghiran Lee V, Rungrotmongkol T, Hannongbua S. J Phys Chem B 125 13644-13656 (2021)
  529. In silico analyses of major active constituents of fingerroot (Boesenbergia rotunda) unveils inhibitory activities against SARS-CoV-2 main protease enzyme. Bahadur Gurung A, Ajmal Ali M, Al-Hemaid F, El-Zaidy M, Lee J. Saudi J Biol Sci 29 65-74 (2022)
  530. In silico structure-based discovery of a SARS-CoV-2 main protease inhibitor. Wen L, Tang K, Chik KK, Chan CC, Tsang JO, Liang R, Cao J, Huang Y, Luo C, Cai JP, Ye ZW, Yin F, Chu H, Jin DY, Yuen KY, Yuan S, Chan JF. Int J Biol Sci 17 1555-1564 (2021)
  531. A Ligand Selection Strategy Identifies Chemical Probes Targeting the Proteases of SARS-CoV-2. Peñalver L, Schmid P, Szamosvári D, Schildknecht S, Globisch C, Sawade K, Peter C, Böttcher T. Angew Chem Int Ed Engl 60 6799-6806 (2021)
  532. A multiplex antigen microarray for simultaneous IgG and IgM detection against SARS-CoV-2 reveals higher seroprevalence than reported. Ruano-Gallego D, García-Villadangos M, Moreno-Paz M, Gómez-Elvira J, Postigo M, Simón-Sacristán M, Reyburn HT, Carolis C, Rodrigo N, Codeseira YB, Rueda P, Zúñiga S, Enjuanes L, Parro V. Microb Biotechnol 14 1228-1236 (2021)
  533. A new inactive conformation of SARS-CoV-2 main protease. Fornasier E, Macchia ML, Giachin G, Sosic A, Pavan M, Sturlese M, Salata C, Moro S, Gatto B, Bellanda M, Battistutta R. Acta Crystallogr D Struct Biol 78 363-378 (2022)
  534. Allosteric Regulation of 3CL Protease of SARS-CoV-2 and SARS-CoV Observed in the Crystal Structure Ensemble. Kidera A, Moritsugu K, Ekimoto T, Ikeguchi M. J Mol Biol 433 167324 (2021)
  535. Anti-Fungal Drug Anidulafungin Inhibits SARS-CoV-2 Spike-Induced Syncytia Formation by Targeting ACE2-Spike Protein Interaction. Ahamad S, Ali H, Secco I, Giacca M, Gupta D. Front Genet 13 866474 (2022)
  536. Anticoagulants as Potential SARS-CoV-2 Mpro Inhibitors for COVID-19 Patients: In Vitro, Molecular Docking, Molecular Dynamics, DFT, and SAR Studies. Abo Elmaaty A, Eldehna WM, Khattab M, Kutkat O, Alnajjar R, El-Taweel AN, Al-Rashood ST, Abourehab MAS, Binjubair FA, Saleh MA, Belal A, Al-Karmalawy AA. Int J Mol Sci 23 12235 (2022)
  537. Antiviral activities of 4H-chromen-4-one scaffold-containing flavonoids against SARS-CoV-2 using computational and in vitro approaches. Raj V, Lee JH, Shim JJ, Lee J. J Mol Liq 353 118775 (2022)
  538. Apigenin analogues as SARS-CoV-2 main protease inhibitors: In-silico screening approach. Farhat A, Ben Hlima H, Khemakhem B, Ben Halima Y, Michaud P, Abdelkafi S, Fendri I. Bioengineered 13 3350-3361 (2022)
  539. Assessing potential inhibitors of SARS-CoV-2 main protease from available drugs using free energy perturbation simulations. Ngo ST, Nguyen HM, Thuy Huong LT, Quan PM, Truong VK, Tung NT, Vu VV. RSC Adv 10 40284-40290 (2020)
  540. Attacking COVID-19 Progression Using Multi-Drug Therapy for Synergetic Target Engagement. Coban MA, Morrison J, Maharjan S, Hernandez Medina DH, Li W, Zhang YS, Freeman WD, Radisky ES, Le Roch KG, Weisend CM, Ebihara H, Caulfield TR. Biomolecules 11 787 (2021)
  541. Can Artemisia herba-alba Be Useful for Managing COVID-19 and Comorbidities? Hasan A, Biswas P, Bondhon TA, Jannat K, Paul TK, Paul AK, Jahan R, Nissapatorn V, Mahboob T, Wilairatana P, Hasan MN, de Lourdes Pereira M, Wiart C, Rahmatullah M. Molecules 27 492 (2022)
  542. Chitosan derivatives: A suggestive evaluation for novel inhibitor discovery against wild type and variants of SARS-CoV-2 virus. Modak C, Jha A, Sharma N, Kumar A. Int J Biol Macromol 187 492-512 (2021)
  543. Comparative study of the interaction of ivermectin with proteins of interest associated with SARS-CoV-2: A computational and biophysical approach. González-Paz L, Hurtado-León ML, Lossada C, Fernández-Materán FV, Vera-Villalobos J, Loroño M, Paz JL, Jeffreys L, Alvarado YJ. Biophys Chem 278 106677 (2021)
  544. Computational estimation of potential inhibitors from known drugs against the main protease of SARS-CoV-2. Tam NM, Pham MQ, Ha NX, Nam PC, Phung HTT. RSC Adv 11 17478-17486 (2021)
  545. Discovery of highly potent SARS-CoV-2 Mpro inhibitors based on benzoisothiazolone scaffold. Chen W, Feng B, Han S, Wang P, Chen W, Zang Y, Li J, Hu Y. Bioorg Med Chem Lett 58 128526 (2022)
  546. Elucidation of the inhibitory activity of ivermectin with host nuclear importin α and several SARS-CoV-2 targets. Bello M. J Biomol Struct Dyn 40 8375-8383 (2022)
  547. Evaluation of bioactive compounds from Boswellia serrata against SARS-CoV-2. Roy A, Menon T. Vegetos 35 404-414 (2022)
  548. Identification of LASSBio-1945 as an inhibitor of SARS-CoV-2 main protease (MPRO) through in silico screening supported by molecular docking and a fragment-based pharmacophore model. Franco LS, Maia RC, Barreiro EJ. RSC Med Chem 12 110-119 (2021)
  549. Identification of potential antivirals against SARS-CoV-2 using virtual screening method. Rahman MR, Banik A, Chowdhury IM, Sajib EH, Sarkar S. Inform Med Unlocked 23 100531 (2021)
  550. Impact of Warhead Modulations on the Covalent Inhibition of SARS-CoV-2 Mpro Explored by QM/MM Simulations. Martí S, Arafet K, Lodola A, Mulholland AJ, Świderek K, Moliner V. ACS Catal 12 698-708 (2022)
  551. In silico screening-based discovery of novel covalent inhibitors of the SARS-CoV-2 3CL protease. Xiong M, Nie T, Shao Q, Li M, Su H, Xu Y. Eur J Med Chem 231 114130 (2022)
  552. JIB-04 Has Broad-Spectrum Antiviral Activity and Inhibits SARS-CoV-2 Replication and Coronavirus Pathogenesis. Son J, Huang S, Zeng Q, Bricker TL, Case JB, Zhou J, Zang R, Liu Z, Chang X, Darling TL, Xu J, Harastani HH, Chen L, Gomez Castro MF, Zhao Y, Kohio HP, Hou G, Fan B, Niu B, Guo R, Rothlauf PW, Bailey AL, Wang X, Shi PY, Martinez ED, Brody SL, Whelan SPJ, Diamond MS, Boon ACM, Li B, Ding S. mBio 13 e0337721 (2022)
  553. Modulation of the monomer-dimer equilibrium and catalytic activity of SARS-CoV-2 main protease by a transition-state analog inhibitor. Nashed NT, Aniana A, Ghirlando R, Chiliveri SC, Louis JM. Commun Biol 5 160 (2022)
  554. New insights into the catalytic mechanism of the SARS-CoV-2 main protease: an ONIOM QM/MM approach. Fernandes HS, Sousa SF, Cerqueira NMFSA. Mol Divers 26 1373-1381 (2022)
  555. Potential SARS-CoV-2 3CLpro inhibitors from chromene, flavonoid and hydroxamic acid compound based on FRET assay, docking and pharmacophore studies. Hariono M, Hariyono P, Dwiastuti R, Setyani W, Yusuf M, Salin N, Wahab H. Results Chem 3 100195 (2021)
  556. Promising anti-SARS-CoV-2 drugs by effective dual targeting against the viral and host proteases. Elseginy SA, Fayed B, Hamdy R, Mahrous N, Mostafa A, Almehdi AM, S M Soliman S. Bioorg Med Chem Lett 43 128099 (2021)
  557. Repurposing Low-Molecular-Weight Drugs against the Main Protease of Severe Acute Respiratory Syndrome Coronavirus 2. Gao J, Zhang L, Liu X, Li F, Ma R, Zhu Z, Zhang J, Wu J, Shi Y, Pan Y, Ge Y, Ruan K. J Phys Chem Lett 11 7267-7272 (2020)
  558. SARS-COV-2 Mpro conformational changes induced by covalently bound ligands. Ferreira GM, Kronenberger T, Tonduru AK, Hirata RDC, Hirata MH, Poso A. J Biomol Struct Dyn 40 12347-12357 (2022)
  559. Screening of cryptogamic secondary metabolites as putative inhibitors of SARS-CoV-2 main protease and ribosomal binding domain of spike glycoprotein by molecular docking and molecular dynamics approaches. Prateeksha G, Rana TS, Ashthana AK, Barik SK, Singh BN. J Mol Struct 1240 130506 (2021)
  560. Stereoselective synthesis of unnatural α-amino acid derivatives through photoredox catalysis. Shatskiy A, Axelsson A, Stepanova EV, Liu JQ, Temerdashev AZ, Kore BP, Blomkvist B, Gardner JM, Dinér P, Kärkäs MD. Chem Sci 12 5430-5437 (2021)
  561. Structural Analysis of the OC43 Coronavirus 2'-O-RNA Methyltransferase. Dostalik P, Krafcikova P, Silhan J, Kozic J, Chalupska D, Chalupsky K, Boura E. J Virol 95 e0046321 (2021)
  562. Structural and functional characterization of NEMO cleavage by SARS-CoV-2 3CLpro. Hameedi MA, T Prates E, Garvin MR, Mathews II, Amos BK, Demerdash O, Bechthold M, Iyer M, Rahighi S, Kneller DW, Kovalevsky A, Irle S, Vuong VQ, Mitchell JC, Labbe A, Galanie S, Wakatsuki S, Jacobson D. Nat Commun 13 5285 (2022)
  563. Structure-based identification of SARS-CoV-2 main protease inhibitors from anti-viral specific chemical libraries: an exhaustive computational screening approach. Bhowmick S, Saha A, Osman SM, Alasmary FA, Almutairi TM, Islam MA. Mol Divers 25 1979-1997 (2021)
  564. Targeting the SARS-CoV-2 main protease using FDA-approved Isavuconazonium, a P2-P3 α-ketoamide derivative and Pentagastrin: An in-silico drug discovery approach. Achilonu I, Iwuchukwu EA, Achilonu OJ, Fernandes MA, Sayed Y. J Mol Graph Model 101 107730 (2020)
  565. The Hydroalcoholic Extract of Uncaria tomentosa (Cat's Claw) Inhibits the Infection of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) In Vitro. Yepes-Perez AF, Herrera-Calderón O, Oliveros CA, Flórez-Álvarez L, Zapata-Cardona MI, Yepes L, Aguilar-Jimenez W, Rugeles MT, Zapata W. Evid Based Complement Alternat Med 2021 6679761 (2021)
  566. Thiazole/Thiadiazole/Benzothiazole Based Thiazolidin-4-One Derivatives as Potential Inhibitors of Main Protease of SARS-CoV-2. Petrou A, Zagaliotis P, Theodoroula NF, Mystridis GA, Vizirianakis IS, Walsh TJ, Geronikaki A. Molecules 27 2180 (2022)
  567. Thoughts on What Chemists Can Contribute to Fighting SARS-CoV-2 - A Short Note on Hand Sanitizers, Drug Candidates and Outreach. Opatz T, Senn-Bilfinger J, Richert C. Angew Chem Int Ed Engl 59 9236-9240 (2020)
  568. Ugonin J Acts as a SARS-CoV-2 3C-like Protease Inhibitor and Exhibits Anti-inflammatory Properties. Chiou WC, Lu HF, Hsu NY, Chang TY, Chin YF, Liu PC, Lo JM, Wu YB, Yang JM, Huang C. Front Pharmacol 12 720018 (2021)
  569. Viral 3CLpro as a Target for Antiviral Intervention Using Milk-Derived Bioactive Peptides. Behzadipour Y, Gholampour M, Pirhadi S, Seradj H, Khoshneviszadeh M, Hemmati S. Int J Pept Res Ther 27 2703-2716 (2021)
  570. In silico identification of potential SARS COV-2 2'-O-methyltransferase inhibitor: fragment-based screening approach and MM-PBSA calculations. El Hassab MA, Ibrahim TM, Shoun AA, Al-Rashood ST, Alkahtani HM, Alharbi A, Eskandrani RO, Eldehna WM. RSC Adv 11 16026-16033 (2021)
  571. In vitro and computational investigations of novel synthetic carboxamide-linked pyridopyrrolopyrimidines with potent activity as SARS-CoV-2-MPro inhibitors. Aljuhani A, Ahmed HEA, Ihmaid SK, Omar AM, Althagfan SS, Alahmadi YM, Ahmad I, Patel H, Ahmed S, Almikhlafi MA, El-Agrody AM, Zayed MF, Turkistani SA, Abulkhair SH, Almaghrabi M, Salama SA, Al-Karmalawy AA, Abulkhair HS. RSC Adv 12 26895-26907 (2022)
  572. A Computational Approach to Elucidate the Interactions of Chemicals From Artemisia annua Targeted Toward SARS-CoV-2 Main Protease Inhibition for COVID-19 Treatment. Johnson TO, Adegboyega AE, Ojo OA, Yusuf AJ, Iwaloye O, Ugwah-Oguejiofor CJ, Asomadu RO, Chukwuma IF, Ejembi SA, Ugwuja EI, Alotaibi SS, Albogami SM, Batiha GE, Rajab BS, Conte-Junior CA. Front Med (Lausanne) 9 907583 (2022)
  573. A Genetic Trap in Yeast for Inhibitors of SARS-CoV-2 Main Protease. Alalam H, Sigurdardóttir S, Bourgard C, Tiukova I, King RD, Grøtli M, Sunnerhagen P. mSystems 6 e0108721 (2021)
  574. A new class of α-ketoamide derivatives with potent anticancer and anti-SARS-CoV-2 activities. Wang J, Liang B, Chen Y, Fuk-Woo Chan J, Yuan S, Ye H, Nie L, Zhou J, Wu Y, Wu M, Huang LS, An J, Warshel A, Yuen KY, Ciechanover A, Huang Z, Xu Y. Eur J Med Chem 215 113267 (2021)
  575. Antiviral agents against COVID-19: structure-based design of specific peptidomimetic inhibitors of SARS-CoV-2 main protease. Frecer V, Miertus S. RSC Adv 10 40244-40263 (2020)
  576. Can natural products stop the SARS-CoV-2 virus? A docking and molecular dynamics study of a natural product database. Novak J, Rimac H, Kandagalla S, Grishina MA, Potemkin VA. Future Med Chem 13 363-378 (2021)
  577. Colibrimycins, Novel Halogenated Hybrid Polyketide Synthase-Nonribosomal Peptide Synthetase (PKS-NRPS) Compounds Produced by Streptomyces sp. Strain CS147. Prado-Alonso L, Pérez-Victoria I, Malmierca MG, Montero I, Rioja-Blanco E, Martín J, Reyes F, Méndez C, Salas JA, Olano C. Appl Environ Microbiol 88 e0183921 (2022)
  578. Computational evidence for nitro derivatives of quinoline and quinoline N-oxide as low-cost alternative for the treatment of SARS-CoV-2 infection. Assis LC, de Castro AA, de Jesus JPA, Nepovimova E, Kuca K, Ramalho TC, La Porta FA. Sci Rep 11 6397 (2021)
  579. Drug Repurposing: Dipeptidyl Peptidase IV (DPP4) Inhibitors as Potential Agents to Treat SARS-CoV-2 (2019-nCoV) Infection. Rao PPN, Pham AT, Shakeri A, El Shatshat A, Zhao Y, Karuturi RC, Hefny AA. Pharmaceuticals (Basel) 14 44 (2021)
  580. Engineering of 2D nanomaterials to trap and kill SARS-CoV-2: a new insight from multi-microsecond atomistic simulations. Khedri M, Maleki R, Dahri M, Sadeghi MM, Rezvantalab S, Santos HA, Shahbazi MA. Drug Deliv Transl Res 12 1408-1422 (2022)
  581. Field-Template, QSAR, Ensemble Molecular Docking, and 3D-RISM Solvation Studies Expose Potential of FDA-Approved Marine Drugs as SARS-CoVID-2 Main Protease Inhibitors. Kalhotra P, Chittepu VCSR, Osorio-Revilla G, Gallardo-Velazquez T. Molecules 26 936 (2021)
  582. Fractional-Order Susceptible-Infected Model: Definition and Applications to the Study of COVID-19 Main Protease. Abadias L, Estrada-Rodriguez G, Estrada E. Fract Calc Appl Anal 23 635-655 (2020)
  583. Fullerenes against COVID-19: Repurposing C60 and C70 to Clog the Active Site of SARS-CoV-2 Protease. Marforio TD, Mattioli EJ, Zerbetto F, Calvaresi M. Molecules 27 1916 (2022)
  584. Heparin interacts with the main protease of SARS-CoV-2 and inhibits its activity. Li J, Zhang Y, Pang H, Li SJ. Spectrochim Acta A Mol Biomol Spectrosc 267 120595 (2022)
  585. Identification of Food Compounds as inhibitors of SARS-CoV-2 main protease using molecular docking and molecular dynamics simulations. Masand VH, Sk MF, Kar P, Rastija V, Zaki MEA. Chemometr Intell Lab Syst 217 104394 (2021)
  586. Importance of glutamine 189 flexibility in SARS-CoV-2 main protease: Lesson learned from in silico virtual screening of ChEMBL database and molecular dynamics. Said MA, Albohy A, Abdelrahman MA, Ibrahim HS. Eur J Pharm Sci 160 105744 (2021)
  587. In Silico Prediction of Novel Inhibitors of SARS-CoV-2 Main Protease through Structure-Based Virtual Screening and Molecular Dynamic Simulation. Halim SA, Waqas M, Khan A, Al-Harrasi A. Pharmaceuticals (Basel) 14 896 (2021)
  588. Insights on 3D Structures of Potential Drug-targeting Proteins of SARS-CoV-2: Application of Cavity Search and Molecular Docking. Fernandes MS, da Silva FS, Freitas ACSG, de Melo EB, Trossini GHG, Paula FR. Mol Inform 40 e2000096 (2021)
  589. Investigating the active compounds and mechanism of HuaShi XuanFei formula for prevention and treatment of COVID-19 based on network pharmacology and molecular docking analysis. Wang J, Ge W, Peng X, Yuan L, He S, Fu X. Mol Divers 26 1175-1190 (2022)
  590. Natural Polyphenols Inhibit the Dimerization of the SARS-CoV-2 Main Protease: The Case of Fortunellin and Its Structural Analogs. Panagiotopoulos AA, Karakasiliotis I, Kotzampasi DM, Dimitriou M, Sourvinos G, Kampa M, Pirintsos S, Castanas E, Daskalakis V. Molecules 26 6068 (2021)
  591. Novel Small-Molecule Scaffolds as Candidates against the SARS Coronavirus 2 Main Protease: A Fragment-Guided in Silico Approach. Augustin TL, Hajbabaie R, Harper MT, Rahman T. Molecules 25 E5501 (2020)
  592. Novel piperazine based compounds as potential inhibitors for SARS-CoV-2 Protease Enzyme: Synthesis and molecular docking study. Omar AZ, Mosa TM, El-Sadany SK, Hamed EA, El-Atawy M. J Mol Struct 1245 131020 (2021)
  593. Phenolic compounds as promising drug candidates against COVID-19 - an integrated molecular docking and dynamics simulation study. Davella R, Gurrapu S, Mamidala E. Mater Today Proc 51 522-527 (2022)
  594. Polyphenols as alternative treatments of COVID-19. Wu Y, Pegan SD, Crich D, Desrochers E, Starling EB, Hansen MC, Booth C, Nicole Mullininx L, Lou L, Chang KY, Xie ZR. Comput Struct Biotechnol J 19 5371-5380 (2021)
  595. Predicted coronavirus Nsp5 protease cleavage sites in the human proteome. Scott BM, Lacasse V, Blom DG, Tonner PD, Blom NS. BMC Genom Data 23 25 (2022)
  596. Rational design of potent anti-COVID-19 main protease drugs: An extensive multi-spectrum in silico approach. Ahmad S, Waheed Y, Ismail S, Najmi MH, Ansari JK. J Mol Liq 330 115636 (2021)
  597. Re-Purposing of Hepatitis C Virus FDA Approved Direct Acting Antivirals as Potential SARS-CoV-2 Protease Inhibitors. Uddin R, Jalal K, Khan K, Ul-Haq Z. J Mol Struct 131920 (2021)
  598. Structure-based virtual screening suggests inhibitors of 3-Chymotrypsin-Like Protease of SARS-CoV-2 from Vernonia amygdalina and Occinum gratissimum. Gyebi GA, Elfiky AA, Ogunyemi OM, Ibrahim IM, Adegunloye AP, Adebayo JO, Olaiya CO, Ocheje JO, Fabusiwa MM. Comput Biol Med 136 104671 (2021)
  599. Support Vector Machine as a Supervised Learning for the Prioritization of Novel Potential SARS-CoV-2 Main Protease Inhibitors. Mekni N, Coronnello C, Langer T, Rosa M, Perricone U. Int J Mol Sci 22 7714 (2021)
  600. 1,2,4 triazolo[1,5-a] pyrimidin-7-ones as novel SARS-CoV-2 Main protease inhibitors: In silico screening and molecular dynamics simulation of potential COVID-19 drug candidates. Kavitha K, Sivakumar S, Ramesh B. Biophys Chem 267 106478 (2020)
  601. In silico identification of SARS-CoV-2 spike (S) protein-ACE2 complex inhibitors from eight Tecoma species and cultivars analyzed by LC-MS. El Hawary SS, Khattab AR, Marzouk HS, El Senousy AS, Alex MGA, Aly OM, Teleb M, Abdelmohsen UR. RSC Adv 10 43103-43108 (2020)
  602. A genetically encoded BRET-based SARS-CoV-2 Mpro protease activity sensor. Geethakumari AM, Ahmed WS, Rasool S, Fatima A, Nasir Uddin SM, Aouida M, Biswas KH. Commun Chem 5 117 (2022)
  603. A novel framework integrating AI model and enzymological experiments promotes identification of SARS-CoV-2 3CL protease inhibitors and activity-based probe. Hu F, Wang L, Hu Y, Wang D, Wang W, Jiang J, Li N, Yin P. Brief Bioinform 22 bbab301 (2021)
  604. A systematic exploration of boceprevir-based main protease inhibitors as SARS-CoV-2 antivirals. Alugubelli YR, Geng ZZ, Yang KS, Shaabani N, Khatua K, Ma XR, Vatansever EC, Cho CC, Ma Y, Xiao J, Blankenship LR, Yu G, Sankaran B, Li P, Allen R, Ji H, Xu S, Liu WR. Eur J Med Chem 240 114596 (2022)
  605. Accelerating the repurposing of FDA-approved drugs against coronavirus disease-19 (COVID-19). De Vita S, Chini MG, Lauro G, Bifulco G. RSC Adv 10 40867-40875 (2020)
  606. Alkyne Derivatives of SARS-CoV-2 Main Protease Inhibitors Including Nirmatrelvir Inhibit by Reacting Covalently with the Nucleophilic Cysteine. Brewitz L, Dumjahn L, Zhao Y, Owen CD, Laidlaw SM, Malla TR, Nguyen D, Lukacik P, Salah E, Crawshaw AD, Warren AJ, Trincao J, Strain-Damerell C, Carroll MW, Walsh MA, Schofield CJ. J Med Chem 66 2663-2680 (2023)
  607. Antibody Response to Severe Acute Respiratory Syndrome- Corona Virus 2, Diagnostic and Therapeutic Implications. Ishay Y, Kessler A, Schwarts A, Ilan Y. Hepatol Commun 4 1731-1743 (2020)
  608. Antiviral activities of natural compounds and ionic liquids to inhibit the Mpro of SARS-CoV-2: a computational approach. Palanisamy K, Rubavathy SME, Prakash M, Thilagavathi R, Hosseini-Zare MS, Selvam C. RSC Adv 12 3687-3695 (2022)
  609. Bioinformatic study to discover natural molecules with activity against COVID-19. Singh S, Florez H. F1000Res 9 1203 (2020)
  610. Combination of system biology to probe the anti-viral activity of andrographolide and its derivative against COVID-19. Khanal P, Dey YN, Patil R, Chikhale R, Wanjari MM, Gurav SS, Patil BM, Srivastava B, Gaidhani SN. RSC Adv 11 5065-5079 (2021)
  611. Comparison of clinically approved molecules on SARS-CoV-2 drug target proteins: a molecular docking study. Çubuk H, Özbİl M. Turk J Chem 45 35-41 (2021)
  612. Computational basis of SARS-CoV 2 main protease inhibition: an insight from molecular dynamics simulation based findings. Avti P, Chauhan A, Shekhar N, Prajapat M, Sarma P, Kaur H, Bhattacharyya A, Kumar S, Prakash A, Sharma S, Medhi B. J Biomol Struct Dyn 40 8894-8904 (2022)
  613. Conformational Dynamics in the Interaction of SARS-CoV-2 Papain-like Protease with Human Interferon-Stimulated Gene 15 Protein. Leite WC, Weiss KL, Phillips G, Zhang Q, Qian S, Tsutakawa SE, Coates L, O'Neill H. J Phys Chem Lett 12 5608-5615 (2021)
  614. Design of modular autoproteolytic gene switches responsive to anti-coronavirus drug candidates. Franko N, Teixeira AP, Xue S, Charpin-El Hamri G, Fussenegger M. Nat Commun 12 6786 (2021)
  615. Discovery of 4'-O-methylscutellarein as a potent SARS-CoV-2 main protease inhibitor. Wu Q, Yan S, Wang Y, Li M, Xiao Y, Li Y. Biochem Biophys Res Commun 604 76-82 (2022)
  616. Evaluation of the anti-SARS-CoV-2 properties of essential oils and aromatic extracts. Strub DJ, Talma M, Strub M, Rut W, Zmudzinski M, Brud W, Neyts J, Vangeel L, Zhang L, Sun X, Lv Z, Nayak D, Olsen SK, Hilgenfeld R, Jochmans D, Drąg M. Sci Rep 12 14230 (2022)
  617. Factual insights of the allosteric inhibition mechanism of SARS-CoV-2 main protease by quercetin: an in silico analysis. Verma S, Pandey AK. 3 Biotech 11 67 (2021)
  618. Identification of Cysteine 270 as a Novel Site for Allosteric Modulators of SARS-CoV-2 Papain-Like Protease. Hu H, Wang Q, Su H, Shao Q, Zhao W, Chen G, Li M, Xu Y. Angew Chem Int Ed Engl 61 e202212378 (2022)
  619. Identification of known drugs as potential SARS-CoV-2 Mpro inhibitors using ligand- and structure-based virtual screening. Federico LB, Silva GM, da Silva Hage-Melim LI, Gomes SQ, Barcelos MP, Galindo Francischini IA, Tomich de Paula da Silva CH. Future Med Chem 13 1353-1366 (2021)
  620. In Silico Identification of Multi-target Anti-SARS-CoV-2 Peptides from Quinoa Seed Proteins. Wong FC, Ong JH, Kumar DT, Chai TT. Int J Pept Res Ther 27 1837-1847 (2021)
  621. In Vitro Anti-SARS-CoV-2 Activity of Selected Metal Compounds and Potential Molecular Basis for Their Actions Based on Computational Study. Cirri D, Marzo T, Tolbatov I, Marrone A, Saladini F, Vicenti I, Dragoni F, Boccuto A, Messori L. Biomolecules 11 1858 (2021)
  622. In vitro and in vivo evaluation of the main protease inhibitor FB2001 against SARS-CoV-2. Shang W, Dai W, Yao C, Xu L, Tao X, Su H, Li J, Xie X, Xu Y, Hu M, Xie D, Jiang H, Zhang L, Liu H. Antiviral Res 208 105450 (2022)
  623. Inhibition of SARS-CoV-2 replication by zinc gluconate in combination with hinokitiol. Tao X, Zhang L, Du L, Lu K, Zhao Z, Xie Y, Li X, Huang S, Wang PH, Pan JA, Xia W, Dai J, Mao ZW. J Inorg Biochem 231 111777 (2022)
  624. Key dimer interface residues impact the catalytic activity of 3CLpro, the main protease of SARS-CoV-2. Ferreira JC, Fadl S, Rabeh WM. J Biol Chem 298 102023 (2022)
  625. Ligand-based quantitative structural assessments of SARS-CoV-2 3CLpro inhibitors: An analysis in light of structure-based multi-molecular modeling evidences. Adhikari N, Banerjee S, Baidya SK, Ghosh B, Jha T. J Mol Struct 1251 132041 (2022)
  626. Michael Acceptors Tuned by the Pivotal Aromaticity of Histidine to Block COVID-19 Activity. Poater A. J Phys Chem Lett 11 6262-6265 (2020)
  627. More than just a ticket canceller: the mitochondrial processing peptidase tailors complex precursor proteins at internal cleavage sites. Friedl J, Knopp MR, Groh C, Paz E, Gould SB, Herrmann JM, Boos F. Mol Biol Cell 31 2657-2668 (2020)
  628. Proposal of novel natural inhibitors of severe acute respiratory syndrome coronavirus 2 main protease: Molecular docking and ab initio fragment molecular orbital calculations. Shaji D, Yamamoto S, Saito R, Suzuki R, Nakamura S, Kurita N. Biophys Chem 275 106608 (2021)
  629. Repurposing of FDA-approved drugs as potential inhibitors of the SARS-CoV-2 main protease: Molecular insights into improved therapeutic discovery. Ray AK, Sen Gupta PS, Panda SK, Biswal S, Bhattacharya U, Rana MK. Comput Biol Med 142 105183 (2022)
  630. Repurposing of renin inhibitors as SARS-COV-2 main protease inhibitors: A computational study. Refaey RH, El-Ashrey MK, Nissan YM. Virology 554 48-54 (2021)
  631. SARS-CoV-2 Genome from the Khyber Pakhtunkhwa Province of Pakistan. Khan MT, Ali S, Khan AS, Muhammad N, Khalil F, Ishfaq M, Irfan M, Al-Sehemi AG, Muhammad S, Malik A, Khan TA, Wei DQ. ACS Omega 6 6588-6599 (2021)
  632. Screening of potent phytochemical inhibitors against SARS-CoV-2 protease and its two Asian mutants. Muhammad I, Rahman N, Gul-E-Nayab, Niaz S, Basharat Z, Rastrelli L, Jayanthi S, Efferth T, Khan H. Comput Biol Med 133 104362 (2021)
  633. Selection of SARS-CoV-2 main protease inhibitor using structure-based virtual screening. Hakami AR, Bakheit AH, Almehizia AA, Ghazwani MY. Future Med Chem 14 61-79 (2022)
  634. Unveiling the Effect of Low pH on the SARS-CoV-2 Main Protease by Molecular Dynamics Simulations. Barazorda-Ccahuana HL, Nedyalkova M, Mas F, Madurga S. Polymers (Basel) 13 3823 (2021)
  635. Water-Triggered, Irreversible Conformational Change of SARS-CoV-2 Main Protease on Passing from the Solid State to Aqueous Solution. Ansari N, Rizzi V, Carloni P, Parrinello M. J Am Chem Soc 143 12930-12934 (2021)
  636. pH profiles of 3-chymotrypsin-like protease (3CLpro) from SARS-CoV-2 elucidate its catalytic mechanism and a histidine residue critical for activity. Al Adem K, Ferreira JC, Fadl S, Rabeh WM. J Biol Chem 299 102790 (2023)
  637. De novo ssRNA Aptamers against the SARS-CoV-2 Main Protease: In Silico Design and Molecular Dynamics Simulation. Morena F, Argentati C, Tortorella I, Emiliani C, Martino S. Int J Mol Sci 22 6874 (2021)
  638. In silico exploration of novel protease inhibitors against coronavirus 2019 (COVID-19). Aghaee E, Ghodrati M, Ghasemi JB. Inform Med Unlocked 23 100516 (2021)
  639. A COVID moonshot: assessment of ligand binding to the SARS-CoV-2 main protease by saturation transfer difference NMR spectroscopy. Kantsadi AL, Cattermole E, Matsoukas MT, Spyroulias GA, Vakonakis I. J Biomol NMR 75 167-178 (2021)
  640. A Multiplex One-Step RT-qPCR Protocol to Detect SARS-CoV-2 in NP/OP Swabs and Saliva. Bland J, Kavanaugh A, Hong LK, Perez O, Kadkol SS. Curr Protoc 1 e145 (2021)
  641. A Study of 3CLpros as Promising Targets against SARS-CoV and SARS-CoV-2. Jo S, Kim S, Yoo J, Kim MS, Shin DH. Microorganisms 9 756 (2021)
  642. A comparison of Remdesivir versus gold cluster in COVID-19 animal model: A better therapeutic outcome of gold cluster. He Z, Ye F, Zhang C, Fan J, Du Z, Zhao W, Yuan Q, Niu W, Gao F, He B, Cao P, Zhao L, Gao X, Gao X, Sun B, Dong Y, Zhao J, Qi J, Liang XJ, Jiang H, Gong Y, Tan W, Gao X. Nano Today 44 101468 (2022)
  643. A highly sensitive cell-based luciferase assay for high-throughput automated screening of SARS-CoV-2 nsp5/3CLpro inhibitors. Chen KY, Krischuns T, Varga LO, Harigua-Souiai E, Paisant S, Zettor A, Chiaravalli J, Delpal A, Courtney D, O'Brien A, Baker SC, Decroly E, Isel C, Agou F, Jacob Y, Blondel A, Naffakh N. Antiviral Res 201 105272 (2022)
  644. Agathisflavone, a natural biflavonoid that inhibits SARS-CoV-2 replication by targeting its proteases. Chaves OA, Lima CR, Fintelman-Rodrigues N, Sacramento CQ, de Freitas CS, Vazquez L, Temerozo JR, Rocha MEN, Dias SSG, Carels N, Bozza PT, Castro-Faria-Neto HC, Souza TML. Int J Biol Macromol 222 1015-1026 (2022)
  645. An online repository of solvation thermodynamic and structural maps of SARS-CoV-2 targets. Olson B, Cruz A, Chen L, Ghattas M, Ji Y, Huang K, Ayoub S, Luchko T, McKay DJ, Kurtzman T. J Comput Aided Mol Des 34 1219-1228 (2020)
  646. Biochemical and structural insights into SARS-CoV-2 polyprotein processing by Mpro. Yadav R, Courouble VV, Dey SK, Harrison JJEK, Timm J, Hopkins JB, Slack RL, Sarafianos SG, Ruiz FX, Griffin PR, Arnold E. Sci Adv 8 eadd2191 (2022)
  647. Biologically guided isolation and ADMET profile of new factor Xa inhibitors from Glycyrrhiza glabra roots using in vitro and in silico approaches. Ibrahim RS, Mahrous RSR, Abu El-Khair RM, Ross SA, Omar AA, Fathy HM. RSC Adv 11 9995-10001 (2021)
  648. Chemical constituents from Limonium tubiflorum and their in silico evaluation as potential antiviral agents against SARS-CoV-2. Hassan AR, Sanad IM, Allam AE, Abouelela ME, Sayed AM, Emam SS, El-Kousy SM, Shimizu K. RSC Adv 11 32346-32357 (2021)
  649. Combined Computational NMR and Molecular Docking Scrutiny of Potential Natural SARS-CoV-2 Mpro Inhibitors. Semenov VA, Krivdin LB. J Phys Chem B 126 2173-2187 (2022)
  650. Comparative protein structure network analysis on 3CLpro from SARS-CoV-1 and SARS-CoV-2. Lata S, Akif M. Proteins 89 1216-1225 (2021)
  651. Crystal-structures-guided design of fragment-based drugs for inhibiting the main protease of SARS-CoV-2. Luan B, Huynh T. Proteins 90 1081-1089 (2022)
  652. DINC-COVID: A webserver for ensemble docking with flexible SARS-CoV-2 proteins. Hall-Swan S, Devaurs D, Rigo MM, Antunes DA, Kavraki LE, Zanatta G. Comput Biol Med 139 104943 (2021)
  653. Detailed Insights into the Inhibitory Mechanism of New Ebselen Derivatives against Main Protease (Mpro) of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). Sahoo P, Lenka DR, Batabyal M, Pain PK, Kumar S, Manna D, Kumar A. ACS Pharmacol Transl Sci 6 171-180 (2023)
  654. Discovery of Diverse Natural Products as Inhibitors of SARS-CoV-2 Mpro Protease through Virtual Screening. Rubio-Martínez J, Jiménez-Alesanco A, Ceballos-Laita L, Ortega-Alarcón D, Vega S, Calvo C, Benítez C, Abian O, Velázquez-Campoy A, Thomson TM, Granadino-Roldán JM, Gómez-Gutiérrez P, Pérez JJ. J Chem Inf Model 61 6094-6106 (2021)
  655. Discovery of novel oxazole-based macrocycles as anti-coronaviral agents targeting SARS-CoV-2 main protease. Al-Wahaibi LH, Mostafa A, Mostafa YA, Abou-Ghadir OF, Abdelazeem AH, Gouda AM, Kutkat O, Abo Shama NM, Shehata M, Gomaa HAM, Abdelrahman MH, Mohamed FAM, Gu X, Ali MA, Trembleau L, Youssif BGM. Bioorg Chem 116 105363 (2021)
  656. Docking-based virtual screening studies aiming at the covalent inhibition of SARS-CoV-2 MPro by targeting the cysteine 145. Soulère L, Barbier T, Queneau Y. Comput Biol Chem 92 107463 (2021)
  657. Ensitrelvir is effective against SARS-CoV-2 3CL protease mutants circulating globally. Kawashima S, Matsui Y, Adachi T, Morikawa Y, Inoue K, Takebayashi S, Nobori H, Rokushima M, Tachibana Y, Kato T. Biochem Biophys Res Commun 645 132-136 (2023)
  658. Evaluation of the Antiviral Activity of Sitagliptin-Glatiramer Acetate Nano-Conjugates against SARS-CoV-2 Virus. Alhakamy NA, Ahmed OAA, Ibrahim TS, Aldawsari HM, Eljaaly K, Fahmy UA, Alaofi AL, Caraci F, Caruso G. Pharmaceuticals (Basel) 14 178 (2021)
  659. Exploring naphthyl derivatives as SARS-CoV papain-like protease (PLpro) inhibitors and its implications in COVID-19 drug discovery. Amin SA, Ghosh K, Singh S, Qureshi IA, Jha T, Gayen S. Mol Divers 26 215-228 (2022)
  660. Fluorogenic reporter enables identification of compounds that inhibit SARS-CoV-2. Yang J, Xiao Y, Lidsky PV, Wu CT, Bonser LR, Peng S, Garcia-Knight MA, Tassetto M, Chung CI, Li X, Nakayama T, Lee IT, Nayak JV, Ghias K, Hargett KL, Shoichet BK, Erle DJ, Jackson PK, Andino R, Shu X. Nat Microbiol 8 121-134 (2023)
  661. Food phytochemicals, epigallocatechin gallate and myricetin, covalently bind to the active site of the coronavirus main protease in vitro. Kato Y, Higashiyama A, Takaoka E, Nishikawa M, Ikushiro S. Adv Redox Res 3 100021 (2021)
  662. Genetic Risk Factors for the Development of COVID-19 Coronavirus Infection. Glotov OS, Chernov AN, Scherbak SG, Baranov VS. Russ J Genet 57 878-892 (2021)
  663. Identification of SARS-CoV-2 Main Protease Inhibitors Using Structure Based Virtual Screening and Molecular Dynamics Simulation of DrugBank Database. Debnath P, Bhaumik S, Sen D, Muttineni RK, Debnath S. ChemistrySelect 6 4991-5013 (2021)
  664. Identification of high affinity and low molecular alternatives of boceprevir against SARS-CoV-2 main protease: A virtual screening approach. Borkotoky S, Banerjee M, Modi GP, Dubey VK. Chem Phys Lett 770 138446 (2021)
  665. In silico evidence of beauvericin antiviral activity against SARS-CoV-2. Al Khoury C, Bashir Z, Tokajian S, Nemer N, Merhi G, Nemer G. Comput Biol Med 141 105171 (2022)
  666. Peptide Amphiphile Mediated Co-assembly for Nanoplasmonic Sensing. Jin Z, Li Y, Li K, Zhou J, Yeung J, Ling C, Yim W, He T, Cheng Y, Xu M, Creyer MN, Chang YC, Fajtová P, Retout M, Qi B, Li S, O'Donoghue AJ, Jokerst JV. Angew Chem Int Ed Engl 62 e202214394 (2023)
  667. Phytochemicals of Rhus spp. as Potential Inhibitors of the SARS-CoV-2 Main Protease: Molecular Docking and Drug-Likeness Study. Sherif YE, Gabr SA, Hosny NM, Alghadir AH, Alansari R. Evid Based Complement Alternat Med 2021 8814890 (2021)
  668. Plant Metabolites as SARS-CoV-2 Inhibitors Candidates: In Silico and In Vitro Studies. Lopes AJO, Calado GP, Fróes YN, Araújo SA, França LM, Paes AMA, Morais SV, Rocha CQD, Vasconcelos CC. Pharmaceuticals (Basel) 15 1045 (2022)
  669. Probing CAS database as prospective antiviral agents against SARS-CoV-2 main protease. Zia K, Khan SA, Ashraf S, Nur-E-Alam M, Ahmed S, Ul-Haq Z. J Mol Struct 1231 129953 (2021)
  670. Protease-Responsive Peptide-Conjugated Mitochondrial-Targeting AIEgens for Selective Imaging and Inhibition of SARS-CoV-2-Infected Cells. Cheng Y, Clark AE, Zhou J, He T, Li Y, Borum RM, Creyer MN, Xu M, Jin Z, Zhou J, Yim W, Wu Z, Fajtová P, O'Donoghue AJ, Carlin AF, Jokerst JV. ACS Nano 16 12305-12317 (2022)
  671. Purification and Characterization of a Novel Thermostable Papain Inhibitor from Moringa oleifera with Antimicrobial and Anticoagulant Properties. Cotabarren J, Claver S, Payrol JA, Garcia-Pardo J, Obregón WD. Pharmaceutics 13 512 (2021)
  672. Rational identification of small molecules derived from 9,10-dihydrophenanthrene as potential inhibitors of 3CLpro enzyme for COVID-19 therapy: a computer-aided drug design approach. Daoui O, Elkhattabi S, Chtita S. Struct Chem 33 1667-1690 (2022)
  673. Structural Basis of Main Proteases of Coronavirus Bound to Drug Candidate PF-07304814. Li J, Lin C, Zhou X, Zhong F, Zeng P, McCormick PJ, Jiang H, Zhang J. J Mol Biol 434 167706 (2022)
  674. Structural Insights into the Cofactor Role of Heparin/Heparan Sulfate in Binding between the SARS-CoV-2 Spike Protein and Host Angiotensin-Converting Enzyme II. Wang X, Bie L, Gao J. J Chem Inf Model 62 656-667 (2022)
  675. Structure-based lead optimization of peptide-based vinyl methyl ketones as SARS-CoV-2 main protease inhibitors. Previti S, Ettari R, Calcaterra E, Di Maro S, Hammerschmidt SJ, Müller C, Ziebuhr J, Schirmeister T, Cosconati S, Zappalà M. Eur J Med Chem 247 115021 (2023)
  676. SuperNatural 3.0-a database of natural products and natural product-based derivatives. Gallo K, Kemmler E, Goede A, Becker F, Dunkel M, Preissner R, Banerjee P. Nucleic Acids Res 51 D654-D659 (2023)
  677. The Inhibition of SARS-CoV-2 3CL Mpro by Graphene and Its Derivatives from Molecular Dynamics Simulations. Wang J, Yu Y, Leng T, Li Y, Lee ST. ACS Appl Mater Interfaces 14 191-200 (2022)
  678. The Se-S Bond Formation in the Covalent Inhibition Mechanism of SARS-CoV-2 Main Protease by Ebselen-like Inhibitors: A Computational Study. Parise A, Romeo I, Russo N, Marino T. Int J Mol Sci 22 9792 (2021)
  679. Theoretical and experimental study of interaction of macroheterocyclic compounds with ORF3a of SARS-CoV-2. Lebedeva NS, Gubarev YA, Mamardashvili GM, Zaitceva SV, Zdanovich SA, Malyasova AS, Romanenko JV, Koifman MO, Koifman OI. Sci Rep 11 19481 (2021)
  680. Thiol-sensitive probe enables dynamic electrochemical assembly of serum protein for detecting SARS-Cov-2 marker protease in clinical samples. Zhang K, Fan Z, Ding Y, Li J, Li H. Biosens Bioelectron 194 113579 (2021)
  681. Ultrafast one-minute electronic detection of SARS-CoV-2 infection by 3CLpro enzymatic activity in untreated saliva samples. Borberg E, Granot E, Patolsky F. Nat Commun 13 6375 (2022)
  682. Unconventional secretion of unglycosylated ORF8 is critical for the cytokine storm during SARS-CoV-2 infection. Lin X, Fu B, Xiong Y, Xing N, Xue W, Guo D, Zaky M, Pavani K, Kunec D, Trimpert J, Wu H. PLoS Pathog 19 e1011128 (2023)
  683. Unleashing the potential of cell membrane-based nanoparticles for COVID-19 treatment and vaccination. Pereira-Silva M, Chauhan G, Shin MD, Hoskins C, Madou MJ, Martinez-Chapa SO, Steinmetz NF, Veiga F, Paiva-Santos AC. Expert Opin Drug Deliv 18 1395-1414 (2021)
  684. (+)-Usnic Acid and Its Derivatives as Inhibitors of a Wide Spectrum of SARS-CoV-2 Viruses. Filimonov AS, Yarovaya OI, Zaykovskaya AV, Rudometova NB, Shcherbakov DN, Chirkova VY, Baev DS, Borisevich SS, Luzina OA, Pyankov OV, Maksyutov RA, Salakhutdinov NF. Viruses 14 2154 (2022)
  685. A hijack mechanism of Indian SARS-CoV-2 isolates for relapsing contemporary antiviral therapeutics. Prathiviraj R, Saranya S, Bharathi M, Chellapandi P. Comput Biol Med 132 104315 (2021)
  686. A new generation Mpro inhibitor with potent activity against SARS-CoV-2 Omicron variants. Huang C, Shuai H, Qiao J, Hou Y, Zeng R, Xia A, Xie L, Fang Z, Li Y, Yoon C, Huang Q, Hu B, You J, Quan B, Zhao X, Guo N, Zhang S, Ma R, Zhang J, Wang Y, Yang R, Zhang S, Nan J, Xu H, Wang F, Lei J, Chu H, Yang S. Signal Transduct Target Ther 8 128 (2023)
  687. A reporter cell line for the automated quantification of SARS-CoV-2 infection in living cells. Desmarets L, Callens N, Hoffmann E, Danneels A, Lavie M, Couturier C, Dubuisson J, Belouzard S, Rouillé Y. Front Microbiol 13 1031204 (2022)
  688. Analysis of SARS-CoV-2 mutations in the main viral protease (NSP5) and its implications on the vaccine designing strategies. Yashvardhini N, Kumar A, Jha DK. Vacunas 23 S1-S13 (2022)
  689. Analyzing knowledge entities about COVID-19 using entitymetrics. Yu Q, Wang Q, Zhang Y, Chen C, Ryu H, Park N, Baek JE, Li K, Wu Y, Li D, Xu J, Liu M, Yang JJ, Zhang C, Lu C, Zhang P, Li X, Chen B, Ebeid IA, Fensel J, Min C, Zhai Y, Song M, Ding Y, Bu Y. Scientometrics 126 4491-4509 (2021)
  690. Anti-Inflammatory, Antiallergic and COVID-19 Main Protease (Mpro) Inhibitory Activities of Butenolides from a Marine-Derived Fungus Aspergillus costaricaensis. Uras IS, Korinek M, Albohy A, Abdulrazik BS, Lin W, Ebada SS, Konuklugil B. ChemistrySelect 7 e202200130 (2022)
  691. Autoprocessing and oxyanion loop reorganization upon GC373 and nirmatrelvir binding of monomeric SARS-CoV-2 main protease catalytic domain. Nashed NT, Kneller DW, Coates L, Ghirlando R, Aniana A, Kovalevsky A, Louis JM. Commun Biol 5 976 (2022)
  692. Binding of SARS-CoV Covalent Non-Covalent Inhibitors to the SARS-CoV-2 Papain-Like Protease and Ovarian Tumor Domain Deubiquitinases. Sivakumar D, Stein M. Biomolecules 11 802 (2021)
  693. Bio-Guided Isolation of SARS-CoV-2 Main Protease Inhibitors from Medicinal Plants: In Vitro Assay and Molecular Dynamics. Abdallah HM, El-Halawany AM, Darwish KM, Algandaby MM, Mohamed GA, Ibrahim SRM, Koshak AE, Elhady SS, Fadil SA, Alqarni AA, Abdel-Naim AB, Elfaky MA. Plants (Basel) 11 1914 (2022)
  694. Celastrol: A lead compound that inhibits SARS-CoV-2 replication, the activity of viral and human cysteine proteases, and virus-induced IL-6 secretion. Fuzo CA, Martins RB, Fraga-Silva TFC, Amstalden MK, Canassa De Leo T, Souza JP, Lima TM, Faccioli LH, Okamoto DN, Juliano MA, França SC, Juliano L, Bonato VLD, Arruda E, Dias-Baruffi M. Drug Dev Res 83 1623-1640 (2022)
  695. Comparative MD Study of Inhibitory Activity of Opaganib and Adamantane-Isothiourea Derivatives toward COVID-19 Main Protease Mpro. Jovanović JĐ, Antonijević M, El-Emam AA, Marković Z. ChemistrySelect 6 8603-8610 (2021)
  696. Computational Identification of Possible Allosteric Sites and Modulators of the SARS-CoV-2 Main Protease. DasGupta D, Chan WKB, Carlson HA. J Chem Inf Model 62 618-626 (2022)
  697. Computational Repurposing of Drugs and Natural Products Against SARS-CoV-2 Main Protease (Mpro) as Potential COVID-19 Therapies. Piplani S, Singh P, Petrovsky N, Winkler DA. Front Mol Biosci 9 781039 (2022)
  698. Computational and In Vitro Experimental Investigations Reveal Anti-Viral Activity of Licorice and Glycyrrhizin against Severe Acute Respiratory Syndrome Coronavirus 2. Tolah AM, Altayeb LM, Alandijany TA, Dwivedi VD, El-Kafrawy SA, Azhar EI. Pharmaceuticals (Basel) 14 1216 (2021)
  699. Computational screening of FDA approved drugs of fungal origin that may interfere with SARS-CoV-2 spike protein activation, viral RNA replication, and post-translational modification: a multiple target approach. Singh R, Gautam A, Chandel S, Sharma V, Ghosh A, Dey D, Roy S, Ravichandiran V, Ghosh D. In Silico Pharmacol 9 27 (2021)
  700. Dental workers in front-line of COVID-19: an in silico evaluation targeting their prevention. Sette-DE-Souza PH, Costa MJF, Amaral-Machado L, Araújo FADC, Almeida Filho AT, Lima LRA. J Appl Oral Sci 29 e20200678 (2021)
  701. Diamond Light Source: contributions to SARS-CoV-2 biology and therapeutics. Walsh MA, Grimes JM, Stuart DI. Biochem Biophys Res Commun 538 40-46 (2021)
  702. Discovery of C-12 dithiocarbamate andrographolide analogues as inhibitors of SARS-CoV-2 main protease: In vitro and in silico studies. Nutho B, Wilasluck P, Deetanya P, Wangkanont K, Arsakhant P, Saeeng R, Rungrotmongkol T. Comput Struct Biotechnol J 20 2784-2797 (2022)
  703. Discovery of TCMs and derivatives against the main protease of SARS-CoV-2 via high throughput screening, ADMET analysis, and inhibition assay in vitro. Qi X, Li B, Omarini AB, Gand M, Zhang X, Wang J. J Mol Struct 1268 133709 (2022)
  704. Discovery of novel SARS-CoV-2 inhibitors targeting the main protease Mpro by virtual screenings and hit optimization. Mercorelli B, Desantis J, Celegato M, Bazzacco A, Siragusa L, Benedetti P, Eleuteri M, Croci F, Cruciani G, Goracci L, Loregian A. Antiviral Res 204 105350 (2022)
  705. Dynamic allostery highlights the evolutionary differences between the CoV-1 and CoV-2 main proteases. Campitelli P, Lu J, Ozkan SB. Biophys J 121 1483-1492 (2022)
  706. Epidemiological associations with genomic variation in SARS-CoV-2. Rahnavard A, Dawson T, Clement R, Stearrett N, Pérez-Losada M, Crandall KA. Sci Rep 11 23023 (2021)
  707. Exploiting Existing Molecular Scaffolds for Long-Term COVID Treatment. Kumar K, Lupoli TJ. ACS Med Chem Lett 11 1357-1360 (2020)
  708. Harnessing Natural Products by a Pharmacophore-Oriented Semisynthesis Approach for the Discovery of Potential Anti-SARS-CoV-2 Agents. Zhou YF, Yan BC, Yang Q, Long XY, Zhang DQ, Luo RH, Wang HY, Sun HD, Xue XS, Zheng YT, Puno PT. Angew Chem Int Ed Engl 61 e202201684 (2022)
  709. Hordatines as a Potential Inhibitor of COVID-19 Main Protease and RNA Polymerase: An In-Silico Approach. Dahab MA, Hegazy MM, Abbass HS. Nat Prod Bioprospect 10 453-462 (2020)
  710. Impact of Remdesivir Incorporation along the Primer Strand on SARS-CoV-2 RNA-Dependent RNA Polymerase. Naseem-Khan S, Berger MB, Leddin EM, Maghsoud Y, Cisneros GA. J Chem Inf Model 62 2456-2465 (2022)
  711. Insights from a computational analysis of the SARS-CoV-2 Omicron variant: Host-pathogen interaction, pathogenicity, and possible drug therapeutics. Parvez MSA, Saha MK, Ibrahim M, Araf Y, Islam MT, Ohtsuki G, Hosen MJ. Immun Inflamm Dis 10 e639 (2022)
  712. Integrative multiomics and in silico analysis revealed the role of ARHGEF1 and its screened antagonist in mild and severe COVID-19 patients. Jha P, Singh P, Arora S, Sultan A, Nayek A, Ponnusamy K, Syed MA, Dohare R, Chopra M. J Cell Biochem 123 673-690 (2022)
  713. Investigating the Potential Anti-SARS-CoV-2 and Anti-MERS-CoV Activities of Yellow Necklacepod among Three Selected Medicinal Plants: Extraction, Isolation, Identification, In Vitro, Modes of Action, and Molecular Docking Studies. Abd-Alla HI, Kutkat O, Sweelam HM, Eldehna WM, Mostafa MA, Ibrahim MT, Moatasim Y, GabAllah M, Al-Karmalawy AA. Metabolites 12 1109 (2022)
  714. Investigating the structure-activity relationship of marine polycyclic batzelladine alkaloids as promising inhibitors for SARS-CoV-2 main protease (Mpro). Elgohary AM, Elfiky AA, Pereira F, Abd El-Aziz TM, Sobeh M, Arafa RK, El-Demerdash A. Comput Biol Med 147 105738 (2022)
  715. Large library docking for novel SARS-CoV-2 main protease non-covalent and covalent inhibitors. Fink EA, Bardine C, Gahbauer S, Singh I, Detomasi TC, White K, Gu S, Wan X, Chen J, Ary B, Glenn I, O'Connell J, O'Donnell H, Fajtová P, Lyu J, Vigneron S, Young NJ, Kondratov IS, Alisoltani A, Simons LM, Lorenzo-Redondo R, Ozer EA, Hultquist JF, O'Donoghue AJ, Moroz YS, Taunton J, Renslo AR, Irwin JJ, García-Sastre A, Shoichet BK, Craik CS. Protein Sci 32 e4712 (2023)
  716. Machine learning enabled identification of potential SARS-CoV-2 3CLpro inhibitors based on fixed molecular fingerprints and Graph-CNN neural representations. Haneczok J, Delijewski M. J Biomed Inform 119 103821 (2021)
  717. Mechanism of Caspase-1 Inhibition by Four Anti-inflammatory Drugs Used in COVID-19 Treatment. Caruso F, Pedersen JZ, Incerpi S, Kaur S, Belli S, Florea RM, Rossi M. Int J Mol Sci 23 1849 (2022)
  718. Multi-Level Biological Network Analysis and Drug Repurposing Based on Leukocyte Transcriptomics in Severe COVID-19: In Silico Systems Biology to Precision Medicine. Sagulkoo P, Chuntakaruk H, Rungrotmongkol T, Suratanee A, Plaimas K. J Pers Med 12 1030 (2022)
  719. Naturally occurring anthraquinones as potential inhibitors of SARS-CoV-2 main protease: an integrated computational study. Das S, Singh A, Samanta SK, Singha Roy A. Biologia (Bratisl) 77 1121-1134 (2022)
  720. Novel hybrid antiviral VTRRT-13V2.1 against SARS-CoV2 main protease: retro-combinatorial synthesis and molecular dynamics analysis. Tiwari V. Heliyon 6 e05122 (2020)
  721. Peptidic Sulfhydryl for Interfacing Nanocrystals and Subsequent Sensing of SARS-CoV-2 Protease. Jin Z, Yeung J, Zhou J, Cheng Y, Li Y, Mantri Y, He T, Yim W, Xu M, Wu Z, Fajtova P, Creyer MN, Moore C, Fu L, Penny WF, O'Donoghue AJ, Jokerst JV. Chem Mater 34 1259-1268 (2022)
  722. Plug-and-play polymer microfluidic chips for hydrated, room temperature, fixed-target serial crystallography. Gilbile D, Shelby ML, Lyubimov AY, Wierman JL, Monteiro DCF, Cohen AE, Russi S, Coleman MA, Frank M, Kuhl TL. Lab Chip 21 4831-4845 (2021)
  723. Potential Repurposed Therapeutics and New Vaccines against COVID-19 and Their Clinical Status. Banday AH, Shameem SA, Ajaz SJ. SLAS Discov 25 1097-1107 (2020)
  724. Potential combination therapy using twenty phytochemicals from twenty plants to prevent SARS- CoV-2 infection: An in silico Approach. Dey D, Dey N, Ghosh S, Chandrasekaran N, Mukherjee A, Thomas J. Virusdisease 32 108-116 (2021)
  725. Potential inhibitors for SARS-CoV-2 Mpro from marine compounds. Tam NM, Pham MQ, Nguyen HT, Hong ND, Hien NK, Quang DT, Thu Phung HT, Ngo ST. RSC Adv 11 22206-22213 (2021)
  726. Repurposing drug molecule against SARS-Cov-2 (COVID-19) through molecular docking and dynamics: a quick approach to pick FDA-approved drugs. Farhat N, Khan AU. J Mol Model 27 312 (2021)
  727. Screening potential FDA-approved inhibitors of the SARS-CoV-2 major protease 3CLpro through high-throughput virtual screening and molecular dynamics simulation. Liu WS, Li HG, Ding CH, Zhang HX, Wang RR, Li JQ. Aging (Albany NY) 13 6258-6272 (2021)
  728. Self-Masked Aldehyde Inhibitors of Human Cathepsin L Are Potent Anti-CoV-2 Agents. Zhu J, Li L, Drelich A, Chenna BC, Mellott DM, Taylor ZW, Tat V, Garcia CZ, Katzfuss A, Tseng CK, Meek TD. Front Chem 10 867928 (2022)
  729. Structural Basis for the Inhibition of Coronaviral Main Proteases by a Benzothiazole-Based Inhibitor. Hu X, Lin C, Xu Q, Zhou X, Zeng P, McCormick PJ, Jiang H, Li J, Zhang J. Viruses 14 2075 (2022)
  730. Synthesis of Dihydrobenzofuro[3,2-b]chromenes as Potential 3CLpro Inhibitors of SARS-CoV-2: A Molecular Docking and Molecular Dynamics Study. Gorai S, Junghare V, Kundu K, Gharui S, Kumar M, Patro BS, Nayak SK, Hazra S, Mula S. ChemMedChem 17 e202100782 (2022)
  731. Synthesis, Antimicrobial, Anticancer, PASS, Molecular Docking, Molecular Dynamic Simulations & Pharmacokinetic Predictions of Some Methyl β-D-Galactopyranoside Analogs. Amin MR, Yasmin F, Hosen MA, Dey S, Mahmud S, Saleh MA, Emran TB, Hasan I, Fujii Y, Yamada M, Ozeki Y, Kawsar SMA. Molecules 26 7016 (2021)
  732. Synthesis, crystal structure, computational study and anti-virus effect of mixed ligand copper (II) complex with ONS donor Schiff base and 1, 10-phenanthroline. Mohan B, Choudhary M. J Mol Struct 1246 131246 (2021)
  733. The Role of Cannabis sativa L. as a Source of Cannabinoids against Coronavirus 2 (SARS-CoV-2): An In Silico Study to Evaluate Their Activities and ADMET Properties. Altyar AE, Youssef FS, Kurdi MM, Bifari RJ, Ashour ML. Molecules 27 2797 (2022)
  734. The structure-based design of peptidomimetic inhibitors against SARS-CoV-2 3C like protease as Potent anti-viral drug candidate. Wang H, Pei R, Li X, Deng W, Xing S, Zhang Y, Zhang C, He S, Sun H, Xiao S, Xiong J, Zhang Y, Chen X, Wang Y, Guo Y, Zhang B, Shang L. Eur J Med Chem 238 114458 (2022)
  735. Transmission dynamics of SARS-CoV-2 on the Diamond Princess uncovered using viral genome sequence analysis. Hoshino K, Maeshiro T, Nishida N, Sugiyama M, Fujita J, Gojobori T, Mizokami M. Gene 779 145496 (2021)
  736. Unravelling the therapeutic potential of marine drugs as SARS-CoV-2 inhibitors: An insight from essential dynamics and free energy landscape. Rampogu S, Gajula RG, Lee G, Kim MO, Lee KW. Comput Biol Med 135 104525 (2021)
  737. Virtual screening of Indonesian herbal compounds as COVID-19 supportive therapy: machine learning and pharmacophore modeling approaches. Erlina L, Paramita RI, Kusuma WA, Fadilah F, Tedjo A, Pratomo IP, Ramadhanti NS, Nasution AK, Surado FK, Fitriawan A, Istiadi KA, Yanuar A. BMC Complement Med Ther 22 207 (2022)
  738. In-Silico Identification of Natural Compounds from Traditional Medicine as Potential Drug Leads against SARS-CoV-2 Through Virtual Screening. Mithilesh S, Raghunandan D, Suresh PK. Proc Natl Acad Sci India Sect B Biol Sci 92 81-87 (2022)
  739. A Bioinformatics Approach for the Prediction of Immunogenic Properties and Structure of the SARS-COV-2 B.1.617.1 Variant Spike Protein. Srivastava VK, Kaushik S, Bhargava G, Jain A, Saxena J, Jyoti A. Biomed Res Int 2021 7251119 (2021)
  740. A Designed, Highly Efficient Pyrrolysyl-tRNA Synthetase Mutant Binds o-Chlorophenylalanine Using Two Halogen Bonds. Vatansever EC, Yang KS, Geng ZZ, Qiao Y, Li P, Xu S, Liu WR. J Mol Biol 434 167534 (2022)
  741. A Self-Immolative Fluorescent Probe for Selective Detection of SARS-CoV-2 Main Protease. Xu M, Zhou J, Cheng Y, Jin Z, Clark AE, He T, Yim W, Li Y, Chang YC, Wu Z, Fajtová P, O'Donoghue AJ, Carlin AF, Todd MD, Jokerst JV. Anal Chem 94 11728-11733 (2022)
  742. A Structural Comparison of SARS-CoV-2 Main Protease and Animal Coronaviral Main Protease Reveals Species-Specific Ligand Binding and Dimerization Mechanism. Ho CY, Yu JX, Wang YC, Lin YC, Chiu YF, Gao JY, Lai SJ, Chen MJ, Huang WC, Tien N, Chen Y. Int J Mol Sci 23 5669 (2022)
  743. A new glimpse on the active site of SARS-CoV-2 3CLpro, coupled with drug repurposing study. Novak J, Potemkin VA. Mol Divers 26 2631-2645 (2022)
  744. A strategy for evaluating potential antiviral resistance to small molecule drugs and application to SARS-CoV-2. Sargsyan K, Mazmanian K, Lim C. Sci Rep 13 502 (2023)
  745. AI-Accelerated Design of Targeted Covalent Inhibitors for SARS-CoV-2. Joshi RP, Schultz KJ, Wilson JW, Kruel A, Varikoti RA, Kombala CJ, Kneller DW, Galanie S, Phillips G, Zhang Q, Coates L, Parvathareddy J, Surendranathan S, Kong Y, Clyde A, Ramanathan A, Jonsson CB, Brandvold KR, Zhou M, Head MS, Kovalevsky A, Kumar N. J Chem Inf Model 63 1438-1453 (2023)
  746. Anno 2021: Which antivirals for the coming decade? Groaz E, De Clercq E, Herdewijn P. Annu Rep Med Chem 57 49-107 (2021)
  747. Antivirals virtual screening to SARS-CoV-2 non-structural proteins. Nunes VS, Paschoal DFS, Costa LAS, Santos HFD. J Biomol Struct Dyn 40 8989-9003 (2022)
  748. Bis-indolylation of aldehydes and ketones using silica-supported FeCl3: molecular docking studies of bisindoles by targeting SARS-CoV-2 main protease binding sites. Deb B, Debnath S, Chakraborty A, Majumdar S. RSC Adv 11 30827-30839 (2021)
  749. COVID-19: In silico identification of potent α-ketoamide inhibitors targeting the main protease of the SARS-CoV-2. Oubahmane M, Hdoufane I, Bjij I, Jerves C, Villemin D, Cherqaoui D. J Mol Struct 1244 130897 (2021)
  750. Cannabinoids for SARS-CoV-2 and is there evidence of their therapeutic efficacy? Onay A, Ertaş A, Süzerer V, Yener İ, Yilmaz MA, Ayaz-Tilkat E, Ekinci R, Bozhan N, Irtegün-Kandemir S. Turk J Biol 45 570-587 (2021)
  751. Combined computational and cellular screening identifies synergistic inhibition of SARS-CoV-2 by lenvatinib and remdesivir. Pohl MO, Busnadiego I, Marrafino F, Wiedmer L, Hunziker A, Fernbach S, Glas I, Moroz-Omori EV, Hale BG, Caflisch A, Stertz S. J Gen Virol 102 (2021)
  752. Contemporary Approaches to the Discovery and Development of Broad-Spectrum Natural Product Prototypes for the Control of Coronaviruses. Hanna GS, Choo YM, Harbit R, Paeth H, Wilde S, Mackle J, Verga JU, Wolf BJ, Thomas OP, Croot P, Cray J, Thomas C, Li LZ, Hardiman G, Hu JF, Wang X, Patel D, Schinazi RF, O'Keefe BR, Hamann MT. J Nat Prod 84 3001-3007 (2021)
  753. Crystal structure of SARS-CoV 3C-like protease with baicalein. Feng J, Li D, Zhang J, Yin X, Li J. Biochem Biophys Res Commun 611 190-194 (2022)
  754. Crystal structures of human coronavirus NL63 main protease at different pH values. Gao H, Zhang Y, Jiang H, Hu X, Zhang Y, Zhou X, Zhong F, Lin C, Li J, Luo J, Zhang J. Acta Crystallogr F Struct Biol Commun 77 348-355 (2021)
  755. De novo Design of SARS-CoV-2 Main Protease Inhibitors. Fischer C, Vepřek NA, Peitsinis Z, Rühmann KP, Yang C, Spradlin JN, Dovala D, Nomura DK, Zhang Y, Trauner D. Synlett 33 458-463 (2021)
  756. Design of D-Amino Acids SARS-CoV-2 Main Protease Inhibitors Using the Cationic Peptide from Rattlesnake Venom as a Scaffold. Eberle RJ, Gering I, Tusche M, Ostermann PN, Müller L, Adams O, Schaal H, Olivier DS, Amaral MS, Arni RK, Willbold D, Coronado MA. Pharmaceuticals (Basel) 15 540 (2022)
  757. Discovery of Triple Inhibitors of Both SARS-CoV-2 Proteases and Human Cathepsin L. Meewan I, Kattoula J, Kattoula JY, Skinner D, Fajtová P, Giardini MA, Woodworth B, McKerrow JH, Lage de Siqueira-Neto J, O'Donoghue AJ, Abagyan R. Pharmaceuticals (Basel) 15 744 (2022)
  758. Discovery of genistein derivatives as potential SARS-CoV-2 main protease inhibitors by virtual screening, molecular dynamics simulations and ADMET analysis. Liu J, Zhang L, Gao J, Zhang B, Liu X, Yang N, Liu X, Liu X, Cheng Y. Front Pharmacol 13 961154 (2022)
  759. Docking-based virtual screening and identification of potential COVID-19 main protease inhibitors from brown algae. Rauf A, Rashid U, Khalil AA, Khan SA, Anwar S, Alafnan A, Alamri A, Rengasamy KR. S Afr J Bot 143 428-434 (2021)
  760. Drug repurposing against main protease and RNA-dependent RNA polymerase of SARS-CoV-2 using molecular docking, MM-GBSA calculations and molecular dynamics. Mohammed AO, Abo-Idrees MI, Makki AA, Ibraheem W, Alzain AA. Struct Chem 33 1553-1567 (2022)
  761. Easy access to α-ketoamides as SARS-CoV-2 and MERS Mpro inhibitors via the PADAM oxidation route. Pelliccia S, Cerchia C, Esposito F, Cannalire R, Corona A, Costanzi E, Kuzikov M, Gribbon P, Zaliani A, Brindisi M, Storici P, Tramontano E, Summa V. Eur J Med Chem 244 114853 (2022)
  762. Ebselen derivatives inhibit SARS-CoV-2 replication by inhibition of its essential proteins: PLpro and Mpro proteases, and nsp14 guanine N7-methyltransferase. Zmudzinski M, Rut W, Olech K, Granda J, Giurg M, Burda-Grabowska M, Kaleta R, Zgarbova M, Kasprzyk R, Zhang L, Sun X, Lv Z, Nayak D, Kesik-Brodacka M, Olsen SK, Weber J, Hilgenfeld R, Jemielity J, Drag M. Sci Rep 13 9161 (2023)
  763. Effects of hypertonic alkaline nasal irrigation on COVID-19. Yilmaz YZ, Yilmaz BB, Ozdemir YE, Kocazeybek BS, Karaali R, Çakan D, Ozdogan HA, Batioglu-Karaaltin A. Laryngoscope Investig Otolaryngol 6 1240-1247 (2021)
  764. Evaluation of Xa inhibitors as potential inhibitors of the SARS-CoV-2 Mpro protease. Papaj K, Spychalska P, Kapica P, Fischer A, Nowak J, Bzówka M, Sellner M, Lill MA, Smieško M, Góra A. PLoS One 17 e0262482 (2022)
  765. Exploration of Anti-HIV Phytocompounds against SARS-CoV-2 Main Protease: Structure-Based Screening, Molecular Simulation, ADME Analysis and Conceptual DFT Studies. Murali M, Gowtham HG, Shilpa N, Krishnappa HKN, Ledesma AE, Jain AS, Shati AA, Alfaifi MY, Elbehairi SEI, Achar RR, Silina E, Stupin V, Ortega-Castro J, Frau J, Flores-Holguín N, Amruthesh KN, Shivamallu C, Kollur SP, Glossman-Mitnik D. Molecules 27 8288 (2022)
  766. Exploring the potential mechanism of emetine against coronavirus disease 2019 combined with lung adenocarcinoma: bioinformatics and molecular simulation analyses. Zhang K, Wang K, Zhang C, Teng X, Li D, Chen M. BMC Cancer 22 687 (2022)
  767. FDA approved drugs with antiviral activity against SARS-CoV-2: From structure-based repurposing to host-specific mechanisms. Ahmed MS, Farag AB, Boys IN, Wang P, Menendez-Montes I, Nguyen NUN, Eitson JL, Ohlson MB, Fan W, McDougal MB, Mar K, Thet S, Ortiz F, Kim SY, Solmonson A, Williams NS, Lemoff A, DeBerardinis RJ, Schoggins JW, Sadek HA. Biomed Pharmacother 162 114614 (2023)
  768. Fast and Effective Prediction of the Absolute Binding Free Energies of Covalent Inhibitors of SARS-CoV-2 Main Protease and 20S Proteasome. Zhou J, Saha A, Huang Z, Warshel A. J Am Chem Soc 144 7568-7572 (2022)
  769. Herbal inhibitors of SARS-CoV-2 Mpro effectively ameliorate acute lung injury in mice. Du X, Xu L, Ma Y, Lu S, Tang K, Qiao X, Liu J, Wang X, Peng X, Jiang C. IUBMB Life 74 532-542 (2022)
  770. Identification of (2R,3R)-2-(3,4-dihydroxyphenyl)chroman-3-yl-3,4,5-trihydroxy benzoate as multiple inhibitors of SARS-CoV-2 targets; a systematic molecular modelling approach. Selvaraj J, Sundar P S, Rajan L, Selvaraj D, Palanisamy D, Namboori Pk K, Mohankumar SK. RSC Adv 11 13051-13060 (2021)
  771. Identification of SARS-CoV-2 Main Protease Inhibitors from a Library of Minor Cannabinoids by Biochemical Inhibition Assay and Surface Plasmon Resonance Characterized Binding Affinity. Liu C, Puopolo T, Li H, Cai A, Seeram NP, Ma H. Molecules 27 6127 (2022)
  772. Identification of nut protein-derived peptides against SARS-CoV-2 spike protein and main protease. Zhao W, Xu G, Yu Z, Li J, Liu J. Comput Biol Med 138 104937 (2021)
  773. Identification of repurposing therapeutics toward SARS-CoV-2 main protease by virtual screening. Sanachai K, Somboon T, Wilasluck P, Deetanya P, Wolschann P, Langer T, Lee VS, Wangkanont K, Rungrotmongkol T, Hannongbua S. PLoS One 17 e0269563 (2022)
  774. Improved Synthesis of a Cyclic Glutamine Analogue Used in Antiviral Agents Targeting 3C and 3CL Proteases Including SARS-CoV-2 Mpro. Vuong W, Vederas JC. J Org Chem 86 13104-13110 (2021)
  775. In Silico End-to-End Protein-Ligand Interaction Characterization Pipeline: The Case of SARS-CoV-2. Rosário-Ferreira N, Baptista SJ, Barreto CAV, Rodrigues FEP, Silva TFD, Ferreira SGF, Vitorino JNM, Melo R, Victor BL, Machuqueiro M, Moreira IS. ACS Synth Biol 10 3209-3235 (2021)
  776. In silico study of potential antiviral activity of copper(II) complexes with non-steroidal anti-inflammatory drugs on various SARS-CoV-2 target proteins. Geromichalou EG, Trafalis DT, Dalezis P, Malis G, Psomas G, Geromichalos GD. J Inorg Biochem 231 111805 (2022)
  777. In vitro selection of macrocyclic peptide inhibitors containing cyclic γ2,4-amino acids targeting the SARS-CoV-2 main protease. Miura T, Malla TR, Owen CD, Tumber A, Brewitz L, McDonough MA, Salah E, Terasaka N, Katoh T, Lukacik P, Strain-Damerell C, Mikolajek H, Walsh MA, Kawamura A, Schofield CJ, Suga H. Nat Chem 15 998-1005 (2023)
  778. Integrated Bioinformatics Analysis for the Screening of Associated Pathways and Therapeutic Drugs in Coronavirus Disease 2019. Wang T, Zhao M, Ye P, Wang Q, Zhao Y. Arch Med Res 52 304-310 (2021)
  779. Machine learning prediction of 3CLpro SARS-CoV-2 docking scores. Bucinsky L, Bortňák D, Gall M, Matúška J, Milata V, Pitoňák M, Štekláč M, Végh D, Zajaček D. Comput Biol Chem 98 107656 (2022)
  780. Molecular design of anticancer drugs from marine fungi derivatives. Cao DT, Huong Doan TM, Pham VC, Minh Le TH, Chae JW, Yun HY, Na MK, Kim YH, Pham MQ, Nguyen VH. RSC Adv 11 20173-20179 (2021)
  781. Pre-Steady-State Kinetics of the SARS-CoV-2 Main Protease as a Powerful Tool for Antiviral Drug Discovery. Zakharova MY, Kuznetsova AA, Uvarova VI, Fomina AD, Kozlovskaya LI, Kaliberda EN, Kurbatskaia IN, Smirnov IV, Bulygin AA, Knorre VD, Fedorova OS, Varnek A, Osolodkin DI, Ishmukhametov AA, Egorov AM, Gabibov AG, Kuznetsov NA. Front Pharmacol 12 773198 (2021)
  782. Primer for Designing Main Protease (Mpro) Inhibitors of SARS-CoV-2. Thakur A, Sharma G, Badavath VN, Jayaprakash V, Merz KM, Blum G, Acevedo O. J Phys Chem Lett 13 5776-5786 (2022)
  783. Production of Proteins of the SARS-CoV-2 Proteome for Drug Discovery. Kim C, Mahasenan KV, Bhardwaj A, Wiest O, Chang M, Mobashery S. ACS Omega 6 19983-19994 (2021)
  784. Protocol for structure determination of SARS-CoV-2 main protease at near-physiological-temperature by serial femtosecond crystallography. Ertem FB, Guven O, Buyukdag C, Gocenler O, Ayan E, Yuksel B, Gul M, Usta G, Cakılkaya B, Johnson JA, Dao EH, Su Z, Poitevin F, Yoon CH, Kupitz C, Hayes B, Liang M, Hunter MS, Batyuk A, Sierra RG, Ketawala G, Botha S, Dağ Ç, DeMirci H. STAR Protoc 3 101158 (2022)
  785. Quantum biochemistry, molecular docking, and dynamics simulation revealed synthetic peptides induced conformational changes affecting the topology of the catalytic site of SARS-CoV-2 main protease. Amaral JL, Oliveira JTA, Lopes FES, Freitas CDT, Freire VN, Abreu LV, Souza PFN. J Biomol Struct Dyn 40 8925-8937 (2022)
  786. Recent changes in the mutational dynamics of the SARS-CoV-2 main protease substantiate the danger of emerging resistance to antiviral drugs. Parigger L, Krassnigg A, Schopper T, Singh A, Tappler K, Köchl K, Hetmann M, Gruber K, Steinkellner G, Gruber CC. Front Med (Lausanne) 9 1061142 (2022)
  787. Repurposing Halicin as a potent covalent inhibitor for the SARS-CoV-2 main protease. Yang KS, Alex Kuo ST, Blankenship LR, Geng ZZ, Li SG, Russell DH, Yan X, Xu S, Liu WR. Curr Res Chem Biol 2 100025 (2022)
  788. Repurposing of HIV/HCV protease inhibitors against SARS-CoV-2 3CLpro. Ma L, Li Q, Xie Y, Jianyuan Zhao, Yi D, Guo S, Guo F, Wang J, Yang L, Cen S. Antiviral Res 207 105419 (2022)
  789. SARS-CoV-2 Mpro Protease Variants of Concern Display Altered Viral Substrate and Cell Host Target Galectin-8 Processing but Retain Sensitivity toward Antivirals. Chen SA, Arutyunova E, Lu J, Khan MB, Rut W, Zmudzinski M, Shahbaz S, Iyyathurai J, Moussa EW, Turner Z, Bai B, Lamer T, Nieman JA, Vederas JC, Julien O, Drag M, Elahi S, Young HS, Lemieux MJ. ACS Cent Sci 9 696-708 (2023)
  790. Search for Non-Protein Protease Inhibitors Constituted with an Indole and Acetylene Core. Almaraz-Girón MA, Calderón-Jaimes E, Carrillo AS, Díaz-Cervantes E, Alonso EC, Islas-Jácome A, Domínguez-Ortiz A, Castañón-Alonso SL. Molecules 26 3817 (2021)
  791. Searching for potential inhibitors of SARS-COV-2 main protease using supervised learning and perturbation calculations. Nguyen TH, Tam NM, Tuan MV, Zhan P, Vu VV, Quang DT, Ngo ST. Chem Phys 564 111709 (2023)
  792. Should COVID-19 be branded to viral thrombotic fever? Costa-Filho RC, Castro-Faria Neto HC, Mengel J, Pelajo-Machado M, Martins MA, Leite ÉT, Mendonça-Filho HT, de Souza TACB, Bello GB, Leite JPG. Mem Inst Oswaldo Cruz 116 e200552 (2021)
  793. Small molecule interactions with the SARS-CoV-2 main protease: In silico all-atom microsecond MD simulations, PELE Monte Carlo simulations, and determination of in vitro activity inhibition. Liang J, Pitsillou E, Ververis K, Guallar V, Hung A, Karagiannis TC. J Mol Graph Model 110 108050 (2022)
  794. Synthesis, cytotoxicity and docking studies (with SARS-CoV-2) of water-soluble binuclear Ru-p-cymene complex holding indole thiosemicarbazone ligand. Haribabu J, Balakrishnan N, Swaminathan S, Peter J, Gayathri D, Echeverria C, Bhuvanesh N, Karvembu R. Inorg Chem Commun 134 109029 (2021)
  795. The Inhibitory Potential of Ferulic Acid Derivatives against the SARS-CoV-2 Main Protease: Molecular Docking, Molecular Dynamics, and ADMET Evaluation. Antonopoulou I, Sapountzaki E, Rova U, Christakopoulos P. Biomedicines 10 1787 (2022)
  796. The common regulatory pathway of COVID-19 and multiple inflammatory diseases and the molecular mechanism of cepharanthine in the treatment of COVID-19. Jiang P, Ye J, Jia M, Li X, Wei S, Li N. Front Pharmacol 13 960267 (2022)
  797. The main protease of SARS-CoV-2 cleaves histone deacetylases and DCP1A, attenuating the immune defense of the interferon-stimulated genes. Song L, Wang D, Abbas G, Li M, Cui M, Wang J, Lin Z, Zhang XE. J Biol Chem 299 102990 (2023)
  798. Letter Using serpins cysteine protease cross-specificity to possibly trap SARS-CoV-2 Mpro with reactive center loop chimera. Jairajpuri MA, Ansari S. Clin Sci (Lond) 134 2235-2241 (2020)
  799. VE607 stabilizes SARS-CoV-2 Spike in the "RBD-up" conformation and inhibits viral entry. Ding S, Ullah I, Gong SY, Grover JR, Mohammadi M, Chen Y, Vézina D, Beaudoin-Bussières G, Verma VT, Goyette G, Gaudette F, Richard J, Yang D, Smith AB, Pazgier M, Côté M, Abrams C, Kumar P, Mothes W, Uchil PD, Finzi A, Baron C. iScience 25 104528 (2022)
  800. Virtual screening of phytochemicals by targeting multiple proteins of severe acute respiratory syndrome coronavirus 2: Molecular docking and molecular dynamics simulation studies. Azeem M, Mustafa G, Mahrosh HS. Int J Immunopathol Pharmacol 36 3946320221142793 (2022)
  801. Virtual screenings of the bioactive constituents of tea, prickly chaff, catechu, lemon, black pepper, and synthetic compounds with the main protease (Mpro) and human angiotensin-converting enzyme 2 (ACE 2) of SARS-CoV-2. Emon NU, Alam MM, Akter I, Akhter S, Sneha AA, Irtiza M, Afroj M, Munni A, Chowdhury MH, Hossain S. Futur J Pharm Sci 7 121 (2021)
  802. Whole-genome analysis of SARS-CoV-2 in a 2020 infection cluster in a nursing home of Southern Italy. De Marco C, Marascio N, Veneziano C, Biamonte F, Trecarichi EM, Santamaria G, Leviyang S, Liberto MC, Mazzitelli M, Quirino A, Longhini F, Torella D, Quattrone A, Matera G, Torti C, Costanzo FS, Viglietto G. Infect Genet Evol 99 105253 (2022)
  803. Eryngium creticum L.: Chemical Characterization, SARS-CoV-2 Inhibitory Activity, and In Silico Study. Elsbaey M, Ibrahim MAA, Shawky AM, Miyamoto T. ACS Omega 7 22725-22734 (2022)
  804. Garcinia cambogia Phenolics as Potent Anti-COVID-19 Agents: Phytochemical Profiling, Biological Activities, and Molecular Docking. Aati HY, Ismail A, Rateb ME, AboulMagd AM, Hassan HM, Hetta MH. Plants (Basel) 11 2521 (2022)
  805. Pelargonium sidoides Root Extract: Simultaneous HPLC Separation, Determination, and Validation of Selected Biomolecules and Evaluation of SARS-CoV-2 Inhibitory Activity. Alossaimi MA, Alzeer MA, Abdel Bar FM, ElNaggar MH. Pharmaceuticals (Basel) 15 1184 (2022)
  806. A proteomics-MM/PBSA dual approach for the analysis of SARS-CoV-2 main protease substrate peptide specificity. Gallo G, Barcick U, Coelho C, Salardani M, Camacho MF, Cajado-Carvalho D, Loures FV, Serrano SMT, Hardy L, Zelanis A, Würtele M. Peptides 154 170814 (2022)
  807. A revised formulation of the generalized subsystem vibrational analysis (GSVA). Tao Y, Zou W, Nanayakkara S, Freindorf M, Kraka E. Theor Chem Acc 140 31 (2021)
  808. An in silico analysis of Ibuprofen enantiomers in high concentrations of sodium chloride with SARS-CoV-2 main protease. Clemente CM, Freiberger MI, Ravetti S, Beltramo DM, Garro AG. J Biomol Struct Dyn 40 5653-5664 (2022)
  809. An in-solution snapshot of SARS-COV-2 main protease maturation process and inhibition. Noske GD, Song Y, Fernandes RS, Chalk R, Elmassoudi H, Koekemoer L, Owen CD, El-Baba TJ, Robinson CV, COVID Moonshot Consortium, Oliva G, Godoy AS. Nat Commun 14 1545 (2023)
  810. An interaction-based drug discovery screen explains known SARS-CoV-2 inhibitors and predicts new compound scaffolds. Schake P, Dishnica K, Kaiser F, Leberecht C, Haupt VJ, Schroeder M. Sci Rep 13 9204 (2023)
  811. Artemisinin Binds and Inhibits the Activity of Plasmodium falciparum Ddi1, a Retroviral Aspartyl Protease. Onchieku NM, Kumari S, Pandey R, Sharma V, Kumar M, Deshmukh A, Kaur I, Mohmmed A, Gupta D, Kiboi D, Gaur N, Malhotra P. Pathogens 10 1465 (2021)
  812. Asymmetric dynamics of dimeric SARS-CoV-2 and SARS-CoV main proteases in an apo form: Molecular dynamics study on fluctuations of active site, catalytic dyad, and hydration water. Iida S, Fukunishi Y. BBA Adv 1 100016 (2021)
  813. IM Breakthroughs in Medicinal Chemistry: New Targets and Mechanisms, New Drugs, New Hopes-7. Gütschow M, Eynde JJV, Jampilek J, Kang C, Mangoni AA, Fossa P, Karaman R, Trabocchi A, Scott PJH, Reynisson J, Rapposelli S, Galdiero S, Winum JY, Brullo C, Prokai-Tatrai K, Sharma AK, Schapira M, Azuma YT, Cerchia L, Spetea M, Torri G, Collina S, Geronikaki A, García-Sosa AT, Vasconcelos MH, Sousa ME, Kosalec I, Tuccinardi T, Duarte IF, Salvador JAR, Bertinaria M, Pellecchia M, Amato J, Rastelli G, Gomes PAC, Guedes RC, Sabatier JM, Estévez-Braun A, Pagano B, Mangani S, Ragno R, Kokotos G, Brindisi M, González FV, Borges F, Miloso M, Rautio J, Muñoz-Torrero D. Molecules 25 E2968 (2020)
  814. Broad-Spectrum Cyclopropane-Based Inhibitors of Coronavirus 3C-like Proteases: Biochemical, Structural, and Virological Studies. Dampalla CS, Nguyen HN, Rathnayake AD, Kim Y, Perera KD, Madden TK, Thurman HA, Machen AJ, Kashipathy MM, Liu L, Battaile KP, Lovell S, Chang KO, Groutas WC. ACS Pharmacol Transl Sci 6 181-194 (2023)
  815. COVID-19: Analysis of Drug Repositioning Practice. Savosina PI, Druzhilovskii DS, Poroikov VV. Pharm Chem J 54 989-996 (2021)
  816. Cannabidiol and SARS-CoV-2 Infection. Vallée A. Front Immunol 13 870787 (2022)
  817. Characterization of Self-Processing Activities and Substrate Specificities of Porcine Torovirus 3C-Like Protease. Xu S, Zhou J, Chen Y, Tong X, Wang Z, Guo J, Chen J, Fang L, Wang D, Xiao S. J Virol 94 e01282-20 (2020)
  818. Comparison of the Efficacy and Safety of Atazanavir/Ritonavir Plus Hydroxychloroquine with Lopinavir/Ritonavir Plus Hydroxychloroquine in Patients with Moderate COVID-19, A Randomized, Double-blind Clinical Trial. Nekoukar Z, Ala S, Moradi S, Hill A, Davoudi Badabi AR, Alikhani A, Alian S, Moghimi M, Shabani AM, Abbaspour Kasgari H. Iran J Pharm Res 20 278-288 (2021)
  819. Computational Studies of Selected Transition Metal Complexes as Potential Drug Candidates against the SARS-CoV-2 Virus. Pal M, Musib D, Zade AJ, Chowdhury N, Roy M. ChemistrySelect 6 7429-7435 (2021)
  820. Computational molecular interaction between SARS-CoV-2 main protease and theaflavin digallate using free energy perturbation and molecular dynamics. Manish M, Mishra S, Anand A, Subbarao N. Comput Biol Med 150 106125 (2022)
  821. Computational prediction of potential inhibitors for SARS-COV-2 main protease based on machine learning, docking, MM-PBSA calculations, and metadynamics. Gomes IS, Santana CA, Marcolino LS, Lima LHF, Melo-Minardi RC, Dias RS, de Paula SO, Silveira SA. PLoS One 17 e0267471 (2022)
  822. Development of a Novel Pharmacophore Model Guided by the Ensemble of Waters and Small Molecule Fragments Bound to SARS-CoV-2 Main Protease. Kumar P, Mohanty D. Mol Inform 41 e2100178 (2022)
  823. Development of a colorimetric assay for the detection of SARS-CoV-2 3CLpro activity. Garland GD, Harvey RF, Mulroney TE, Monti M, Fuller S, Haigh R, Gerber PP, Barer MR, Matheson NJ, Willis AE. Biochem J 479 901-920 (2022)
  824. Discovering potent inhibitors against the Mpro of the SARS-CoV-2. A medicinal chemistry approach. Mehmood A, Nawab S, Wang Y, Chandra Kaushik A, Wei DQ. Comput Biol Med 143 105235 (2022)
  825. Discovery of 2-(furan-2-ylmethylene)hydrazine-1-carbothioamide derivatives as novel inhibitors of SARS-CoV-2 main protease. Dou X, Sun Q, Xu G, Liu Y, Zhang C, Wang B, Lu Y, Guo Z, Su L, Huo T, Zhao X, Wang C, Yu Z, Song S, Zhang L, Liu Z, Lai L, Jiao N. Eur J Med Chem 238 114508 (2022)
  826. Discovery of All-d-Peptide Inhibitors of SARS-CoV-2 3C-like Protease. Eberle RJ, Sevenich M, Gering I, Scharbert L, Strodel B, Lakomek NA, Santur K, Mohrlüder J, Coronado MA, Willbold D. ACS Chem Biol 18 315-330 (2023)
  827. Discovery of Polyphenolic Natural Products as SARS-CoV-2 Mpro Inhibitors for COVID-19. Krüger N, Kronenberger T, Xie H, Rocha C, Pöhlmann S, Su H, Xu Y, Laufer SA, Pillaiyar T. Pharmaceuticals (Basel) 16 190 (2023)
  828. Discovery of SARS-CoV-2 3CLPro Peptidomimetic Inhibitors through the Catalytic Dyad Histidine-Specific Protein-Ligand Interactions. Wang Y, Xu B, Ma S, Wang H, Shang L, Zhu C, Ye S. Int J Mol Sci 23 2392 (2022)
  829. Discovery of quinazolin-4-one-based non-covalent inhibitors targeting the severe acute respiratory syndrome coronavirus 2 main protease (SARS-CoV-2 Mpro). Zhang K, Wang T, Li M, Liu M, Tang H, Wang L, Ye K, Yang J, Jiang S, Xiao Y, Xie Y, Lu M, Zhang X. Eur J Med Chem 257 115487 (2023)
  830. Establishment and validation of a drug-target microarray for SARS-CoV-2. Chen P, Zeng Z, Du H. Biochem Biophys Res Commun 530 4-9 (2020)
  831. Expanding the Repertoire of Low-Molecular-Weight Pentafluorosulfanyl-Substituted Scaffolds. Jose A, Guest D, LeGay R, Tizzard GJ, Coles SJ, Derveni M, Wright E, Marrison L, Lee AA, Morris A, Robinson M, von Delft F, Fearon D, Koekemoer L, Matviuk T, Aimon A, Schofield CJ, Malla TR, London N, Greenland BW, Bagley MC, Spencer J, The Covid Moonshot Consortium. ChemMedChem 17 e202100641 (2022)
  832. Exploration of chalcones as 3-chymotrypsin-like protease (3CLpro) inhibitors of SARS-CoV-2 using computational approaches. Lam TP, Nguyen DN, Mai TT, Tran TD, Le MT, Huynh PNH, Nguyen DT, Tran VH, Trinh DT, Truong P, Vo CT, Thai KM. Struct Chem 33 1707-1725 (2022)
  833. Exploring the interaction of quercetin-3-O-sophoroside with SARS-CoV-2 main proteins by theoretical studies: A probable prelude to control some variants of coronavirus including Delta. Khan S, Hussain A, Vahdani Y, Kooshki H, Mahmud Hussen B, Haghighat S, Fatih Rasul M, Jamal Hidayat H, Hasan A, Edis Z, Haj Bloukh S, Kasravi S, Mahdi Nejadi Babadaei M, Sharifi M, Bai Q, Liu J, Hu B, Akhtari K, Falahati M. Arab J Chem 14 103353 (2021)
  834. Hydrazones and Thiosemicarbazones Targeting Protein-Protein-Interactions of SARS-CoV-2 Papain-like Protease. Ewert W, Günther S, Miglioli F, Falke S, Reinke PYA, Niebling S, Günther C, Han H, Srinivasan V, Brognaro H, Lieske J, Lorenzen K, Garcia-Alai MM, Betzel C, Carcelli M, Hinrichs W, Rogolino D, Meents A. Front Chem 10 832431 (2022)
  835. Hydroxamate and thiosemicarbazone: Two highly promising scaffolds for the development of SARS-CoV-2 antivirals. Xu YS, Chigan JZ, Li JQ, Ding HH, Sun LY, Liu L, Hu Z, Yang KW. Bioorg Chem 124 105799 (2022)
  836. Identification and validation of fusidic acid and flufenamic acid as inhibitors of SARS-CoV-2 replication using DrugSolver CavitomiX. Hetmann M, Langner C, Durmaz V, Cespugli M, Köchl K, Krassnigg A, Blaschitz K, Groiss S, Loibner M, Ruau D, Zatloukal K, Gruber K, Steinkellner G, Gruber CC. Sci Rep 13 11783 (2023)
  837. Identification of Darunavir Derivatives for Inhibition of SARS-CoV-2 3CLpro. Ma L, Xie Y, Zhu M, Yi D, Zhao J, Guo S, Zhang Y, Wang J, Li Q, Wang Y, Cen S. Int J Mol Sci 23 16011 (2022)
  838. Identification of Human Host Substrates of the SARS-CoV-2 Mpro and PLpro Using Subtiligase N-Terminomics. Luo SY, Moussa EW, Lopez-Orozco J, Felix-Lopez A, Ishida R, Fayad N, Gomez-Cardona E, Wang H, Wilson JA, Kumar A, Hobman TC, Julien O. ACS Infect Dis 9 749-761 (2023)
  839. Identification of RdRp inhibitors against SARS-CoV-2 through E-pharmacophore-based virtual screening, molecular docking and MD simulations approaches. Rehman HM, Sajjad M, Ali MA, Gul R, Naveed M, Aslam MS, Shinwari K, Bhinder MA, Ghani MU, Saleem M, Rather MA, Ahmad I, Amin A. Int J Biol Macromol 237 124169 (2023)
  840. Identification of non-covalent 3C-like protease inhibitors against severe acute respiratory syndrome coronavirus-2 via virtual screening of a Korean compound library. Lee JY, Kuo CJ, Shin JS, Jung E, Liang PH, Jung YS. Bioorg Med Chem Lett 42 128067 (2021)
  841. Identification of phytocompounds as newer antiviral drugs against COVID-19 through molecular docking and simulation based study. Kar B, Dehury B, Singh MK, Pati S, Bhattacharya D. J Mol Graph Model 114 108192 (2022)
  842. Identification of potent compounds against SARs-CoV-2: An in-silico based drug searching against Mpro. Hassam M, Bashir MA, Shafi S, Zahra NU, Khan K, Jalal K, Siddiqui H, Uddin R. Comput Biol Med 151 106284 (2022)
  843. Identification of potential SARS-CoV-2 Mpro inhibitors integrating molecular docking and water thermodynamics. Sobhia ME, Ghosh K, Sivangula S, Kumar S, Singh H. J Biomol Struct Dyn 40 5079-5089 (2022)
  844. Identification of potential edible mushroom as SARS-CoV-2 main protease inhibitor using rational drug designing approach. Sen D, Debnath B, Debnath P, Debnath S, Zaki MEA, Masand VH. Sci Rep 12 1503 (2022)
  845. Identifying compounds that prevent the binding of the SARS-CoV-2 S-protein to ACE2. Benítez-Cardoza CG, Vique-Sánchez JL. Comput Biol Med 136 104719 (2021)
  846. Identifying the Hot Spot Residues of the SARS-CoV-2 Main Protease Using MM-PBSA and Multiple Force Fields. Byun J, Lee J. Life (Basel) 12 54 (2021)
  847. In Silico Drug Repositioning to Target the SARS-CoV-2 Main Protease as Covalent Inhibitors Employing a Combined Structure-Based Virtual Screening Strategy of Pharmacophore Models and Covalent Docking. Vázquez-Mendoza LH, Mendoza-Figueroa HL, García-Vázquez JB, Correa-Basurto J, García-Machorro J. Int J Mol Sci 23 3987 (2022)
  848. In vitro interaction of potential antiviral TMPRSS2 inhibitors with human serum albumin and cytochrome P 450 isoenzymes. Pászti-Gere E, Szentkirályi A, Fedor Z, Nagy G, Szimrók Z, Pászti Z, Pászti A, Pilgram O, Steinmetzer T, Bodnárová S, Fliszár-Nyúl E, Poór M. Biomed Pharmacother 146 112513 (2022)
  849. In vitro screening of anti-viral and virucidal effects against SARS-CoV-2 by Hypericum perforatum and Echinacea. Bajrai LH, El-Kafrawy SA, Hassan AM, Tolah AM, Alnahas RS, Sohrab SS, Rehan M, Azhar EI. Sci Rep 12 21723 (2022)
  850. Inhibition of Cysteine Proteases by 6,6'-Dihydroxythiobinupharidine (DTBN) from Nuphar lutea. Waidha K, Zurgil U, Ben-Zeev E, Gopas J, Rajendran S, Golan-Goldhirsh A. Molecules 26 4743 (2021)
  851. Insighting isatin derivatives as potential antiviral agents against NSP3 of COVID-19. Ilyas M, Muhammad S, Iqbal J, Amin S, Al-Sehemi AG, Algarni H, Alarfaji SS, Alshahrani MY, Ayub K. Chem Zvesti 76 6271-6285 (2022)
  852. Investigation of angucycline compounds as potential drug candidates against SARS Cov-2 main protease using docking and molecular dynamic approaches. Al-Bustany HA, Ercan S, Ince E, Pirinccioglu N. Mol Divers 26 293-308 (2022)
  853. Long Time Scale Ensemble Methods in Molecular Dynamics: Ligand-Protein Interactions and Allostery in SARS-CoV-2 Targets. Bhati AP, Hoti A, Potterton A, Bieniek MK, Coveney PV. J Chem Theory Comput 19 3359-3378 (2023)
  854. Masitinib analogues with the N-methylpiperazine group replaced - A new hope for the development of anti-COVID-19 drugs. Gurung AB, Ali MA, Aljowaie RM, Almutairi SM, Sami H, Lee J. J King Saud Univ Sci 35 102397 (2023)
  855. Non-covalent cyclic peptides simultaneously targeting Mpro and NRP1 are highly effective against Omicron BA.2.75. Yin S, Mei S, Li Z, Xu Z, Wu Y, Chen X, Liu D, Niu MM, Li J. Front Pharmacol 13 1037993 (2022)
  856. Ovatodiolide inhibits SARS-CoV-2 replication and ameliorates pulmonary fibrosis through suppression of the TGF-β/TβRs signaling pathway. Chiou WC, Huang GJ, Chang TY, Hsia TL, Yu HY, Lo JM, Fu PK, Huang C. Biomed Pharmacother 161 114481 (2023)
  857. Prediction and design of protease enzyme specificity using a structure-aware graph convolutional network. Lu C, Lubin JH, Sarma VV, Stentz SZ, Wang G, Wang S, Khare SD. Proc Natl Acad Sci U S A 120 e2303590120 (2023)
  858. Prediction and evaluation of deleterious and disease causing non-synonymous SNPs (nsSNPs) in human NF2 gene responsible for neurofibromatosis type 2 (NF2). Havranek B, Islam SM. J Biomol Struct Dyn 39 7044-7055 (2021)
  859. QSAR modeling and pharmacoinformatics of SARS coronavirus 3C-like protease inhibitors. Ishola AA, Adedirin O, Joshi T, Chandra S. Comput Biol Med 134 104483 (2021)
  860. Rapid structure-based identification of potential SARS-CoV-2 main protease inhibitors. Sobhia ME, Kumar GS, Sivangula S, Ghosh K, Singh H, Haokip T, Gibson J. Future Med Chem 13 1435-1450 (2021)
  861. Rational design of 9-vinyl-phenyl noscapine as potent tubulin binding anticancer agent and evaluation of the effects of its combination on Docetaxel. Dash SG, Suri C, Nagireddy PKR, Kantevari S, Naik PK. J Biomol Struct Dyn 39 5276-5289 (2021)
  862. Rational design of the zonulin inhibitor AT1001 derivatives as potential anti SARS-CoV-2. Di Micco S, Rahimova R, Sala M, Scala MC, Vivenzio G, Musella S, Andrei G, Remans K, Mammri L, Snoeck R, Bifulco G, Di Matteo F, Vestuto V, Campiglia P, Márquez JA, Fasano A. Eur J Med Chem 244 114857 (2022)
  863. SARS-CoV-2 Morphometry Analysis and Prediction of Real Virus Levels Based on Full Recurrent Neural Network Using TEM Images. Taha BA, Mashhadany YA, Al-Jumaily AHJ, Zan MSDB, Arsad N. Viruses 14 2386 (2022)
  864. Searching and designing potential inhibitors for SARS-CoV-2 Mpro from natural sources using atomistic and deep-learning calculations. Tam NM, Pham DH, Hiep DM, Tran PT, Quang DT, Ngo ST. RSC Adv 11 38495-38504 (2021)
  865. Structural Reshaping of the Zinc-Finger Domain of the SARS-CoV-2 nsp13 Protein Using Bismuth(III) Ions: A Multilevel Computational Study. Tolbatov I, Storchi L, Marrone A. Inorg Chem 61 15664-15677 (2022)
  866. Structural analysis of the coronavirus main protease for the design of pan-variant inhibitors. Rungruangmaitree R, Phoochaijaroen S, Chimprasit A, Saparpakorn P, Pootanakit K, Tanramluk D. Sci Rep 13 7055 (2023)
  867. Structural similarities between SARS-CoV2 3CLpro and other viral proteases suggest potential lead molecules for developing broad spectrum antivirals. Bafna K, Cioffi CL, Krug RM, Montelione GT. Front Chem 10 948553 (2022)
  868. Structure-guided design of direct-acting antivirals that exploit the gem-dimethyl effect and potently inhibit 3CL proteases of severe acute respiratory syndrome Coronavirus-2 (SARS-CoV-2) and middle east respiratory syndrome coronavirus (MERS-CoV). Dampalla CS, Miller MJ, Kim Y, Zabiegala A, Nguyen HN, Madden TK, Thurman HA, Machen AJ, Cooper A, Liu L, Battaile KP, Lovell S, Chang KO, Groutas WC. Eur J Med Chem 254 115376 (2023)
  869. Supercomputer simulation of the covalent inhibition of the main protease of SARS-CoV-2. Nemukhin AV, Grigorenko BL, Lushchekina SV, Varfolomeev SD. Russ Chem Bull 70 2084-2089 (2021)
  870. Synthesis and In Silico Study of Some New bis-[1,3,4]thiadiazolimines and bis-Thiazolimines as Potential Inhibitors for SARS-CoV-2 Main Protease. Gomha SM, Riyadh SM, Abdellattif MH, Abolibda TZ, Abdel-Aziz HM, Nayl AA, Elgohary AM, Elfiky AA. Curr Issues Mol Biol 44 4540-4556 (2022)
  871. Targeting SARS-CoV-2 nsp13 Helicase and Assessment of Druggability Pockets: Identification of Two Potent Inhibitors by a Multi-Site In Silico Drug Repurposing Approach. Romeo I, Ambrosio FA, Costa G, Corona A, Alkhatib M, Salpini R, Lemme S, Vergni D, Svicher V, Santoro MM, Tramontano E, Ceccherini-Silberstein F, Artese A, Alcaro S. Molecules 27 7522 (2022)
  872. The identification of novel inhibitors of human angiotensin-converting enzyme 2 and main protease of Sars-Cov-2: A combination of in silico methods for treatment of COVID-19. Zarezade V, Rezaei H, Shakerinezhad G, Safavi A, Nazeri Z, Veisi A, Azadbakht O, Hatami M, Sabaghan M, Shajirat Z. J Mol Struct 1237 130409 (2021)
  873. The impact of SARS-CoV-2 3CL protease mutations on nirmatrelvir inhibitory efficiency. Computational insights into potential resistance mechanisms. Ramos-Guzmán CA, Andjelkovic M, Zinovjev K, Ruiz-Pernía JJ, Tuñón I. Chem Sci 14 2686-2697 (2023)
  874. Triterpenic Acid Amides as Potential Inhibitors of the SARS-CoV-2 Main Protease. Baev DS, Blokhin ME, Chirkova VY, Belenkaya SV, Luzina OA, Yarovaya OI, Salakhutdinov NF, Shcherbakov DN. Molecules 28 303 (2022)
  875. Unbinding ligands from SARS-CoV-2 Mpro via umbrella sampling simulations. Tam NM, Nguyen TH, Ngan VT, Tung NT, Ngo ST. R Soc Open Sci 9 211480 (2022)
  876. Unmasking of crucial structural fragments for coronavirus protease inhibitors and its implications in COVID-19 drug discovery. Ghosh K, Amin SA, Gayen S, Jha T. J Mol Struct 1237 130366 (2021)
  877. Unmasking the Conformational Stability and Inhibitor Binding to SARS-CoV-2 Main Protease Active Site Mutants and Miniprecursor. Kovalevsky A, Coates L, Kneller DW, Ghirlando R, Aniana A, Nashed NT, Louis JM. J Mol Biol 434 167876 (2022)
  878. Unveiling the Potentiality of Shikonin Derivatives Inhibiting SARS-CoV-2 Main Protease by Molecular Dynamic Simulation Studies. Das R, Habiba SU, Dash R, Seo Y, Woo J. Int J Mol Sci 24 3100 (2023)
  879. In crystallo-screening for discovery of human norovirus 3C-like protease inhibitors. Guo J, Douangamath A, Song W, Coker AR, Chan AWE, Wood SP, Cooper JB, Resnick E, London N, Delft FV. J Struct Biol X 4 100031 (2020)
  880. In silico screening of phenylethanoid glycosides, a class of pharmacologically active compounds as natural inhibitors of SARS-CoV-2 proteases. Cheohen CFAR, Esteves MEA, da Fonseca TS, Leal CM, Assis FLF, Campos MF, Rebelo RS, Allonso D, Leitão GG, da Silva ML, Leitão SG. Comput Struct Biotechnol J 21 1461-1472 (2023)
  881. A Versatile Class of 1,4,4-Trisubstituted Piperidines Block Coronavirus Replication In Vitro. De Castro S, Stevaert A, Maldonado M, Delpal A, Vandeput J, Van Loy B, Eydoux C, Guillemot JC, Decroly E, Gago F, Canard B, Camarasa MJ, Velázquez S, Naesens L. Pharmaceuticals (Basel) 15 1021 (2022)
  882. A computational study of metal-organic frameworks (MOFs) as potential nanostructures to combat SARS-CoV-2. Dahri M, Sadeghi MM, Abolmaali SS. Sci Rep 12 15678 (2022)
  883. A naturally occurring G11S mutation in the 3C-like protease from the SARS-CoV-2 virus dramatically weakens the dimer interface. Wang G, Venegas FA, Rueda AM, Weerasinghe NW, Uggowitzer KA, Thibodeaux CJ, Moitessier N, Mittermaier AK. Protein Sci 33 e4857 (2024)
  884. A student led computational screening of peptide inhibitors against main protease of SARS-CoV-2. Khan AT, Chowdhury GM, Hafsah J, Maruf M, Raihan MRH, Chowdhury MT, Nawal N, Tasnim N, Saha P, Roy P, Tabassum R, Rodrigues SP, Hasan W, Samanta ZT, Kamal S, Nazir MS, Ali MA, Halim MA. Biochem Mol Biol Educ 50 7-20 (2022)
  885. Alkyne as a Latent Warhead to Covalently Target SARS-CoV-2 Main Protease. Ngo C, Fried W, Aliyari S, Feng J, Qin C, Zhang S, Yang H, Shanaa J, Feng P, Cheng G, Chen XS, Zhang C. J Med Chem 66 12237-12248 (2023)
  886. article-commentary An all-out assault on SARS-CoV-2 replication. Hay RT. Biochem J 478 2399-2403 (2021)
  887. An unexpected single crystal structure of nickel(II) complex: Spectral, DFT, NLO, magnetic and molecular docking studies. Derafa W, Aggoun D, Messasma Z, Houchi S, Bouacida S, Ourari A. J Mol Struct 1264 133190 (2022)
  888. Autochthonous Peruvian Natural Plants as Potential SARS-CoV-2 Mpro Main Protease Inhibitors. Peralta-Moreno MN, Anton-Muñoz V, Ortega-Alarcon D, Jimenez-Alesanco A, Vega S, Abian O, Velazquez-Campoy A, Thomson TM, Granadino-Roldán JM, Machicado C, Rubio-Martinez J. Pharmaceuticals (Basel) 16 585 (2023)
  889. BDA-410 inhibits SARS-CoV-2 main protease activity and viral replication in mammalian cells. Schwake C, McKay L, Griffiths A, Scartelli C, Flaumenhaft R, Chishti AH. J Cell Mol Med 26 5095-5098 (2022)
  890. Bergamottin and PAP-1 Induced ACE2 Degradation to Alleviate Infection of SARS-CoV-2. Li M, Zhang Y, Zeb A, Wu Y, Cheng L. Int J Mol Sci 23 12565 (2022)
  891. Binary-QSAR guided virtual screening of FDA approved drugs and compounds in clinical investigation against SARS-CoV-2 main protease. Oktay L, Erdemoğlu E, Tolu İ, Yumak Y, Özcan A, Acar E, Büyükkiliç Ş, Olkan A, Durdaği S. Turk J Biol 45 459-468 (2021)
  892. Bio-guided chemical characterization and nano-formulation studies of selected edible volatile oils with potentials antibacterial and anti-SARS-CoV-2 activities. Refaey MS, A A Fayed M, Kutkat O, Moatasim Y, Sameh Tolba N, Anis A, Elshorbagy AM, Nassar K, A M Abouzid K, A M M Elshaier Y, El-Badawy MF. Arab J Chem 16 104813 (2023)
  893. Bioinformatic analysis of the whole genome sequences of SARS-CoV-2 from Indonesia. Ulfah M, Helianti I. Iran J Microbiol 13 145-155 (2021)
  894. Bis(thio)carbohydrazone Luminogens with AIEE and ACQ Features and Their In Silico Investigations with SARS-CoV-2. Mohammed Hashim KK, Manoj E, Prathapachandra Kurup MR. ChemistrySelect 7 e202201229 (2022)
  895. Broad-spectrum coronavirus 3C-like protease peptidomimetic inhibitors effectively block SARS-CoV-2 replication in cells: Design, synthesis, biological evaluation, and X-ray structure determination. Stefanelli I, Corona A, Cerchia C, Cassese E, Improta S, Costanzi E, Pelliccia S, Morasso S, Esposito F, Paulis A, Scognamiglio S, Di Leva FS, Storici P, Brindisi M, Tramontano E, Cannalire R, Summa V. Eur J Med Chem 253 115311 (2023)
  896. Chemical composition and therapeutic mechanism of Xuanbai Chengqi Decoction in the treatment of COVID-19 by network pharmacology, molecular docking and molecular dynamic analysis. Fan L, Feng S, Wang T, Ding X, An X, Wang Z, Zhou K, Wang M, Zhai X, Li Y. Mol Divers 27 81-102 (2023)
  897. CoLab: A workshop-based undergraduate research experience for entering college students. Wierzchowski A, Wink DJ, Zhang H, Kambanis K, Robles JOR, Rosenhouse-Dantsker A. J Chem Educ 99 4085-4093 (2022)
  898. Computational and in vitro experimental analyses of the anti-COVID-19 potential of Mortaparib and MortaparibPlus. Kumar V, Sari AN, Meidinna HN, Dhanjal JK, Subramani C, Basu B, Kaul SC, Vrati S, Sundar D, Wadhwa R. Biosci Rep 41 BSR20212156 (2021)
  899. Coronavirus pandemic: treatment and future prevention. Lundstrom K. Future Microbiol 15 1507-1521 (2020)
  900. De Novo design of potential inhibitors against SARS-CoV-2 Mpro. Li S, Wang L, Meng J, Zhao Q, Zhang L, Liu H. Comput Biol Med 147 105728 (2022)
  901. Design and statistical optimisation of emulsomal nanoparticles for improved anti-SARS-CoV-2 activity of N-(5-nitrothiazol-2-yl)-carboxamido candidates: in vitro and in silico studies. Al-Karmalawy AA, El-Gamil DS, El-Shesheny R, Sharaky M, Alnajjar R, Kutkat O, Moatasim Y, Elagawany M, Al-Rashood ST, Binjubair FA, Eldehna WM, Noreddin AM, Zakaria MY. J Enzyme Inhib Med Chem 38 2202357 (2023)
  902. Design, synthesis and biological evaluation of covalent peptidomimetic 3CL protease inhibitors containing nitrile moiety. Zhu M, Fu T, You M, Cao J, Yang H, Chen X, Zhang Q, Xu Y, Jiang X, Zhang L, Su H, Zhang Y, Shen J. Bioorg Med Chem 87 117316 (2023)
  903. Design, synthesis and biological evaluation of peptidomimetic benzothiazolyl ketones as 3CLpro inhibitors against SARS-CoV-2. Yang H, You M, Shu X, Zhen J, Zhu M, Fu T, Zhang Y, Jiang X, Zhang L, Xu Y, Zhang Y, Su H, Zhang Q, Shen J. Eur J Med Chem 257 115512 (2023)
  904. Discovery and mechanism of action of Thonzonium bromide from an FDA-approved drug library with potent and broad-spectrum inhibitory activity against main proteases of human coronaviruses. Wang R, Zhai G, Zhu G, Wang M, Gong X, Zhang W, Ge G, Chen H, Chen L. Bioorg Chem 130 106264 (2023)
  905. Discovery of 3-phenyl-1,2,4-oxadiazole derivatives as a new class of SARS-CoV-2 main protease inhibitors. Guo N, Huang C, Qiao J, Li Y, Wang Y, Xia A, Zhang G, Fang Z, You J, Li L. Bioorg Med Chem Lett 86 129238 (2023)
  906. Discovery of Potential Inhibitors of SARS-CoV-2 Main Protease by a Transfer Learning Method. Zhang H, Liang B, Sang X, An J, Huang Z. Viruses 15 891 (2023)
  907. Discovery of inhibitors against SARS-CoV-2 main protease using fragment-based drug design. Shao HP, Wang TH, Zhai HL, Bi KX, Zhao BQ. Chem Biol Interact 371 110352 (2023)
  908. Dual-Reporter System for Real-Time Monitoring of SARS-CoV-2 Main Protease Activity in Live Cells Enables Identification of an Allosteric Inhibition Path. Bram Y, Duan X, Nilsson-Payant BE, Chandar V, Wu H, Shore D, Fajardo A, Sinha S, Hassan N, Weinstein H, TenOever BR, Chen S, Schwartz RE. ACS Bio Med Chem Au 2 627-641 (2022)
  909. Dual-targeting cyclic peptides of receptor-binding domain (RBD) and main protease (Mpro) as potential drug leads for the treatment of SARS-CoV-2 infection. Xu Z, Zou Y, Gao X, Niu MM, Li J, Xue L, Jiang S. Front Pharmacol 13 1041331 (2022)
  910. Elucidation of Binding Features and Dissociation Pathways of Inhibitors and Modulators in SARS-CoV-2 Main Protease by Multiple Molecular Dynamics Simulations. Xu L, Xie L, Zhang D, Xu X. Molecules 27 6823 (2022)
  911. Enantioselective inhibition of the SARS-CoV-2 main protease with rhenium(i) picolinic acid complexes. Karges J, Giardini MA, Blacque O, Woodworth B, Siqueira-Neto JL, Cohen SM. Chem Sci 14 711-720 (2023)
  912. Epigenetic perspectives of COVID-19: Virus infection to disease progression and therapeutic control. Patra SK, Szyf M. Biochim Biophys Acta Mol Basis Dis 1868 166527 (2022)
  913. Evolutionary aspects of mutation in functional motif and post-translational modifications in SARS-CoV-2 3CLpro (Mpro): an in-silico study. Gupta A, Sahu N, Singh VK, Sinha RP. J Proteins Proteom 1-11 (2023)
  914. Exploring new catechin derivatives as SARS-CoV-2 Mpro inhibitors from tea by molecular networking, surface plasma resonance, enzyme inhibition, induced fit docking, and metadynamics simulations. Yang Z, Wang W, Qi Y, Yang Y, Chen CH, Liu JZ, Chu GX, Bao GH. Comput Biol Med 151 106288 (2022)
  915. Exploring the Binding Effects of Natural Products and Antihypertensive Drugs on SARS-CoV-2: An In Silico Investigation of Main Protease and Spike Protein. Moschovou K, Antoniou M, Chontzopoulou E, Papavasileiou KD, Melagraki G, Afantitis A, Mavromoustakos T. Int J Mol Sci 24 15894 (2023)
  916. Exploring the inhibitory potential of Saussurea costus and Saussurea involucrata phytoconstituents against the Spike glycoprotein receptor binding domain of SARS-CoV-2 Delta (B.1.617.2) variant and the main protease (Mpro) as therapeutic candidates, using Molecular docking, DFT, and ADME/Tox studies. Houchi S, Messasma Z. J Mol Struct 1263 133032 (2022)
  917. Hijacking of Cellular Functions by Severe Acute Respiratory Syndrome Coronavirus-2. Permeabilization and Polarization of the Host Lipid Membrane by Viroporins. Bignon E, Marazzi M, Monari A. J Phys Chem Lett 13 4642-4649 (2022)
  918. Human Superantibodies to 3CLpro Inhibit Replication of SARS-CoV-2 across Variants. Glab-Ampai K, Kaewchim K, Saenlom T, Thepsawat W, Mahasongkram K, Sookrung N, Chaicumpa W, Chulanetra M. Int J Mol Sci 23 6587 (2022)
  919. Identification of 4-acrylamido-N-(pyridazin-3-yl)benzamide as anti-COVID-19 compound: a DFTB, molecular docking, and molecular dynamics study. Sepay N, Chakrabarti S, Afzal M, Alarifi A, Mal D. RSC Adv 12 24178-24186 (2022)
  920. Identification of Alkaloids from Terminalia chebula as Potent SARS- CoV-2 Main Protease Inhibitors: An In Silico Perspective. Ghosh R, Badavath VN, Chowdhuri S, Sen A. ChemistrySelect 7 e202200055 (2022)
  921. Identification of SARS-CoV-2 inhibitors through phylogenetics and drug repurposing. Mishra A, Mulpuru V, Mishra N. Struct Chem 33 1789-1797 (2022)
  922. Identification of a Dual Inhibitor of Secreted Phospholipase A2 (GIIA sPLA2) and SARS-CoV-2 Main Protease. Theodoropoulou MA, Koutoulogenis GS, Zhang L, Akrani I, Mikros E, Hilgenfeld R, Kokotos G. Pharmaceuticals (Basel) 15 961 (2022)
  923. Identification of a Putative SARS-CoV-2 Main Protease Inhibitor through In Silico Screening of Self-Designed Molecular Library. Liu N, Yang Z, Liu Y, Dang X, Zhang Q, Wang J, Liu X, Zhang J, Pan X. Int J Mol Sci 24 11390 (2023)
  924. Identification of medicinal plant-based phytochemicals as a potential inhibitor for SARS-CoV-2 main protease (Mpro) using molecular docking and deep learning methods. Hossain A, Rahman ME, Rahman MS, Nasirujjaman K, Matin MN, Faruqe MO, Rabbee MF. Comput Biol Med 157 106785 (2023)
  925. Identification of multi-targeting natural antiviral peptides to impede SARS-CoV-2 infection. Singh S, Chauhan P, Sharma V, Rao A, Kumbhar BV, Prajapati VK. Struct Chem 1-16 (2022)
  926. In Silico Design of New Dual Inhibitors of SARS-CoV-2 MPRO through Ligand- and Structure-Based Methods. Bono A, Lauria A, La Monica G, Alamia F, Mingoia F, Martorana A. Int J Mol Sci 24 8377 (2023)
  927. In silico discovery of SARS-CoV-2 main protease inhibitors from the carboline and quinoline database. Muhtar E, Wang M, Zhu H. Future Virol (2021)
  928. Insights Into Drug Repurposing, as Well as Specificity and Compound Properties of Piperidine-Based SARS-CoV-2 PLpro Inhibitors. Calleja DJ, Kuchel N, Lu BGC, Birkinshaw RW, Klemm T, Doerflinger M, Cooney JP, Mackiewicz L, Au AE, Yap YQ, Blackmore TR, Katneni K, Crighton E, Newman J, Jarman KE, Call MJ, Lechtenberg BC, Czabotar PE, Pellegrini M, Charman SA, Lowes KN, Mitchell JP, Nachbur U, Lessene G, Komander D. Front Chem 10 861209 (2022)
  929. Insights into the Dynamics and Binding of Two Polyprotein Substrate Cleavage Points in the Context of the SARS-CoV-2 Main and Papain-like Proteases. Sanusi ZK, Lobb KA. Molecules 27 8251 (2022)
  930. Integrative Approach to Dissect the Drug Resistance Mechanism of the H172Y Mutation of SARS-CoV-2 Main Protease. Clayton J, de Oliveira VM, Ibrahim MF, Sun X, Mahinthichaichan P, Shen M, Hilgenfeld R, Shen J. J Chem Inf Model 63 3521-3533 (2023)
  931. Large scale peptide screening against main protease of SARS CoV-2. Uddin MJ, Akhter H, Chowdhury U, Mawah J, Karim ST, Jomel M, Islam MS, Islam MR, Onin LAB, Ali MA, Efaz FM, Halim MA. J Comput Chem 44 887-901 (2023)
  932. Ligand-based and structure-based studies to develop predictive models for SARS-CoV-2 main protease inhibitors through the 3d-qsar.com portal. Proia E, Ragno A, Antonini L, Sabatino M, Mladenovič M, Capobianco R, Ragno R. J Comput Aided Mol Des 36 483-505 (2022)
  933. Luminescent Assay for the Screening of SARS-CoV-2 MPro Inhibitors. Sondag D, Merx J, Rossing E, Boltje TJ, Löwik DWPM, Nelissen FHT, van Geffen M, van 't Veer C, van Heerde WL, Rutjes FPJT. Chembiochem 23 e202200190 (2022)
  934. Machine learning combines atomistic simulations to predict SARS-CoV-2 Mpro inhibitors from natural compounds. Nguyen TH, Thai QM, Pham MQ, Minh PTH, Phung HTT. Mol Divers (2023)
  935. Microwave assisted synthesis of 2-amino-4-chloro-pyrimidine derivatives: Anticancer and computational study on potential inhibitory action against COVID-19. Qureshi F, Nawaz M, Hisaindee S, Almofty SA, Ansari MA, Jamal QMS, Ullah N, Taha M, Alshehri O, Huwaimel B, Bin Break MK. Arab J Chem 15 104366 (2022)
  936. Molecular interactions and inhibition of the SARS-CoV-2 main protease by a thiadiazolidinone derivative. Andrzejczyk J, Jovic K, Brown LM, Pascetta VG, Varga K, Vashisth H. Proteins 90 1896-1907 (2022)
  937. Multi-ligand molecular docking, simulation, free energy calculations and wavelet analysis of the synergistic effects between natural compounds baicalein and cubebin for the inhibition of the main protease of SARS-CoV-2. Li H, Komori A, Li M, Chen X, Yang AWH, Sun X, Liu Y, Hung A, Zhao X, Zhou L. J Mol Liq 374 121253 (2023)
  938. Multicomponent Synthesis of the SARS-CoV-2 Main Protease Inhibitor Nirmatrelvir. Preschel HD, Otte RT, Zhuo Y, Ruscoe RE, Burke AJ, Kellerhals R, Horst B, Hennig S, Janssen E, Green AP, Turner NJ, Ruijter E. J Org Chem 88 12565-12571 (2023)
  939. Multiple protonation states in ligand-free SARS-CoV-2 main protease revealed by large-scale quantum molecular dynamics simulations. Ono J, Koshimizu U, Fukunishi Y, Nakai H. Chem Phys Lett 794 139489 (2022)
  940. Natural inhibitors of SARS-CoV-2 main protease: structure based pharmacophore modeling, molecular docking and molecular dynamic simulation studies. Halimi M, Bararpour P. J Mol Model 28 279 (2022)
  941. Optimization of the expression of the main protease from SARS-CoV-2. Rong Y, Zhang C, Gao WC, Zhao C. Protein Expr Purif 203 106208 (2023)
  942. PROFICS: A bacterial selection system for directed evolution of proteases. Kröß C, Engele P, Sprenger B, Fischer A, Lingg N, Baier M, Öhlknecht C, Lier B, Oostenbrink C, Cserjan-Puschmann M, Striedner G, Jungbauer A, Schneider R. J Biol Chem 297 101095 (2021)
  943. Pharmacophore based virtual screening for natural product database revealed possible inhibitors for SARS-COV-2 main protease. El-Ashrey MK, Bakr RO, Fayed MAA, Refaey RH, Nissan YM. Virology 570 18-28 (2022)
  944. Phenylpyrazolone-1,2,3-triazole Hybrids as Potent Antiviral Agents with Promising SARS-CoV-2 Main Protease Inhibition Potential. Musa A, Abulkhair HS, Aljuhani A, Rezki N, Abdelgawad MA, Shalaby K, El-Ghorab AH, Aouad MR. Pharmaceuticals (Basel) 16 463 (2023)
  945. Portable microfluidic impedance biosensor for SARS-CoV-2 detection. Laleh S, Ibarlucea B, Stadtmüller M, Cuniberti G, Medina-Sánchez M. Biosens Bioelectron 236 115362 (2023)
  946. Potential Drug Strategies to Target Coronaviruses. Sarkar K, Sil PC. Adv Exp Med Biol 1352 111-124 (2021)
  947. Potential drugs against COVID-19 revealed by gene expression profile, molecular docking and molecular dynamic simulation. Cava C, Bertoli G, Castiglioni I. Future Virol (2021)
  948. Protease inhibitors from Theobroma cacao impair SARS-CoV-2 replication in vitro. Guimarães Santana BC, de Almeida Marques DP, Dos Santos Freitas A, Ferreira MM, de Sousa Lopes D, Bagno FF, Guimarães da Fonseca F, Dos Reis JGAC, Oliveira Mendes TA, Santos JLD, Pirovani CP. Heliyon 9 e15860 (2023)
  949. Protocetraric and Salazinic Acids as Potential Inhibitors of SARS-CoV-2 3CL Protease: Biochemical, Cytotoxic, and Computational Characterization of Depsidones as Slow-Binding Inactivators. Fagnani L, Nazzicone L, Bellio P, Franceschini N, Tondi D, Verri A, Petricca S, Iorio R, Amicosante G, Perilli M, Celenza G. Pharmaceuticals (Basel) 15 714 (2022)
  950. Repositioning of anti-dengue compounds against SARS-CoV-2 as viral polyprotein processing inhibitor. Bajrai LH, Faizo AA, Alkhaldy AA, Dwivedi VD, Azhar EI. PLoS One 17 e0277328 (2022)
  951. Repurposing and computational design of PARP inhibitors as SARS-CoV-2 inhibitors. Rampogu S, Jung TS, Ha MW, Lee KW. Sci Rep 13 10583 (2023)
  952. Rhenium(V) Complexes as Cysteine-Targeting Coordinate Covalent Warheads. Karges J, Cohen SM. J Med Chem 66 3088-3105 (2023)
  953. SAR and QSAR of COVID-19 Main Protease-Inhibitor Interactions of Recently X-ray Crystalized Complexes. Ali HM, Soliman AG, Elfiky HGAG. Proc Natl Acad Sci India Sect B Biol Sci 92 281-291 (2022)
  954. Editorial Scientific solidarity in the face of the COVID-19 pandemic: researchers, publishers, and medical associations. Song P, Karako T. Glob Health Med 2 56-59 (2020)
  955. Search of Novel Small Molecule Inhibitors for the Main Protease of SARS-CoV-2. Zhang W, Lin SX. Viruses 15 580 (2023)
  956. Solanaceae Family Phytochemicals as Inhibitors of 3C-Like Protease of SARS-CoV-2: An In Silico Analysis. Mahmood RA, Hasan A, Rahmatullah M, Paul AK, Jahan R, Jannat K, Bondhon TA, Mahboob T, Nissapatorn V, de Lourdes Pereira M, Paul TK, Rumi OH, Wiart C, Wilairatana P. Molecules 27 4739 (2022)
  957. State-of-the-art Tools to Elucidate the Therapeutic Potential of TAT-peptide (TP) Conjugated Repurposing Drug Against SARS-CoV-2 Spike Glycoproteins. Ansari MA, Alomary MN, Jamal QMS, Almoshari Y, Salawi A, Almahmoud SA, Khan J. Curr Pharm Des 28 3706-3719 (2022)
  958. Structural differences in 3C-like protease (Mpro) from SARS-CoV and SARS-CoV-2: molecular insights revealed by Molecular Dynamics Simulations. Parmar M, Thumar R, Patel B, Athar M, Jha PC, Patel D. Struct Chem 1-18 (2022)
  959. Synthesis and Biochemical Evaluation of 8H-Indeno[1,2-d]thiazole Derivatives as Novel SARS-CoV-2 3CL Protease Inhibitors. Wu J, Feng B, Gao LX, Zhang C, Li J, Xiang DJ, Zang Y, Wang WL. Molecules 27 3359 (2022)
  960. Synthesis and In Silico Docking Study towards M-Pro of Novel Heterocyclic Compounds Derived from Pyrazolopyrimidinone as Putative SARS-CoV-2 Inhibitors. Horchani M, Heise NV, Csuk R, Ben Jannet H, Harrath AH, Romdhane A. Molecules 27 5303 (2022)
  961. Synthesis of bis-furyl-pyrrolo[3,4-b]pyridin-5-ones via Ugi-Zhu reaction and in vitro activity assays against human SARS-CoV-2 and in silico studies on its main proteins. Morales-Salazar I, Montes-Enríquez FP, Garduño-Albino CE, García-Sánchez MA, Ibarra IA, Rojas-Aguirre Y, García-Hernández ME, Sarmiento-Silva RE, Alcaraz-Estrada SL, Díaz-Cervantes E, González-Zamora E, Islas-Jácome A. RSC Med Chem 14 154-165 (2023)
  962. Synthesis, Structure-Activity Relationships, and Antiviral Profiling of 1-Heteroaryl-2-Alkoxyphenyl Analogs as Inhibitors of SARS-CoV-2 Replication. Bardiot D, Vangeel L, Koukni M, Arzel P, Zwaagstra M, Lyoo H, Wanningen P, Ahmad S, Zhang L, Sun X, Delpal A, Eydoux C, Guillemot JC, Lescrinier E, Klaassen H, Leyssen P, Jochmans D, Castermans K, Hilgenfeld R, Robinson C, Decroly E, Canard B, Snijder EJ, van Hemert MJ, van Kuppeveld F, Chaltin P, Neyts J, De Jonghe S, Marchand A. Molecules 27 1052 (2022)
  963. Targeting SARS-CoV-2 Main Protease: A Successful Story Guided by an In Silico Drug Repurposing Approach. Ambrosio FA, Costa G, Romeo I, Esposito F, Alkhatib M, Salpini R, Svicher V, Corona A, Malune P, Tramontano E, Ceccherini-Silberstein F, Alcaro S, Artese A. J Chem Inf Model 63 3601-3613 (2023)
  964. The Discovery of Small Allosteric and Active Site Inhibitors of the SARS-CoV-2 Main Protease via Structure-Based Virtual Screening and Biological Evaluation. Mahgoub RE, Mohamed FE, Alzyoud L, Ali BR, Ferreira J, Rabeh WM, AlNeyadi SS, Atatreh N, Ghattas MA. Molecules 27 6710 (2022)
  965. The Potential of 24-Propylcholestrol as Antibacterial Oral Bacteria of Enterococcus faecalis ATCC 29212 and Inhibitor Biofilms Formation: in vitro and in silico Study. Windaryanti D, Gabriel CS, Hidayat IW, Zainuddin A, Dharsono HDA, Satari MH, Kurnia D. Adv Appl Bioinform Chem 15 99-111 (2022)
  966. Theoretical Investigation of the Coronavirus SARS-CoV-2 (COVID-19) Infection Mechanism and Selectivity. Biskupek I, Sieradzan A, Czaplewski C, Liwo A, Lesner A, Giełdoń A. Molecules 27 2080 (2022)
  967. Thiazole-based SARS-CoV-2 protease (COV Mpro ) inhibitors: Design, synthesis, enzyme inhibition, and molecular modeling simulations. Elsayed RW, Sabry MA, El-Subbagh HI, Bayoumi SM, El-Sayed SM. Arch Pharm (Weinheim) 355 e2200121 (2022)
  968. Validation of X-ray Crystal Structure Ensemble Representations of SARS-CoV-2 Main Protease by Solution NMR Residual Dipolar Couplings. Shen Y, Robertson AJ, Bax A. J Mol Biol 435 168067 (2023)
  969. Virtual Alanine Scan of the Main Protease Active Site in Severe Acute Respiratory Syndrome Coronavirus 2. Nakayoshi T, Kato K, Kurimoto E, Oda A. Int J Mol Sci 22 9837 (2021)
  970. Virtual screening based on the structure of more than 105 compounds against four key proteins of SARS-CoV-2: MPro, SRBD, RdRp, and PLpro. Nabati F, Kamyabiamineh A, Kosari R, Ghasemi F, Seyedebrahimi S, Mohammadi S, Moradi M. Inform Med Unlocked 35 101134 (2022)
  971. Virtual screening of molecular databases for potential inhibitors of the NSP16/NSP10 methyltransferase from SARS-CoV-2. Gomes JPA, Rocha LO, Leal CEY, Filho EBA. J Mol Struct 1261 132951 (2022)
  972. 1-Phenyl-N-(benzothiazol-2-yl)methanimine derivatives as Middle East respiratory syndrome coronavirus inhibitors. Hu MQ, Li H, Lin Y, Zhang Y, Tang J, Zuo JP, Yu LF, Tong XK, Tang W, Yang F. RSC Adv 10 43299-43311 (2020)
  973. In silico assessment of diterpenes as potential inhibitors of SARS-COV-2 main protease. Abdelrady YA, Ashraf NM, Hamid A, Thabet HS, Sayed AM, Salem SH, Hassanein EH, Sayed AM. Future Virol 18 295-308 (2023)
  974. In silico identification and validation of triarylchromones as potential inhibitor against main protease of severe acute respiratory syndrome coronavirus 2. Chandel V, Tripathi G, Nayar SA, Rathi B, Kumar A, Kumar D. J Biomol Struct Dyn 40 8850-8865 (2022)
  975. In silico study of novel niclosamide derivatives, SARS-CoV-2 nonstructural proteins catalytic residue-targeting small molecules drug candidates. Lawal B, Tsai SK, Wu ATH, Huang HS. Arab J Chem 16 104654 (2023)
  976. A Novel Y-Shaped, S-O-N-O-S-Bridged Cross-Link between Three Residues C22, C44, and K61 Is Frequently Observed in the SARS-CoV-2 Main Protease. Yang KS, Blankenship LR, Kuo SA, Sheng YJ, Li P, Fierke CA, Russell DH, Yan X, Xu S, Liu WR. ACS Chem Biol 18 449-455 (2023)
  977. A Prototype Assay Multiplexing SARS-CoV-2 3CL-Protease and Angiotensin-Converting Enzyme 2 for Saliva-Based Diagnostics in COVID-19. Suresh V, Sheik DA, Detomasi TC, Zhao T, Zepeda T, Saladi S, Rajesh UC, Byers K, Craik CS, Davisson VJ. Biosensors (Basel) 13 682 (2023)
  978. A Study of Drug Repurposing to Identify SARS-CoV-2 Main Protease (3CLpro) Inhibitors. Jo S, Signorile L, Kim S, Kim MS, Huertas O, Insa R, Reig N, Shin DH. Int J Mol Sci 23 6468 (2022)
  979. A multilayer dynamic perturbation analysis method for predicting ligand-protein interactions. Gu L, Li B, Ming D. BMC Bioinformatics 23 456 (2022)
  980. An Integrated Analysis of Mechanistic Insights into Biomolecular Interactions and Molecular Dynamics of Bio-Inspired Cu(II) and Zn(II) Complexes towards DNA/BSA/SARS-CoV-2 3CLpro by Molecular Docking-Based Virtual Screening and FRET Detection. Sakthikumar K, Isamura BK, Krause RWM. Biomolecules 12 1883 (2022)
  981. An open-source molecular builder and free energy preparation workflow. Bieniek MK, Cree B, Pirie R, Horton JT, Tatum NJ, Cole DJ. Commun Chem 5 136 (2022)
  982. Antcin-B, a phytosterol-like compound from Taiwanofungus camphoratus inhibits SARS-CoV-2 3-chymotrypsin-like protease (3CLPro) activity in silico and in vitro. Dakpa G, Kumar KJS, Nelen J, Pérez-Sánchez H, Wang SY. Sci Rep 13 17106 (2023)
  983. Anti-Covid-19 Activity Compounds from Michelia crassipes. Chen CY, Liu CM, Yeh HC, Li WJ, Li HT, Chuang CH. Chem Nat Compd 59 371-373 (2023)
  984. Antidiarrheal Potential of Viola canescens: In Vivo and In Silico Approaches. Ahmad I, Alotaibi BS, Malak N, Asad F, Ullah B, Nasreen N, Khan A, Chen CC. Pharmaceuticals (Basel) 16 489 (2023)
  985. Azapeptide activity-based probes for the SARS-CoV-2 main protease enable visualization of inhibition in infected cells. Vanhoutte R, Barniol-Xicota M, Chiu W, Vangeel L, Jochmans D, De Jonghe S, Zidane H, Barr HM, London N, Neyts J, Verhelst SHL. Chem Sci 14 1666-1672 (2023)
  986. Azido-Ceramides, a Tool to Analyse SARS-CoV-2 Replication and Inhibition-SARS-CoV-2 Is Inhibited by Ceramides. Brenner D, Geiger N, Schlegel J, Diesendorf V, Kersting L, Fink J, Stelz L, Schneider-Schaulies S, Sauer M, Bodem J, Seibel J. Int J Mol Sci 24 7281 (2023)
  987. Bioconjugated Nanomaterial for Targeted Diagnosis of SARS-CoV-2. Pramanik A, Gao Y, Patibandla S, Gates K, Ray PC. Acc Mater Res 3 134-148 (2022)
  988. Bioprospecting phytochemicals of Rosmarinus officinalis L. for targeting SARS-CoV-2 main protease (Mpro): a computational study. Patel U, Desai K, Dabhi RC, Maru JJ, Shrivastav PS. J Mol Model 29 161 (2023)
  989. Broad antagonism of coronaviruses nsp5 to evade the host antiviral responses by cleaving POLDIP3. Wu Y, Li M, Tian J, Yan H, Pan Y, Shi H, Shi D, Chen J, Guo L, Feng L. PLoS Pathog 19 e1011702 (2023)
  990. Calpeptin is a potent cathepsin inhibitor and drug candidate for SARS-CoV-2 infections. Reinke PYA, de Souza EE, Günther S, Falke S, Lieske J, Ewert W, Loboda J, Herrmann A, Rahmani Mashhour A, Karničar K, Usenik A, Lindič N, Sekirnik A, Botosso VF, Santelli GMM, Kapronezai J, de Araújo MV, Silva-Pereira TT, Filho AFS, Tavares MS, Flórez-Álvarez L, de Oliveira DBL, Durigon EL, Giaretta PR, Heinemann MB, Hauser M, Seychell B, Böhler H, Rut W, Drag M, Beck T, Cox R, Chapman HN, Betzel C, Brehm W, Hinrichs W, Ebert G, Latham SL, Guimarães AMS, Turk D, Wrenger C, Meents A. Commun Biol 6 1058 (2023)
  991. Combating Coronavirus Using Resonant Electromagnetic Irradiation. Sayidmarie KH, Mohammed B, Mohammed AJ, Abbosh A. IEEE J Electromagn RF Microw Med Biol 6 477-484 (2022)
  992. Combining virtual screening with cis-/trans-cleavage enzymatic assays effectively reveals broad-spectrum inhibitors that target the main proteases of SARS-CoV-2 and MERS-CoV. Chang YJ, Le UNP, Liu JJ, Li SR, Chao ST, Lai HC, Lin YF, Hsu KC, Lu CH, Lin CW. Antiviral Res 216 105653 (2023)
  993. Comprehensive Understanding of the Kinetic Behaviors of Main Protease from SARS-CoV-2 and SARS-CoV: New Data and Comparison to Published Parameters. Li F, Fang T, Guo F, Zhao Z, Zhang J. Molecules 28 4605 (2023)
  994. Computer-aided drug design for virtual-screening and active-predicting of main protease (Mpro) inhibitors against SARS-CoV-2. Dai R, Gao H, Su R. Front Pharmacol 14 1288363 (2023)
  995. Contribution of the catalytic dyad of SARS-CoV-2 main protease to binding covalent and noncovalent inhibitors. Kovalevsky A, Aniana A, Coates L, Bonnesen PV, Nashed NT, Louis JM. J Biol Chem 299 104886 (2023)
  996. Crystal Structures of Inhibitor-Bound Main Protease from Delta- and Gamma-Coronaviruses. Zvornicanin SN, Shaqra AM, Huang QJ, Ornelas E, Moghe M, Knapp M, Moquin S, Dovala D, Schiffer CA, Kurt Yilmaz N. Viruses 15 781 (2023)
  997. Crystal structures of main proteases of SARS-CoV-2 variants bound to a benzothiazole-based inhibitor. Luo J, Wang W, Jiang H, Li W, Zeng P, Wang J, Zhou X, Zou X, Chen S, Wang Q, Zhang J, Li J. Acta Biochim Biophys Sin (Shanghai) 55 1257-1264 (2023)
  998. DNA-encoded chemical libraries yield non-covalent and non-peptidic SARS-CoV-2 main protease inhibitors. Jimmidi R, Chamakuri S, Lu S, Ucisik MN, Chen PJ, Bohren KM, Moghadasi SA, Versteeg L, Nnabuife C, Li JY, Qin X, Chen YC, Faver JC, Nyshadham P, Sharma KL, Sankaran B, Judge A, Yu Z, Li F, Pollet J, Harris RS, Matzuk MM, Palzkill T, Young DW. Commun Chem 6 164 (2023)
  999. Design and synthesis of naturally-inspired SARS-CoV-2 inhibitors. Hassan H, Chiavaralli J, Hassan A, Bedda L, Krischuns T, Chen KY, Li ASM, Delpal A, Decroly E, Vedadi M, Naffakh N, Agou F, Mallart S, Arafa RK, Arimondo PB. RSC Med Chem 14 507-519 (2023)
  1000. Design of Potent Inhibitors Targeting the Main Protease of SARS-CoV-2 Using QSAR Modeling, Molecular Docking, and Molecular Dynamics Simulations. Oubahmane M, Hdoufane I, Delaite C, Sayede A, Cherqaoui D, El Allali A. Pharmaceuticals (Basel) 16 608 (2023)
  1001. Design of novel pyrimidine based remdesivir analogues with dual target specificity for SARS CoV-2: A computational approach. Dinesh TV, Malgija B, Ponraj MR, Muralakar P, Thathapudi JJ, Kandasamy R, Alagarmalai J, Balakrishnan AB, Ramar PS, James JV, Bhagavathsingh J. Int J Biol Macromol 242 124443 (2023)
  1002. Development of 2-chloroquinoline based heterocyclic frameworks as dual inhibitors of SARS-CoV-2 MPro and PLPro. Kattula B, Reddi B, Jangam A, Naik L, Adimoolam BM, Vavilapalli S, Are S, Thota JR, Jadav SS, Arifuddin M, Addlagatta A. Int J Biol Macromol 242 124772 (2023)
  1003. Development of the Safe and Broad-Spectrum Aldehyde and Ketoamide Mpro inhibitors Derived from the Constrained α, γ-AA Peptide Scaffold. Wang L, Ma C, Sacco MD, Xue S, Mahmoud M, Calcul L, Chen Y, Wang J, Cai J. Chemistry 29 e202300476 (2023)
  1004. Discovery of 2-thiobenzimidazoles as noncovalent inhibitors of SARS-CoV-2 main protease. Deodato D, Asad N, Dore TM. Bioorg Med Chem Lett 72 128867 (2022)
  1005. Discovery of PLpro and Mpro Inhibitors for SARS-CoV-2. Puhl AC, Godoy AS, Noske GD, Nakamura AM, Gawriljuk VO, Fernandes RS, Oliva G, Ekins S. ACS Omega 8 22603-22612 (2023)
  1006. Discovery of novel inhibitors of SARS-CoV-2 main protease. Zheng L, Chen Y, Bao J, He L, Dong S, Qi Y, Zhang JZH. J Biomol Struct Dyn 40 12526-12534 (2022)
  1007. Diverse SARS-CoV-2 variants preceded the initial COVID-19 outbreak in Croatia. Rokić F, Trgovec-Greif L, Sučić N, Čemeljić N, Grbeša ĐC, Svedružić Ž, Rukavina T, Vugrek O, Jurak I. Arch Virol 166 1735-1739 (2021)
  1008. Dock-able linear and homodetic di, tri, tetra and pentapeptide library from canonical amino acids: SARS-CoV-2 Mpro as a case study. Ahmad S, Mirza MU, Trant JF. J Pharm Anal 13 523-534 (2023)
  1009. Dynamical Nonequilibrium Molecular Dynamics Simulations Identify Allosteric Sites and Positions Associated with Drug Resistance in the SARS-CoV-2 Main Protease. Chan HTH, Oliveira ASF, Schofield CJ, Mulholland AJ, Duarte F. JACS Au 3 1767-1774 (2023)
  1010. E3 ubiquitin ligase ZBTB25 suppresses beta coronavirus infection through ubiquitination of the main viral protease MPro. Lear TB, Boudreau ÁN, Lockwood KC, Chu E, Camarco DP, Cao Q, Nguyen M, Evankovich JW, Finkel T, Liu Y, Chen BB. J Biol Chem 299 105388 (2023)
  1011. Electrochemical Biosensor for the Detection of SARS-CoV-2 Main Protease and Its Inhibitor Ebselen. Zhang Q, Liu G, Ou L. Int J Electrochem Sci 17 220421 (2022)
  1012. Elucidating Atomistic Insight into the Dynamical Responses of the SARS-CoV-2 Main Protease for the Binding of Remdesivir Analogues: Leveraging Molecular Mechanics To Decode the Inhibition Mechanism. Samanta PN, Majumdar D, Leszczynski J. J Chem Inf Model 63 3404-3422 (2023)
  1013. Endoproteolysis of Oligopeptide-Based Coacervates for Enzymatic Modeling. Jin Z, Ling C, Yim W, Chang YC, He T, Li K, Zhou J, Cheng Y, Li Y, Yeung J, Wang R, Fajtová P, Amer L, Mattoussi H, O'Donoghue AJ, Jokerst JV. ACS Nano 17 16980-16992 (2023)
  1014. Evaluation of RevX solution extract as a potential inhibitor of the main protease of SARS-CoV-2-In vitro study and molecular docking. Chou FP, Liu CC, Huong Giang HN, Huang SC, Hsu HF, Wu TK. Heliyon 8 e09034 (2022)
  1015. Exploring potential SARS-CoV-2 Mpro non-covalent inhibitors through docking, pharmacophore profile matching, molecular dynamic simulation, and MM-GBSA. Shi Y, Dong L, Ju Z, Li Q, Cui Y, Liu Y, He J, Ding X. J Mol Model 29 138 (2023)
  1016. Finding potential inhibitors for Main protease (Mpro) of SARS-CoV-2 through virtual screening and MD simulation studies. Ahamed NA, Arif IA. Saudi J Biol Sci 30 103845 (2023)
  1017. Fluorinated derivatives of tetrahydroaltersolanol molecule on COVID-19, HIV, and HTLV protease by DFT and molecular docking approaches. Azadparvar M, Kheirabadi M, Aliabad HAR. J Mol Model 28 350 (2022)
  1018. Fragment-based inhibitor design for SARS-CoV2 main protease. Andola P, Pagag J, Laxman D, Guruprasad L. Struct Chem 33 1467-1487 (2022)
  1019. Garbage in, garbage out: how reliable training data improved a virtual screening approach against SARS-CoV-2 MPro. Ruatta SM, Prada Gori DN, Fló Díaz M, Lorenzelli F, Perelmuter K, Alberca LN, Bellera CL, Medeiros A, López GV, Ingold M, Porcal W, Dibello E, Ihnatenko I, Kunick C, Incerti M, Luzardo M, Colobbio M, Ramos JC, Manta E, Minini L, Lavaggi ML, Hernández P, Šarlauskas J, Huerta García CS, Castillo R, Hernández-Campos A, Ribaudo G, Zagotto G, Carlucci R, Medrán NS, Labadie GR, Martinez-Amezaga M, Delpiccolo CML, Mata EG, Scarone L, Posada L, Serra G, Calogeropoulou T, Prousis K, Detsi A, Cabrera M, Alvarez G, Aicardo A, Araújo V, Chavarría C, Mašič LP, Gantner ME, Llanos MA, Rodríguez S, Gavernet L, Park S, Heo J, Lee H, Paul Park KH, Bollati-Fogolín M, Pritsch O, Shum D, Talevi A, Comini MA. Front Pharmacol 14 1193282 (2023)
  1020. High throughput screening for drugs that inhibit 3C-like protease in SARS-CoV-2. Smith E, Davis-Gardner ME, Garcia-Ordonez RD, Nguyen TT, Hull M, Chen E, Yu X, Bannister TD, Baillargeon P, Scampavia L, Griffin P, Farzan M, Spicer TP. SLAS Discov 28 95-101 (2023)
  1021. Identification and characterization of alternative sites and molecular probes for SARS-CoV-2 target proteins. Iyengar SM, Barnsley KK, Vu HY, Bongalonta IJA, Herrod AS, Scott JA, Ondrechen MJ. Front Chem 10 1017394 (2022)
  1022. Identification and evaluation of antiviral activity of novel compounds targeting SARS-CoV-2 virus by enzymatic and antiviral assays, and computational analysis. Nemčovičová I, Lopušná K, Štibrániová I, Benedetti F, Berti F, Felluga F, Drioli S, Vidali M, Katrlík J, Pažitná L, Holazová A, Blahutová J, Lenhartová S, Sláviková M, Klempa B, Ondrejovič M, Chmelová D, Legerská B, Miertuš S, Klacsová M, Uhríková D, Kerti L, Frecer V. J Enzyme Inhib Med Chem 39 2301772 (2024)
  1023. Identification of Drug Combination Therapies for SARS-CoV-2: A Molecular Dynamics Simulations Approach. Abdel-Halim H, Hajar M, Hasouneh L, Abdelmalek SMA. Drug Des Devel Ther 16 2995-3013 (2022)
  1024. Identification of Mulberrofuran as a potent inhibitor of hepatitis A virus 3Cpro and RdRP enzymes through structure-based virtual screening, dynamics simulation, and DFT studies. Sureshan M, Brintha S, Jothi A. Mol Divers (2023)
  1025. Identification of Pyrazole Derivatives of Usnic Acid as Novel Inhibitor of SARS-CoV-2 Main Protease Through Virtual Screening Approaches. Roney M, Singh G, Huq AKMM, Forid MS, Ishak WMBW, Rullah K, Aluwi MFFM, Tajuddin SN. Mol Biotechnol (2023)
  1026. Identification of and Mechanistic Insights into SARS-CoV-2 Main Protease Non-Covalent Inhibitors: An In-Silico Study. Shen JX, Du WW, Xia YL, Zhang ZB, Yu ZF, Fu YX, Liu SQ. Int J Mol Sci 24 4237 (2023)
  1027. Identification of non-covalent SARS-CoV-2 main protease inhibitors by a virtual screen of commercially available drug-like compounds. Zhang L, Howland M, Hilgenfeld R, Anderson MO, Eagon S. Bioorg Med Chem Lett 41 127990 (2021)
  1028. Identification of potent inhibitors against transmembrane serine protease 2 for developing therapeutics against SARS-CoV-2. Mamun AA, Akter F, Khan M, Ahmed SS, Uddin MG, Tasfia NT, Efaz FM, Ali MA, Sultana MUC, Halim MA. J Biomol Struct Dyn 40 13049-13061 (2022)
  1029. Identification of the potential association between SARS-CoV-2 infection and acute kidney injury based on the shared gene signatures and regulatory network. Zhou X, Wang N, Liu W, Chen R, Yang G, Yu H. BMC Infect Dis 23 655 (2023)
  1030. Impact of Sulfur Fumigation on Ginger: Chemical and Biological Evidence. Zhang WH, Luo HY, Fang J, Zhao CL, Chan KC, Chan YM, Dong CX, Chen HB, Zhao ZZ, Li SL, Xu J. J Agric Food Chem 70 12577-12586 (2022)
  1031. In Silico Identification of Potential Inhibitors of the SARS-CoV-2 Main Protease among a PubChem Database of Avian Infectious Bronchitis Virus 3CLPro Inhibitors. Soulère L, Barbier T, Queneau Y. Biomolecules 13 956 (2023)
  1032. In silico Study of Antiviral Activity of Polyphenol Compounds from Ocimum basilicum by Molecular Docking, ADMET, and Drug-Likeness Analysis. Kurnia D, Putri SA, Tumilaar SG, Zainuddin A, Dharsono HDA, Amin MF. Adv Appl Bioinform Chem 16 37-47 (2023)
  1033. In silico approach for the development of novel antiviral compounds based on SARS-COV-2 protease inhibition. Ničkčović VP, Nikolić GR, Nedeljković BM, Mitić N, Danić SF, Mitić J, Marčetić Z, Sokolović D, Veselinović AM. Chem Zvesti 76 4393-4404 (2022)
  1034. In silico evaluation of Philippine Natural Products against SARS-CoV-2 Main Protease. Cheng AJT, Macalino SJY, Billones JB, Balolong MP, Murao LAE, Carrillo MCO. J Mol Model 28 345 (2022)
  1035. In silico studies of anti-oxidative and hot temperament-based phytochemicals as natural inhibitors of SARS-CoV-2 Mpro. Naderi Beni R, Elyasi-Ebli P, Gharaghani S, Seyedarabi A. PLoS One 18 e0295014 (2023)
  1036. In-silico study: docking simulation and molecular dynamics of peptidomimetic fullerene-based derivatives against SARS-CoV-2 Mpro. Saleh NA. 3 Biotech 13 185 (2023)
  1037. In-vitro antiviral activity and in-silico targeted study of quinoline-3-carboxylate derivatives against SARS-Cov-2 isolate. Mittal RK, Purohit P, Sankaranarayanan M, Muzaffar-Ur-Rehman M, Taramelli D, Signorini L, Dolci M, Basilico N. Mol Divers (2023)
  1038. Insights into targeting SARS-CoV-2: design, synthesis, in silico studies and antiviral evaluation of new dimethylxanthine derivatives. Mohamed AR, Mostafa A, El Hassab MA, Hedeab GM, Mahmoud SH, George RF, Georgey HH, Abdel Gawad NM, El-Ashrey MK. RSC Med Chem 14 899-920 (2023)
  1039. Insights into the mechanism of SARS-CoV-2 main protease autocatalytic maturation from model precursors. Aniana A, Nashed NT, Ghirlando R, Coates L, Kneller DW, Kovalevsky A, Louis JM. Commun Biol 6 1159 (2023)
  1040. Interactions of the Anti-SARS-CoV-2 Agents Molnupiravir and Nirmatrelvir/Paxlovid with Human Drug Transporters. Bakos É, Temesszentandrási-Ambrus C, Özvegy-Laczka C, Gáborik Z, Sarkadi B, Telbisz Á. Int J Mol Sci 24 11237 (2023)
  1041. Investigating novel thiazolyl-indazole derivatives as scaffolds for SARS-CoV-2 MPro inhibitors. Airas J, Bayas CA, N'Ait Ousidi A, Ait Itto MY, Auhmani A, Loubidi M, Esseffar M, Pollock JA, Parish CA. Eur J Med Chem Rep 4 100034 (2022)
  1042. Investigation on the Essential Oils of the Achillea Species: From Chemical Analysis to the In Silico Uptake against SARS-CoV-2 Main Protease. Angourani HR, Zarei A, Moghadam MM, Ramazani A, Mastinu A. Life (Basel) 13 378 (2023)
  1043. Korupensamine A, but not its atropisomer, korupensamine B, inhibits SARS-CoV-2 in vitro by targeting its main protease (Mpro). Sayed AM, Ibrahim AH, Tajuddeen N, Seibel J, Bodem J, Geiger N, Striffler K, Bringmann G, Abdelmohsen UR. Eur J Med Chem 251 115226 (2023)
  1044. Lab-on-a-chip for the easy and visual detection of SARS-CoV-2 in saliva based on sensory polymers. Arnaiz A, Guirado-Moreno JC, Guembe-García M, Barros R, Tamayo-Ramos JA, Fernández-Pampín N, García JM, Vallejos S. Sens Actuators B Chem 379 133165 (2023)
  1045. Luteolin is a potential inhibitor of COVID-19: An in silico analysis. Wang W, Yang C, Xia J, Li N, Xiong W. Medicine (Baltimore) 102 e35029 (2023)
  1046. MO-MEMES: A method for accelerating virtual screening using multi-objective Bayesian optimization. Mehta S, Goel M, Priyakumar UD. Front Med (Lausanne) 9 916481 (2022)
  1047. Methodological notes on pandemic virus SARS-CoV-2 research. Zangari Del Balzo G. Theory Biosci 140 279-294 (2021)
  1048. Molecular Dynamics Simulation of Ligands from Anredera cordifolia (Binahong) to the Main Protease (M pro) of SARS-CoV-2. Fatriansyah JF, Boanerges AG, Kurnianto SR, Pradana AF, Fadilah, Surip SN. J Trop Med 2022 1178228 (2022)
  1049. Molecular Insights into the Binding Behavior of Imidazolium Ionic Liquids to the Receptor Binding Domain of the SARS-CoV-2 Spike Protein. Liu P, Li Y, Liu Y, Liu J, Dong K, Jia Q. J Phys Chem B 127 4396-4405 (2023)
  1050. Molecular docking and identification of G-protein-coupled receptor 120 (GPR120) agonists as SARS COVID-19 MPro inhibitors. Mohan S, Dharani J, Natarajan R, Nagarajan A. J Genet Eng Biotechnol 20 108 (2022)
  1051. Molecular modeling of potent novel sulfonamide derivatives as non-peptide small molecule anti-COVID 19 agents. Pradhan S, Prasad R, Sinha C, Sen P. J Biomol Struct Dyn 40 7129-7142 (2022)
  1052. Multi-target direct-acting SARS-CoV-2 antivirals against the nucleotide-binding pockets of virus-specific proteins. Rani R, Long S, Pareek A, Dhaka P, Singh A, Kumar P, McInerney G, Tomar S. Virology 577 1-15 (2022)
  1053. Multiple redox switches of the SARS-CoV-2 main protease in vitro provide opportunities for drug design. Funk LM, Poschmann G, Rabe von Pappenheim F, Chari A, Stegmann KM, Dickmanns A, Wensien M, Eulig N, Paknia E, Heyne G, Penka E, Pearson AR, Berndt C, Fritz T, Bazzi S, Uranga J, Mata RA, Dobbelstein M, Hilgenfeld R, Curth U, Tittmann K. Nat Commun 15 411 (2024)
  1054. Multiscale Simulations of the Covalent Inhibition of the SARS-CoV-2 Main Protease: Four Compounds and Three Reaction Mechanisms. Grigorenko BL, Polyakov IV, Khrenova MG, Giudetti G, Faraji S, Krylov AI, Nemukhin AV. J Am Chem Soc 145 13204-13214 (2023)
  1055. Natural Product-Based Screening for Lead Compounds Targeting SARS CoV-2 Mpro. Chen J, Zhou X, Fu L, Xu H. Pharmaceuticals (Basel) 16 767 (2023)
  1056. Natural Products as Potential Antiviral Drugs: The Specific Case of Marine Biotoxins. Jean-Louis Kraus. Russ J Bioorg Chem 47 1127-1132 (2021)
  1057. New Chemicals Suppressing SARS-CoV-2 Replication in Cell Culture. Sulimov A, Ilin I, Kutov D, Shikhaliev K, Shcherbakov D, Pyankov O, Stolpovskaya N, Medvedeva S, Sulimov V. Molecules 27 5732 (2022)
  1058. Newly synthesized Mpro inhibitors as potential oral anti-SARS-CoV-2 agents. Li L, Huang S. Signal Transduct Target Ther 6 138 (2021)
  1059. Novel Approach to the Synthesis of 3-amino-4-arylpyridin-2(1H)-one Derivatives. Shuvalov VY, Chernenko SА, Shatsauskas AL, Samsonenko AL, Dmitriev MV, Fisyuk AS. Chem Heterocycl Compd (N Y) 57 764-771 (2021)
  1060. P21-activated kinase 1 (PAK1)-mediated cytoskeleton rearrangement promotes SARS-CoV-2 entry and ACE2 autophagic degradation. Liu M, Lu B, Li Y, Yuan S, Zhuang Z, Li G, Wang D, Ma L, Zhu J, Zhao J, Chan CC, Poon VK, Chik KK, Zhao Z, Xian H, Zhao J, Zhao J, Chan JF, Zhang Y. Signal Transduct Target Ther 8 385 (2023)
  1061. Peptidyl nitroalkene inhibitors of main protease rationalized by computational and crystallographic investigations as antivirals against SARS-CoV-2. Medrano FJ, de la Hoz-Rodríguez S, Martí S, Arafet K, Schirmeister T, Hammerschmidt SJ, Müller C, González-Martínez Á, Santillana E, Ziebuhr J, Romero A, Zimmer C, Weldert A, Zimmermann R, Lodola A, Świderek K, Moliner V, González FV. Commun Chem 7 15 (2024)
  1062. Pharmacophore Oriented MP2 Characterization of Charge Distribution for Anti-SARS-CoV-2 Inhibitor Nirmatrelvir. Liu Y, Ma R, Fan H, Johnson BR, Briggs JM. J Mol Struct 1290 135871 (2023)
  1063. Phase I study, and dosing regimen selection for a pivotal COVID-19 trial of GST-HG171. Zhang H, Zhou J, Chen H, Mao J, Tang Y, Yan W, Zhang T, Li C, Chen S, Li G, Zhang G, Ding Y, Liu L. Antimicrob Agents Chemother 68 e0111523 (2024)
  1064. Plant flavonoid inhibition of SARS-CoV-2 main protease and viral replication. Lin L, Chen DY, Scartelli C, Xie H, Merrill-Skoloff G, Yang M, Sun L, Saeed M, Flaumenhaft R. iScience 26 107602 (2023)
  1065. Pyrido[1,2-e]purine: Design and Synthesis of Appropriate Inhibitory Candidates against the Main Protease of COVID-19. Moghimi P, Sabet-Sarvestani H, Kohandel O, Shiri A. J Org Chem 87 3922-3933 (2022)
  1066. Quantum Chemical Interaction Analysis between SARS-CoV-2 Main Protease and Ensitrelvir Compared with Its Initial Screening Hit. Watanabe C, Tanaka S, Okiyama Y, Yuki H, Ohyama T, Kamisaka K, Takaya D, Fukuzawa K, Honma T. J Phys Chem Lett 14 3609-3620 (2023)
  1067. Repurposing of US-FDA approved drugs against SARS-CoV-2 main protease (Mpro) by using STD-NMR spectroscopy, in silico studies and antiviral assays. Khan AM, Atia-Tul-Wahab, Farooq S, Ullah A, Choudhary MI. Int J Biol Macromol 234 123540 (2023)
  1068. Role of tannic acid against SARS-cov-2 cell entry by targeting the interface region between S-protein-RBD and human ACE2. Chen X, Wang Z, Wang J, Yao Y, Wang Q, Huang J, Xiang X, Zhou Y, Xue Y, Li Y, Gao X, Wang L, Chu M, Wang Y. Front Pharmacol 13 940628 (2022)
  1069. Screening of potential inhibitors targeting the main protease structure of SARS-CoV-2 via molecular docking. Yang X, Xing X, Liu Y, Zheng Y. Front Pharmacol 13 962863 (2022)
  1070. Screening, Synthesis and Biochemical Characterization of SARS-CoV-2 Protease Inhibitors. Bagdonas M, Čerepenkaitė K, Mickevičiūtė A, Kananavičiūtė R, Grybaitė B, Anusevičius K, Rukšėnaitė A, Kojis T, Gedgaudas M, Mickevičius V, Matulis D, Zubrienė A, Matulienė J. Int J Mol Sci 24 13491 (2023)
  1071. Site-selective generation of lanthanoid binding sites on proteins using 4-fluoro-2,6-dicyanopyridine. Mekkattu Tharayil S, Mahawaththa MC, Feintuch A, Maleckis A, Ullrich S, Morewood R, Maxwell MJ, Huber T, Nitsche C, Goldfarb D, Otting G. Magn Reson (Gott) 3 169-182 (2022)
  1072. Editorial Some lessons from COVID: science and communication. Baker EN. IUCrJ 8 331-332 (2021)
  1073. Syntheses Based on 3,4α-Epoxy-1,5,7α,6β(H)-guai-10(14),11(13)-dien-6,12-olide. Adekenov S. Molecules 27 1862 (2022)
  1074. Synthesis, molecular docking, and binding Gibbs free energy calculation of β-nitrostyrene derivatives: Potential inhibitors of SARS-CoV-2 3CL protease. Jia ZJ, Lan XW, Lu K, Meng X, Jing WJ, Jia SR, Zhao K, Dai YJ. J Mol Struct 1284 135409 (2023)
  1075. Targeting Aspergillus allergen oryzin with a chemical probe at atomic precision. Pattelli ON, Diec DDL, Guo W, Russi S, Fernandez D. Sci Rep 13 17926 (2023)
  1076. Targeting COVID-19 pandemic: in silico evaluation of 2-hydroxy-1, 2-diphenylethanone N(4)-methyl-N(4)-phenylthiosemicarbazone as a potential inhibitor of SARS-CoV-2. Jeevana R, Kavitha AP, Abi TG, Sajith PK, Varughese JK, Aravindakshan KK. Struct Chem 1-17 (2022)
  1077. Targeting DPP4-RBD interactions by sitagliptin and linagliptin delivers a potential host-directed therapy against pan-SARS-CoV-2 infections. Mani S, Kaur A, Jakhar K, Kumari G, Sonar S, Kumar A, Das S, Kumar S, Kumar V, Kundu R, Pandey AK, Singh UP, Majumdar T. Int J Biol Macromol 245 125444 (2023)
  1078. The H163A mutation unravels an oxidized conformation of the SARS-CoV-2 main protease. Tran N, Dasari S, Barwell SAE, McLeod MJ, Kalyaanamoorthy S, Holyoak T, Ganesan A. Nat Commun 14 5625 (2023)
  1079. The Potential of Eukaryotic Cell-Free Systems as a Rapid Response to Novel Zoonotic Pathogens: Analysis of SARS-CoV-2 Viral Proteins. Ramm F, Dondapati SK, Trinh HA, Wenzel D, Walter RM, Zemella A, Kubick S. Front Bioeng Biotechnol 10 896751 (2022)
  1080. The SARS-CoV-2 main protease doesn't induce cell death in human cells in vitro. Komissarov A, Karaseva M, Roschina M, Kostrov S, Demidyuk I. PLoS One 17 e0266015 (2022)
  1081. The hope and hype of ellagic acid and urolithins as ligands of SARS-CoV-2 Nsp5 and inhibitors of viral replication. Bianconi E, Gidari A, Souma M, Sabbatini S, Grifagni D, Bigiotti C, Schiaroli E, Comez L, Paciaroni A, Cantini F, Francisci D, Macchiarulo A. J Enzyme Inhib Med Chem 38 2251721 (2023)
  1082. Ultrasound assisted Cu-catalyzed Ullmann-Goldberg type coupling-cyclization in a single pot: Synthesis and in silico evaluation of 11H-pyrido[2,1-b]quinazolin-11-ones against SARS-CoV-2 RdRp. Manikanttha M, Deepti K, Tej MB, Tej MB, Gopi Reddy A, Kapavarapu R, Barange DK, V Basaveswara Rao M, Pal M. J Mol Struct 1280 135044 (2023)
  1083. Unsupervised deep learning for molecular dynamics simulations: a novel analysis of protein-ligand interactions in SARS-CoV-2 Mpro. Mustali J, Yasuda I, Hirano Y, Yasuoka K, Gautieri A, Arai N. RSC Adv 13 34249-34261 (2023)
  1084. Upgrading nirmatrelvir to inhibit SARS-CoV-2 Mpro via DeepFrag and free energy calculations. Tam NM, Nguyen TH, Pham MQ, Hong ND, Tung NT, Vu VV, Quang DT, Ngo ST. J Mol Graph Model 124 108535 (2023)
  1085. Using macromolecular electron densities to improve the enrichment of active compounds in virtual screening. Ma W, Zhang W, Le Y, Shi X, Xu Q, Xiao Y, Dou Y, Wang X, Zhou W, Peng W, Zhang H, Huang B. Commun Chem 6 173 (2023)
  1086. Versisterol, a new endophytic steroid with 3CL protease inhibitory activity from Avicennia marina (Forssk.) Vierh. Elsbaey M, Ibrahim MAA, Hegazy MF. RSC Adv 12 12583-12589 (2022)
  1087. Virtual and In Vitro Screening of Natural Products Identifies Indole and Benzene Derivatives as Inhibitors of SARS-CoV-2 Main Protease (Mpro). Ang D, Kendall R, Atamian HS. Biology (Basel) 12 519 (2023)
  1088. Virtual screening for small molecular non-covalent binders of the SARS-CoV-2 main protease. Lipiński PFJ, Zaborniak J, Garnuszek P, Szurmak P. Arch Med Sci 17 838-842 (2021)
  1089. β-Cyclodextrins as affordable antivirals to treat coronavirus infection. Raïch-Regué D, Tenorio R, Fernández de Castro I, Tarrés-Freixas F, Sachse M, Perez-Zsolt D, Muñoz-Basagoiti J, Fernández-Sánchez SY, Gallemí M, Ortega-González P, Fernández-Oliva A, Gabaldón JA, Nuñez-Delicado E, Casas J, Roca N, Cantero G, Pérez M, Usai C, Lorca-Oró C, Alert JV, Segalés J, Carrillo J, Blanco J, Clotet Sala B, Cerón-Carrasco JP, Izquierdo-Useros N, Risco C. Biomed Pharmacother 164 114997 (2023)