6xbi Citations

Structure and inhibition of the SARS-CoV-2 main protease reveal strategy for developing dual inhibitors against Mpro and cathepsin L.

Abstract

The main protease (Mpro) of SARS-CoV-2 is a key antiviral drug target. While most Mpro inhibitors have a γ-lactam glutamine surrogate at the P1 position, we recently found that several Mpro inhibitors have hydrophobic moieties at the P1 site, including calpain inhibitors II and XII, which are also active against human cathepsin L, a host protease that is important for viral entry. In this study, we solved x-ray crystal structures of Mpro in complex with calpain inhibitors II and XII and three analogs of

Reviews - 6xbi mentioned but not cited (5)

  1. Structural Characterization of SARS-CoV-2: Where We Are, and Where We Need to Be. Mariano G, Farthing RJ, Lale-Farjat SLM, Bergeron JRC. Front Mol Biosci 7 605236 (2020)
  2. Computational molecular docking and virtual screening revealed promising SARS-CoV-2 drugs. Hosseini M, Chen W, Xiao D, Wang C. Precis Clin Med 4 1-16 (2021)
  3. Co-crystallization and structure determination: An effective direction for anti-SARS-CoV-2 drug discovery. Wang Z, Yang L, Zhao XE. Comput Struct Biotechnol J 19 4684-4701 (2021)
  4. Biflavonoid as potential 3-chymotrypsin-like protease (3CLpro) inhibitor of SARS-Coronavirus. Hartini Y, Saputra B, Wahono B, Auw Z, Indayani F, Adelya L, Namba G, Hariono M. Results Chem 3 100087 (2021)
  5. Human endeavor for anti-SARS-CoV-2 pharmacotherapy: A major strategy to fight the pandemic. Wang R, Stephen P, Tao Y, Zhang W, Lin SX. Biomed Pharmacother 137 111232 (2021)

Articles - 6xbi mentioned but not cited (12)

  1. Structure and inhibition of the SARS-CoV-2 main protease reveal strategy for developing dual inhibitors against Mpro and cathepsin L. Sacco MD, Ma C, Lagarias P, Gao A, Townsend JA, Meng X, Dube P, Zhang X, Hu Y, Kitamura N, Hurst B, Tarbet B, Marty MT, Kolocouris A, Xiang Y, Chen Y, Wang J. Sci Adv 6 eabe0751 (2020)
  2. Rational Design of Hybrid SARS-CoV-2 Main Protease Inhibitors Guided by the Superimposed Cocrystal Structures with the Peptidomimetic Inhibitors GC-376, Telaprevir, and Boceprevir. Xia Z, Sacco M, Hu Y, Ma C, Meng X, Zhang F, Szeto T, Xiang Y, Chen Y, Wang J. ACS Pharmacol Transl Sci 4 1408-1421 (2021)
  3. A Blueprint for High Affinity SARS-CoV-2 Mpro Inhibitors from Activity-Based Compound Library Screening Guided by Analysis of Protein Dynamics. Gossen J, Albani S, Hanke A, Joseph BP, Bergh C, Kuzikov M, Costanzi E, Manelfi C, Storici P, Gribbon P, Beccari AR, Talarico C, Spyrakis F, Lindahl E, Zaliani A, Carloni P, Wade RC, Musiani F, Kokh DB, Rossetti G. ACS Pharmacol Transl Sci 4 1079-1095 (2021)
  4. Is PF-00835231 a Pan-SARS-CoV-2 Mpro Inhibitor? A Comparative Study. Baig MH, Sharma T, Ahmad I, Abohashrh M, Alam MM, Dong JJ. Molecules 26 1678 (2021)
  5. Crystallographic models of SARS-CoV-2 3CLpro: in-depth assessment of structure quality and validation. Jaskolski M, Dauter Z, Shabalin IG, Gilski M, Brzezinski D, Kowiel M, Rupp B, Wlodawer A. IUCrJ 8 238-256 (2021)
  6. Screening of drug databank against WT and mutant main protease of SARS-CoV-2: Towards finding potential compound for repurposing against COVID-19. Sharma T, Abohashrh M, Baig MH, Dong JJ, Alam MM, Ahmad I, Irfan S. Saudi J Biol Sci 28 3152-3159 (2021)
  7. Protein structural heterogeneity: A hypothesis for the basis of proteolytic recognition by the main protease of SARS-CoV and SARS-CoV-2. Behnam MAM. Biochimie 182 177-184 (2021)
  8. DINC-COVID: A webserver for ensemble docking with flexible SARS-CoV-2 proteins. Hall-Swan S, Devaurs D, Rigo MM, Antunes DA, Kavraki LE, Zanatta G. Comput Biol Med 139 104943 (2021)
  9. Ligand-based and structure-based studies to develop predictive models for SARS-CoV-2 main protease inhibitors through the 3d-qsar.com portal. Proia E, Ragno A, Antonini L, Sabatino M, Mladenovič M, Capobianco R, Ragno R. J Comput Aided Mol Des 36 483-505 (2022)
  10. research-article Structure and inhibition of the SARS-CoV-2 main protease reveals strategy for developing dual inhibitors against Mpro and cathepsin L. Sacco MD, Ma C, Lagarias P, Gao A, Townsend JA, Meng X, Dube P, Zhang X, Hu Y, Kitamura N, Hurst B, Tarbet B, Marty MT, Kolocouris A, Xiang Y, Chen Y, Wang J. bioRxiv 2020.07.27.223727 (2020)
  11. Synthesis and DFT computations on structural, electronic and vibrational spectra, RDG analysis and molecular docking of novel Anti COVID-19 molecule 3, 5 Dimethyl Pyrazolium 3, 5 Dichloro Salicylate. Dexlin XDD, Tarika JDD, Kumar SM, Mariappan A, Beaula TJ. J Mol Struct 1246 131165 (2021)
  12. Insights into the structural properties of SARS-CoV-2 main protease. Akbayrak IY, Caglayan SI, Kurgan L, Uversky VN, Coskuner-Weber O. Curr Res Struct Biol 4 349-355 (2022)


Reviews citing this publication (42)

  1. Structural biology of SARS-CoV-2: open the door for novel therapies. Yan W, Zheng Y, Zeng X, He B, Cheng W. Signal Transduct Target Ther 7 26 (2022)
  2. What coronavirus 3C-like protease tells us: From structure, substrate selectivity, to inhibitor design. Xiong M, Su H, Zhao W, Xie H, Shao Q, Xu Y. Med Res Rev 41 1965-1998 (2021)
  3. Therapeutic targets and interventional strategies in COVID-19: mechanisms and clinical studies. Zhou YW, Xie Y, Tang LS, Pu D, Zhu YJ, Liu JY, Ma XL. Signal Transduct Target Ther 6 317 (2021)
  4. SARS-CoV-2 Antiviral Therapy. Tao K, Tzou PL, Nouhin J, Bonilla H, Jagannathan P, Shafer RW. Clin Microbiol Rev 34 e0010921 (2021)
  5. Recent advances in developing small-molecule inhibitors against SARS-CoV-2. Xiang R, Yu Z, Wang Y, Wang L, Huo S, Li Y, Liang R, Hao Q, Ying T, Gao Y, Yu F, Jiang S. Acta Pharm Sin B 12 1591-1623 (2022)
  6. A Comprehensive Review about the Molecular Structure of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): Insights into Natural Products against COVID-19. Saied EM, El-Maradny YA, Osman AA, Darwish AMG, Abo Nahas HH, Niedbała G, Piekutowska M, Abdel-Rahman MA, Balbool BA, Abdel-Azeem AM. Pharmaceutics 13 1759 (2021)
  7. Improved SARS-CoV-2 Mpro inhibitors based on feline antiviral drug GC376: Structural enhancements, increased solubility, and micellar studies. Vuong W, Fischer C, Khan MB, van Belkum MJ, Lamer T, Willoughby KD, Lu J, Arutyunova E, Joyce MA, Saffran HA, Shields JA, Young HS, Nieman JA, Tyrrell DL, Lemieux MJ, Vederas JC. Eur J Med Chem 222 113584 (2021)
  8. The SARS-CoV-2 main protease (Mpro): Structure, function, and emerging therapies for COVID-19. Hu Q, Xiong Y, Zhu GH, Zhang YN, Zhang YW, Huang P, Ge GB. MedComm (2020) 3 e151 (2022)
  9. Haste makes waste: A critical review of docking-based virtual screening in drug repurposing for SARS-CoV-2 main protease (M-pro) inhibition. Macip G, Garcia-Segura P, Mestres-Truyol J, Saldivar-Espinoza B, Ojeda-Montes MJ, Gimeno A, Cereto-Massagué A, Garcia-Vallvé S, Pujadas G. Med Res Rev 42 744-769 (2022)
  10. Metal Complexes as Antiviral Agents for SARS-CoV-2. Karges J, Cohen SM. Chembiochem 22 2600-2607 (2021)
  11. Inhibition of the main protease of SARS-CoV-2 (Mpro) by repurposing/designing drug-like substances and utilizing nature's toolbox of bioactive compounds. Antonopoulou I, Sapountzaki E, Rova U, Christakopoulos P. Comput Struct Biotechnol J 20 1306-1344 (2022)
  12. Potency, Safety, and Pharmacokinetic Profiles of Potential Inhibitors Targeting SARS-CoV-2 Main Protease. Mengist HM, Mekonnen D, Mohammed A, Shi R, Jin T. Front Pharmacol 11 630500 (2020)
  13. A Crystallographic Snapshot of SARS-CoV-2 Main Protease Maturation Process. Noske GD, Nakamura AM, Gawriljuk VO, Fernandes RS, Lima GMA, Rosa HVD, Pereira HD, Zeri ACM, Nascimento AFZ, Freire MCLC, Fearon D, Douangamath A, von Delft F, Oliva G, Godoy AS. J Mol Biol 433 167118 (2021)
  14. Bench-to-bedside: Innovation of small molecule anti-SARS-CoV-2 drugs in China. Yang L, Wang Z. Eur J Med Chem 257 115503 (2023)
  15. Targeting the viral-entry facilitators of SARS-CoV-2 as a therapeutic strategy in COVID-19. Muralidar S, Gopal G, Visaga Ambi S. J Med Virol 93 5260-5276 (2021)
  16. A Review of the Current Landscape of SARS-CoV-2 Main Protease Inhibitors: Have We Hit the Bullseye Yet? Macip G, Garcia-Segura P, Mestres-Truyol J, Saldivar-Espinoza B, Pujadas G, Garcia-Vallvé S. Int J Mol Sci 23 259 (2021)
  17. Small molecules in the treatment of COVID-19. Lei S, Chen X, Wu J, Duan X, Men K. Signal Transduct Target Ther 7 387 (2022)
  18. Human cell receptors: potential drug targets to combat COVID-19. Raghav PK, Kalyanaraman K, Kumar D. Amino Acids 53 813-842 (2021)
  19. Targeting SARS-CoV-2 Main Protease for Treatment of COVID-19: Covalent Inhibitors Structure-Activity Relationship Insights and Evolution Perspectives. La Monica G, Bono A, Lauria A, Martorana A. J Med Chem 65 12500-12534 (2022)
  20. Molecular Perspectives of SARS-CoV-2: Pathology, Immune Evasion, and Therapeutic Interventions. Shah M, Woo HG. Mol Cells 44 408-421 (2021)
  21. Approaches to Heterogeneity in Native Mass Spectrometry. Rolland AD, Prell JS. Chem Rev 122 7909-7951 (2022)
  22. A contemporary review on the important role of in silico approaches for managing different aspects of COVID-19 crisis. Moradi M, Golmohammadi R, Najafi A, Moosazadeh Moghaddam M, Fasihi-Ramandi M, Mirnejad R. Inform Med Unlocked 28 100862 (2022)
  23. An update on emerging therapeutics to combat COVID-19. Shah NN, Nabi SU, Rather MA, Kalwar Q, Ali SI, Sheikh WM, Ganai A, Bashir SM. Basic Clin Pharmacol Toxicol 129 104-129 (2021)
  24. Role of Serine Proteases and Host Cell Receptors Involved in Proteolytic Activation, Entry of SARS-CoV-2 and Its Current Therapeutic Options. Dessie G, Malik T. Infect Drug Resist 14 1883-1892 (2021)
  25. Beyond the vaccines: a glance at the small molecule and peptide-based anti-COVID19 arsenal. Nepali K, Sharma R, Sharma S, Thakur A, Liou JP. J Biomed Sci 29 65 (2022)
  26. Antimicrobial peptides: A plausible approach for COVID-19 treatment. Rani P, Kapoor B, Gulati M, Atanasov AG, Alzahrani Q, Gupta R. Expert Opin Drug Discov 17 473-487 (2022)
  27. Three-Dimensional Visualization of Viral Structure, Entry, and Replication Underlying the Spread of SARS-CoV-2. Saville JW, Berezuk AM, Srivastava SS, Subramaniam S. Chem Rev 122 14066-14084 (2022)
  28. Recent advances in small-molecular therapeutics for COVID-19. Zhong L, Zhao Z, Peng X, Zou J, Yang S. Precis Clin Med 5 pbac024 (2022)
  29. A review on structural, non-structural, and accessory proteins of SARS-CoV-2: Highlighting drug target sites. Jahirul Islam M, Nawal Islam N, Siddik Alom M, Kabir M, Halim MA. Immunobiology 228 152302 (2023)
  30. Top-Down and Bottom-Up Proteomics Methods to Study RNA Virus Biology. Simanjuntak Y, Schamoni-Kast K, Grün A, Uetrecht C, Scaturro P. Viruses 13 668 (2021)
  31. Virus structure and structure-based antivirals. Plavec Z, Pöhner I, Poso A, Butcher SJ. Curr Opin Virol 51 16-24 (2021)
  32. Why antidiabetic drugs are potentially neuroprotective during the Sars-CoV-2 pandemic: The focus on astroglial UPR and calcium-binding proteins. Gonçalves CA, Sesterheim P, Wartchow KM, Bobermin LD, Leipnitz G, Quincozes-Santos A. Front Cell Neurosci 16 905218 (2022)
  33. An update on the discovery and development of reversible covalent inhibitors. Faridoon, Ng R, Zhang G, Li JJ. Med Chem Res 32 1039-1062 (2023)
  34. Current state-of-the-art and potential future therapeutic drugs against COVID-19. Sha A, Liu Y, Hao H. Front Cell Dev Biol 11 1238027 (2023)
  35. Dissecting the structural heterogeneity of proteins by native mass spectrometry. Reid DJ, Thibert S, Zhou M. Protein Sci 32 e4612 (2023)
  36. The impact of high-resolution structural data on stemming the COVID-19 pandemic. Cox RM, Plemper RK. Curr Opin Virol 49 127-138 (2021)
  37. Untapping host-targeting cross-protective efficacy of anticoagulants against SARS-CoV-2. Niemeyer BF, Benam KH. Pharmacol Ther 233 108027 (2022)
  38. COVID-19 associated thyroid dysfunction and other comorbidities and its management using phytochemical-based therapeutics: a natural way. Parihar A, Malviya S, Khan R, Kaushik A, Mostafavi E. Biosci Rep 43 BSR20230293 (2023)
  39. Recent Advances in SARS-CoV-2 Main Protease Inhibitors: From Nirmatrelvir to Future Perspectives. Citarella A, Dimasi A, Moi D, Passarella D, Scala A, Piperno A, Micale N. Biomolecules 13 1339 (2023)
  40. Repurposing clinically available drugs and therapies for pathogenic targets to combat SARS-CoV-2. Xue Y, Mei H, Chen Y, Griffin JD, Liu Q, Weisberg E, Yang J. MedComm (2020) 4 e254 (2023)
  41. Structure and function of SARS-CoV and SARS-CoV-2 main proteases and their inhibition: A comprehensive review. Li X, Song Y. Eur J Med Chem 260 115772 (2023)
  42. The research progress of SARS-CoV-2 main protease inhibitors from 2020 to 2022. Pang X, Xu W, Liu Y, Li H, Chen L. Eur J Med Chem 257 115491 (2023)

Articles citing this publication (145)

  1. SARS-CoV-2 Mpro inhibitors with antiviral activity in a transgenic mouse model. Qiao J, Li YS, Zeng R, Liu FL, Luo RH, Huang C, Wang YF, Zhang J, Quan B, Shen C, Mao X, Mao X, Liu X, Sun W, Yang W, Ni X, Wang K, Xu L, Duan ZL, Zou QC, Zhang HL, Qu W, Long YH, Li MH, Yang RC, Liu X, You J, Zhou Y, Yao R, Li WP, Liu JM, Chen P, Liu Y, Lin GF, Yang X, Zou J, Li L, Hu Y, Lu GW, Li WM, Wei YQ, Zheng YT, Lei J, Yang S. Science 371 1374-1378 (2021)
  2. X-ray screening identifies active site and allosteric inhibitors of SARS-CoV-2 main protease. Günther S, Reinke PYA, Fernández-García Y, Lieske J, Lane TJ, Ginn HM, Koua FHM, Ehrt C, Ewert W, Oberthuer D, Yefanov O, Meier S, Lorenzen K, Krichel B, Kopicki JD, Gelisio L, Brehm W, Dunkel I, Seychell B, Gieseler H, Norton-Baker B, Escudero-Pérez B, Domaracky M, Saouane S, Tolstikova A, White TA, Hänle A, Groessler M, Fleckenstein H, Trost F, Galchenkova M, Gevorkov Y, Li C, Awel S, Peck A, Barthelmess M, Schlünzen F, Lourdu Xavier P, Werner N, Andaleeb H, Ullah N, Falke S, Srinivasan V, França BA, Schwinzer M, Brognaro H, Rogers C, Melo D, Zaitseva-Doyle JJ, Knoska J, Peña-Murillo GE, Mashhour AR, Hennicke V, Fischer P, Hakanpää J, Meyer J, Gribbon P, Ellinger B, Kuzikov M, Wolf M, Beccari AR, Bourenkov G, von Stetten D, Pompidor G, Bento I, Panneerselvam S, Karpics I, Schneider TR, Garcia-Alai MM, Niebling S, Günther C, Schmidt C, Schubert R, Han H, Boger J, Monteiro DCF, Zhang L, Sun X, Pletzer-Zelgert J, Wollenhaupt J, Feiler CG, Weiss MS, Schulz EC, Mehrabi P, Karničar K, Usenik A, Loboda J, Tidow H, Chari A, Hilgenfeld R, Uetrecht C, Cox R, Zaliani A, Beck T, Rarey M, Günther S, Turk D, Hinrichs W, Chapman HN, Pearson AR, Betzel C, Meents A. Science 372 642-646 (2021)
  3. Ebselen, Disulfiram, Carmofur, PX-12, Tideglusib, and Shikonin Are Nonspecific Promiscuous SARS-CoV-2 Main Protease Inhibitors. Ma C, Hu Y, Townsend JA, Lagarias PI, Marty MT, Kolocouris A, Wang J. ACS Pharmacol Transl Sci 3 1265-1277 (2020)
  4. Expedited Approach toward the Rational Design of Noncovalent SARS-CoV-2 Main Protease Inhibitors. Kitamura N, Sacco MD, Ma C, Hu Y, Townsend JA, Meng X, Zhang F, Zhang X, Ba M, Szeto T, Kukuljac A, Marty MT, Schultz D, Cherry S, Xiang Y, Chen Y, Wang J. J Med Chem 65 2848-2865 (2022)
  5. Discovery of SARS-CoV-2 Papain-like Protease Inhibitors through a Combination of High-Throughput Screening and a FlipGFP-Based Reporter Assay. Ma C, Sacco MD, Xia Z, Lambrinidis G, Townsend JA, Hu Y, Meng X, Szeto T, Ba M, Zhang X, Gongora M, Zhang F, Marty MT, Xiang Y, Kolocouris A, Chen Y, Wang J. ACS Cent Sci 7 1245-1260 (2021)
  6. Targeting the Main Protease of SARS-CoV-2: From the Establishment of High Throughput Screening to the Design of Tailored Inhibitors. Breidenbach J, Lemke C, Pillaiyar T, Schäkel L, Al Hamwi G, Diett M, Gedschold R, Geiger N, Lopez V, Mirza S, Namasivayam V, Schiedel AC, Sylvester K, Thimm D, Vielmuth C, Phuong Vu L, Zyulina M, Bodem J, Gütschow M, Müller CE, Müller CE. Angew Chem Int Ed Engl 60 10423-10429 (2021)
  7. Identification of SARS-CoV-2 inhibitors targeting Mpro and PLpro using in-cell-protease assay. Narayanan A, Narwal M, Majowicz SA, Varricchio C, Toner SA, Ballatore C, Brancale A, Murakami KS, Jose J. Commun Biol 5 169 (2022)
  8. Boceprevir, Calpain Inhibitors II and XII, and GC-376 Have Broad-Spectrum Antiviral Activity against Coronaviruses. Hu Y, Ma C, Szeto T, Hurst B, Tarbet B, Wang J. ACS Infect Dis 7 586-597 (2021)
  9. Neutralizing Aptamers Block S/RBD-ACE2 Interactions and Prevent Host Cell Infection. Liu X, Wang YL, Wu J, Qi J, Zeng Z, Wan Q, Chen Z, Manandhar P, Cavener VS, Boyle NR, Fu X, Salazar E, Kuchipudi SV, Kapur V, Zhang X, Umetani M, Sen M, Willson RC, Chen SH, Zu Y. Angew Chem Int Ed Engl 60 10273-10278 (2021)
  10. Discovery of Di- and Trihaloacetamides as Covalent SARS-CoV-2 Main Protease Inhibitors with High Target Specificity. Ma C, Xia Z, Sacco MD, Hu Y, Townsend JA, Meng X, Choza J, Tan H, Jang J, Gongora MV, Zhang X, Zhang F, Xiang Y, Marty MT, Chen Y, Wang J. J Am Chem Soc 143 20697-20709 (2021)
  11. Hepatitis C virus drugs that inhibit SARS-CoV-2 papain-like protease synergize with remdesivir to suppress viral replication in cell culture. Bafna K, White K, Harish B, Rosales R, Ramelot TA, Acton TB, Moreno E, Kehrer T, Miorin L, Royer CA, García-Sastre A, Krug RM, Montelione GT. Cell Rep 35 109133 (2021)
  12. Efficacy of GC-376 against SARS-CoV-2 virus infection in the K18 hACE2 transgenic mouse model. Cáceres CJ, Cardenas-Garcia S, Carnaccini S, Seibert B, Rajao DS, Wang J, Perez DR. Sci Rep 11 9609 (2021)
  13. High-Throughput Virtual Screening and Validation of a SARS-CoV-2 Main Protease Noncovalent Inhibitor. Clyde A, Galanie S, Kneller DW, Ma H, Babuji Y, Blaiszik B, Brace A, Brettin T, Chard K, Chard R, Coates L, Foster I, Hauner D, Kertesz V, Kumar N, Lee H, Li Z, Merzky A, Schmidt JG, Tan L, Titov M, Trifan A, Turilli M, Van Dam H, Chennubhotla SC, Jha S, Kovalevsky A, Ramanathan A, Head MS, Stevens R. J Chem Inf Model 62 116-128 (2022)
  14. Perspectives on SARS-CoV-2 Main Protease Inhibitors. Gao K, Wang R, Chen J, Tepe JJ, Huang F, Wei GW. J Med Chem 64 16922-16955 (2021)
  15. Validation and invalidation of SARS-CoV-2 main protease inhibitors using the Flip-GFP and Protease-Glo luciferase assays. Ma C, Tan H, Choza J, Wang Y, Wang J. Acta Pharm Sin B 12 1636-1651 (2022)
  16. MPI8 is Potent against SARS-CoV-2 by Inhibiting Dually and Selectively the SARS-CoV-2 Main Protease and the Host Cathepsin L. Ma XR, Alugubelli YR, Ma Y, Vatansever EC, Scott DA, Qiao Y, Yu G, Xu S, Liu WR. ChemMedChem 17 e202100456 (2022)
  17. Letter Dipyridamole, chloroquine, montelukast sodium, candesartan, oxytetracycline, and atazanavir are not SARS-CoV-2 main protease inhibitors. Ma C, Wang J. Proc Natl Acad Sci U S A 118 e2024420118 (2021)
  18. Structure-guided design of a perampanel-derived pharmacophore targeting the SARS-CoV-2 main protease. Deshmukh MG, Ippolito JA, Zhang CH, Stone EA, Reilly RA, Miller SJ, Jorgensen WL, Anderson KS. Structure 29 823-833.e5 (2021)
  19. The dimer-monomer equilibrium of SARS-CoV-2 main protease is affected by small molecule inhibitors. Silvestrini L, Belhaj N, Comez L, Gerelli Y, Lauria A, Libera V, Mariani P, Marzullo P, Ortore MG, Palumbo Piccionello A, Petrillo C, Savini L, Paciaroni A, Spinozzi F. Sci Rep 11 9283 (2021)
  20. Development of a Cell-Based Luciferase Complementation Assay for Identification of SARS-CoV-2 3CLpro Inhibitors. Rawson JMO, Duchon A, Nikolaitchik OA, Pathak VK, Hu WS. Viruses 13 173 (2021)
  21. Ebsulfur and Ebselen as highly potent scaffolds for the development of potential SARS-CoV-2 antivirals. Sun LY, Chen C, Su J, Li JQ, Jiang Z, Gao H, Chigan JZ, Ding HH, Zhai L, Yang KW. Bioorg Chem 112 104889 (2021)
  22. Potent Anti-SARS-CoV-2 Activity by the Natural Product Gallinamide A and Analogues via Inhibition of Cathepsin L. Ashhurst AS, Tang AH, Fajtová P, Yoon MC, Aggarwal A, Bedding MJ, Stoye A, Beretta L, Pwee D, Drelich A, Skinner D, Li L, Meek TD, McKerrow JH, Hook V, Tseng CT, Larance M, Turville S, Gerwick WH, O'Donoghue AJ, Payne RJ. J Med Chem 65 2956-2970 (2022)
  23. Dual inhibition of SARS-CoV-2 and human rhinovirus with protease inhibitors in clinical development. Liu C, Boland S, Scholle MD, Bardiot D, Marchand A, Chaltin P, Blatt LM, Beigelman L, Symons JA, Raboisson P, Gurard-Levin ZA, Vandyck K, Deval J. Antiviral Res 187 105020 (2021)
  24. Comprehensive virtual screening of 4.8 k flavonoids reveals novel insights into allosteric inhibition of SARS-CoV-2 MPRO. Jiménez-Avalos G, Vargas-Ruiz AP, Delgado-Pease NE, Olivos-Ramirez GE, Sheen P, Fernández-Díaz M, Quiliano M, Zimic M, COVID-19 Working Group in Perú. Sci Rep 11 15452 (2021)
  25. Development of optimized drug-like small molecule inhibitors of the SARS-CoV-2 3CL protease for treatment of COVID-19. Liu H, Iketani S, Zask A, Khanizeman N, Bednarova E, Forouhar F, Fowler B, Hong SJ, Mohri H, Nair MS, Huang Y, Tay NES, Lee S, Karan C, Resnick SJ, Quinn C, Li W, Shion H, Xia X, Daniels JD, Bartolo-Cruz M, Farina M, Rajbhandari P, Jurtschenko C, Lauber MA, McDonald T, Stokes ME, Hurst BL, Rovis T, Chavez A, Ho DD, Stockwell BR. Nat Commun 13 1891 (2022)
  26. Structural and Biochemical Analysis of the Dual Inhibition of MG-132 against SARS-CoV-2 Main Protease (Mpro/3CLpro) and Human Cathepsin-L. Costanzi E, Kuzikov M, Esposito F, Albani S, Demitri N, Giabbai B, Camasta M, Tramontano E, Rossetti G, Zaliani A, Storici P. Int J Mol Sci 22 11779 (2021)
  27. Inhibitors of Coronavirus 3CL Proteases Protect Cells from Protease-Mediated Cytotoxicity. Resnick SJ, Iketani S, Hong SJ, Zask A, Liu H, Kim S, Melore S, Lin FY, Nair MS, Huang Y, Lee S, Tay NES, Rovis T, Yang HW, Xing L, Stockwell BR, Ho DD, Chavez A. J Virol 95 e0237420 (2021)
  28. High-throughput screening of the ReFRAME, Pandemic Box, and COVID Box drug repurposing libraries against SARS-CoV-2 nsp15 endoribonuclease to identify small-molecule inhibitors of viral activity. Choi R, Zhou M, Shek R, Wilson JW, Tillery L, Craig JK, Salukhe IA, Hickson SE, Kumar N, James RM, Buchko GW, Wu R, Huff S, Nguyen TT, Hurst BL, Cherry S, Barrett LK, Hyde JL, Van Voorhis WC. PLoS One 16 e0250019 (2021)
  29. Repurposing of FDA-approved drugs against active site and potential allosteric drug-binding sites of COVID-19 main protease. Yuce M, Cicek E, Inan T, Dag AB, Kurkcuoglu O, Sungur FA. Proteins 89 1425-1441 (2021)
  30. Computational Determination of Potential Multiprotein Targeting Natural Compounds for Rational Drug Design Against SARS-COV-2. Muhseen ZT, Hameed AR, Al-Hasani HMH, Ahmad S, Li G. Molecules 26 674 (2021)
  31. Evaluation of SARS-CoV-2 Main Protease Inhibitors Using a Novel Cell-Based Assay. Cao W, Cho CD, Geng ZZ, Shaabani N, Ma XR, Vatansever EC, Alugubelli YR, Ma Y, Chaki SP, Ellenburg WH, Yang KS, Qiao Y, Allen R, Neuman BW, Ji H, Xu S, Liu WR. ACS Cent Sci 8 192-204 (2022)
  32. Non-covalent SARS-CoV-2 Mpro inhibitors developed from in silico screen hits. Rossetti GG, Ossorio MA, Rempel S, Kratzel A, Dionellis VS, Barriot S, Tropia L, Gorgulla C, Arthanari H, Thiel V, Mohr P, Gamboni R, Halazonetis TD. Sci Rep 12 2505 (2022)
  33. Validation and Invalidation of SARS-CoV-2 Papain-like Protease Inhibitors. Ma C, Wang J. ACS Pharmacol Transl Sci 5 102-109 (2022)
  34. In silico Studies on the Interaction between Mpro and PLpro From SARS-CoV-2 and Ebselen, its Metabolites and Derivatives. Nogara PA, Omage FB, Bolzan GR, Delgado CP, Aschner M, Orian L, Teixeira Rocha JB. Mol Inform 40 e2100028 (2021)
  35. Interaction of selected terpenoids with two SARS-CoV-2 key therapeutic targets: An in silico study through molecular docking and dynamics simulations. Giofrè SV, Napoli E, Iraci N, Speciale A, Cimino F, Muscarà C, Molonia MS, Ruberto G, Saija A. Comput Biol Med 134 104538 (2021)
  36. Binding of inhibitors to the monomeric and dimeric SARS-CoV-2 Mpro. Tam NM, Nam PC, Quang DT, Tung NT, Vu VV, Ngo ST. RSC Adv 11 2926-2934 (2021)
  37. Comparative evaluation of authorized drugs for treating Covid-19 patients. Islam T, Hasan M, Rahman MS, Islam MR. Health Sci Rep 5 e671 (2022)
  38. Development of a simple and miniaturized sandwich-like fluorescence polarization assay for rapid screening of SARS-CoV-2 main protease inhibitors. Yan G, Li D, Lin Y, Fu Z, Qi H, Liu X, Zhang J, Si S, Chen Y. Cell Biosci 11 199 (2021)
  39. Automated discovery of noncovalent inhibitors of SARS-CoV-2 main protease by consensus Deep Docking of 40 billion small molecules. Gentile F, Fernandez M, Ban F, Ton AT, Mslati H, Perez CF, Leblanc E, Yaacoub JC, Gleave J, Stern A, Wong B, Jean F, Strynadka N, Cherkasov A. Chem Sci 12 15960-15974 (2021)
  40. Kinetic Multi-omic Analysis of Responses to SARS-CoV-2 Infection in a Model of Severe COVID-19. Cantwell AM, Singh H, Platt M, Yu Y, Lin YH, Ikeno Y, Hubbard G, Xiang Y, Gonzalez-Juarbe N, Dube PH. J Virol 95 e0101021 (2021)
  41. Naturally Occurring Mutations of SARS-CoV-2 Main Protease Confer Drug Resistance to Nirmatrelvir. Hu Y, Lewandowski EM, Tan H, Zhang X, Morgan RT, Zhang X, Jacobs LMC, Butler SG, Gongora MV, Choy J, Deng X, Chen Y, Wang J. ACS Cent Sci 9 1658-1669 (2023)
  42. Protease inhibitor GC376 for COVID-19: Lessons learned from feline infectious peritonitis. Sharun K, Tiwari R, Dhama K. Ann Med Surg (Lond) 61 122-125 (2021)
  43. SARS-CoV-2 Main Protease Drug Design, Assay Development, and Drug Resistance Studies. Tan B, Joyce R, Tan H, Hu Y, Wang J. Acc Chem Res 56 157-168 (2023)
  44. iPSC screening for drug repurposing identifies anti-RNA virus agents modulating host cell susceptibility. Imamura K, Sakurai Y, Enami T, Shibukawa R, Nishi Y, Ohta A, Shu T, Kawaguchi J, Okada S, Hoenen T, Yasuda J, Inoue H. FEBS Open Bio 11 1452-1464 (2021)
  45. A multi-pronged evaluation of aldehyde-based tripeptidyl main protease inhibitors as SARS-CoV-2 antivirals. Ma Y, Yang KS, Geng ZZ, Alugubelli YR, Shaabani N, Vatansever EC, Ma XR, Cho CC, Khatua K, Xiao J, Blankenship LR, Yu G, Sankaran B, Li P, Allen R, Ji H, Xu S, Liu WR. Eur J Med Chem 240 114570 (2022)
  46. Exploiting cheminformatic and machine learning to navigate the available chemical space of potential small molecule inhibitors of SARS-CoV-2. Kumar A, Loharch S, Kumar S, Ringe RP, Parkesh R. Comput Struct Biotechnol J 19 424-438 (2021)
  47. High-performance multiplex drug-gated CAR circuits. Li HS, Wong NM, Tague E, Ngo JT, Khalil AS, Wong WW. Cancer Cell 40 1294-1305.e4 (2022)
  48. Efficiency Improvements and Discovery of New Substrates for a SARS-CoV-2 Main Protease FRET Assay. Dražić T, Kühl N, Leuthold MM, Behnam MAM, Klein CD. SLAS Discov 26 1189-1199 (2021)
  49. Identification of antiviral phytochemicals as a potential SARS-CoV-2 main protease (Mpro) inhibitor using docking and molecular dynamics simulations. Patel CN, Jani SP, Jaiswal DG, Kumar SP, Mangukia N, Parmar RM, Rawal RM, Pandya HA. Sci Rep 11 20295 (2021)
  50. In silico molecular docking analysis for repurposing approved antiviral drugs against SARS-CoV-2 main protease. Khater I, Nassar A. Biochem Biophys Rep 27 101032 (2021)
  51. Insights into the binding and covalent inhibition mechanism of PF-07321332 to SARS-CoV-2 Mpro. Ngo ST, Nguyen TH, Tung NT, Mai BK. RSC Adv 12 3729-3737 (2022)
  52. Penicillin Derivatives Inhibit the SARS-CoV-2 Main Protease by Reaction with Its Nucleophilic Cysteine. Malla TR, Brewitz L, Muntean DG, Aslam H, Owen CD, Salah E, Tumber A, Lukacik P, Strain-Damerell C, Mikolajek H, Walsh MA, Schofield CJ. J Med Chem 65 7682-7696 (2022)
  53. Structure-Guided Design of Potent Spirocyclic Inhibitors of Severe Acute Respiratory Syndrome Coronavirus-2 3C-like Protease. Dampalla CS, Rathnayake AD, Galasiti Kankanamalage AC, Kim Y, Perera KD, Nguyen HN, Miller MJ, Madden TK, Picard HR, Thurman HA, Kashipathy MM, Liu L, Battaile KP, Lovell S, Chang KO, Groutas WC. J Med Chem 65 7818-7832 (2022)
  54. A Practical Strategy for Exploring the Pharmacological Mechanism of Luteolin Against COVID-19/Asthma Comorbidity: Findings of System Pharmacology and Bioinformatics Analysis. Xie YZ, Peng CW, Su ZQ, Huang HT, Liu XH, Zhan SF, Huang XF. Front Immunol 12 769011 (2021)
  55. In Silico Elucidation of Potent Inhibitors and Rational Drug Design against SARS-CoV-2 Papain-like Protease. Sanachai K, Mahalapbutr P, Sanghiran Lee V, Rungrotmongkol T, Hannongbua S. J Phys Chem B 125 13644-13656 (2021)
  56. Comparative study of the interaction of ivermectin with proteins of interest associated with SARS-CoV-2: A computational and biophysical approach. González-Paz L, Hurtado-León ML, Lossada C, Fernández-Materán FV, Vera-Villalobos J, Loroño M, Paz JL, Jeffreys L, Alvarado YJ. Biophys Chem 278 106677 (2021)
  57. Influenza AM2 Channel Oligomerization Is Sensitive to Its Chemical Environment. Townsend JA, Sanders HM, Rolland AD, Park CK, Horton NC, Prell JS, Wang J, Marty MT. Anal Chem 93 16273-16281 (2021)
  58. New insights into the catalytic mechanism of the SARS-CoV-2 main protease: an ONIOM QM/MM approach. Fernandes HS, Sousa SF, Cerqueira NMFSA. Mol Divers 26 1373-1381 (2022)
  59. Structure-Based Identification of Naphthoquinones and Derivatives as Novel Inhibitors of Main Protease Mpro and Papain-like Protease PLpro of SARS-CoV-2. Santos LH, Kronenberger T, Almeida RG, Silva EB, Rocha REO, Oliveira JC, Barreto LV, Skinner D, Fajtová P, Giardini MA, Woodworth B, Bardine C, Lourenço AL, Craik CS, Poso A, Podust LM, McKerrow JH, Siqueira-Neto JL, O'Donoghue AJ, da Silva Júnior EN, Ferreira RS. J Chem Inf Model 62 6553-6573 (2022)
  60. Atorvastatin Effectively Inhibits Ancestral and Two Emerging Variants of SARS-CoV-2 in vitro. Zapata-Cardona MI, Flórez-Álvarez L, Zapata-Builes W, Guerra-Sandoval AL, Guerra-Almonacid CM, Hincapié-García J, Rugeles MT, Hernandez JC. Front Microbiol 13 721103 (2022)
  61. Development of Highly Potent Noncovalent Inhibitors of SARS-CoV-2 3CLpro. Hou N, Shuai L, Zhang L, Xie X, Tang K, Zhu Y, Yu Y, Zhang W, Tan Q, Zhong G, Wen Z, Wang C, He X, Huo H, Gao H, Xu Y, Xue J, Peng C, Zou J, Schindewolf C, Menachery V, Su W, Yuan Y, Shen Z, Zhang R, Yuan S, Yu H, Shi PY, Bu Z, Huang J, Hu Q. ACS Cent Sci 9 217-227 (2023)
  62. Discovery of Potent and Broad-Spectrum Pyrazolopyridine-Containing Antivirals against Enteroviruses D68, A71, and Coxsackievirus B3 by Targeting the Viral 2C Protein. Hu Y, Kitamura N, Musharrafieh R, Wang J. J Med Chem 64 8755-8774 (2021)
  63. Drug-Repurposing Screening Identified Tropifexor as a SARS-CoV-2 Papain-like Protease Inhibitor. Ma C, Hu Y, Wang Y, Choza J, Wang J. ACS Infect Dis 8 1022-1030 (2022)
  64. Iterated Virtual Screening-Assisted Antiviral and Enzyme Inhibition Assays Reveal the Discovery of Novel Promising Anti-SARS-CoV-2 with Dual Activity. Hamdy R, Fayed B, Mostafa A, Shama NMA, Mahmoud SH, Mehta CH, Nayak Y, M Soliman SS. Int J Mol Sci 22 9057 (2021)
  65. Screening of Potent Phytochemical Inhibitors Against SARS-CoV-2 Main Protease: An Integrative Computational Approach. Mahmud S, Hasan MR, Biswas S, Paul GK, Afrose S, Mita MA, Sultana Shimu MS, Promi MM, Hani U, Rahamathulla M, Khan MA, Zaman S, Uddin MS, Rahmatullah M, Jahan R, Alqahtani AM, Saleh MA, Emran TB. Front Bioinform 1 717141 (2021)
  66. The Hydroalcoholic Extract of Uncaria tomentosa (Cat's Claw) Inhibits the Infection of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) In Vitro. Yepes-Perez AF, Herrera-Calderón O, Oliveros CA, Flórez-Álvarez L, Zapata-Cardona MI, Yepes L, Aguilar-Jimenez W, Rugeles MT, Zapata W. Evid Based Complement Alternat Med 2021 6679761 (2021)
  67. Zinc pyrithione is a potent inhibitor of PLPro and cathepsin L enzymes with ex vivo inhibition of SARS-CoV-2 entry and replication. Kladnik J, Dolinar A, Kljun J, Perea D, Grau-Expósito J, Genescà M, Novinec M, Buzon MJ, Turel I. J Enzyme Inhib Med Chem 37 2158-2168 (2022)
  68. Anti-Inflammatory, Antiallergic, and COVID-19 Main Protease (Mpro) Inhibitory Activities of Butenolides from a Marine-Derived Fungus Aspergillus terreus. Uras IS, Ebada SS, Korinek M, Albohy A, Abdulrazik BS, Wang YH, Chen BH, Horng JT, Lin W, Hwang TL, Konuklugil B. Molecules 26 3354 (2021)
  69. In silico screening-based discovery of novel covalent inhibitors of the SARS-CoV-2 3CL protease. Xiong M, Nie T, Shao Q, Li M, Su H, Xu Y. Eur J Med Chem 231 114130 (2022)
  70. Ligand-based quantitative structural assessments of SARS-CoV-2 3CLpro inhibitors: An analysis in light of structure-based multi-molecular modeling evidences. Adhikari N, Banerjee S, Baidya SK, Ghosh B, Jha T. J Mol Struct 1251 132041 (2022)
  71. A systematic exploration of boceprevir-based main protease inhibitors as SARS-CoV-2 antivirals. Alugubelli YR, Geng ZZ, Yang KS, Shaabani N, Khatua K, Ma XR, Vatansever EC, Cho CC, Ma Y, Xiao J, Blankenship LR, Yu G, Sankaran B, Li P, Allen R, Ji H, Xu S, Liu WR. Eur J Med Chem 240 114596 (2022)
  72. Computationally approached inhibition potential of Tinospora cordifolia towards COVID-19 targets. Jena S, Munusami P, Mm B, Chanda K. Virusdisease 32 65-77 (2021)
  73. Discovery of novel oxazole-based macrocycles as anti-coronaviral agents targeting SARS-CoV-2 main protease. Al-Wahaibi LH, Mostafa A, Mostafa YA, Abou-Ghadir OF, Abdelazeem AH, Gouda AM, Kutkat O, Abo Shama NM, Shehata M, Gomaa HAM, Abdelrahman MH, Mohamed FAM, Gu X, Ali MA, Trembleau L, Youssif BGM. Bioorg Chem 116 105363 (2021)
  74. Evaluation of the anti-SARS-CoV-2 properties of essential oils and aromatic extracts. Strub DJ, Talma M, Strub M, Rut W, Zmudzinski M, Brud W, Neyts J, Vangeel L, Zhang L, Sun X, Lv Z, Nayak D, Olsen SK, Hilgenfeld R, Jochmans D, Drąg M. Sci Rep 12 14230 (2022)
  75. Integrated docking and enhanced sampling-based selection of repurposing drugs for SARS-CoV-2 by targeting host dependent factors. Kumawat A, Namsani S, Pramanik D, Roy S, Singh JK. J Biomol Struct Dyn 40 9897-9908 (2022)
  76. Invalidation of dieckol and 1,2,3,4,6-pentagalloylglucose (PGG) as SARS-CoV-2 main protease inhibitors and the discovery of PGG as a papain-like protease inhibitor. Tan H, Ma C, Wang J. Med Chem Res 31 1147-1153 (2022)
  77. Neutralizing Aptamers Block S/RBD-ACE2 Interactions and Prevent Host Cell Infection. Liu X, Wang YL, Wu J, Qi J, Zeng Z, Wan Q, Chen Z, Manandhar P, Cavener VS, Boyle NR, Fu X, Salazar E, Kuchipudi SV, Kapur V, Zhang X, Umetani M, Sen M, Willson RC, Chen SH, Zu Y. Angew Chem Weinheim Bergstr Ger 133 10361-10366 (2021)
  78. Phytochemicals of Rhus spp. as Potential Inhibitors of the SARS-CoV-2 Main Protease: Molecular Docking and Drug-Likeness Study. Sherif YE, Gabr SA, Hosny NM, Alghadir AH, Alansari R. Evid Based Complement Alternat Med 2021 8814890 (2021)
  79. The Inhibition of SARS-CoV-2 3CL Mpro by Graphene and Its Derivatives from Molecular Dynamics Simulations. Wang J, Yu Y, Leng T, Li Y, Lee ST. ACS Appl Mater Interfaces 14 191-200 (2022)
  80. A genetically encoded BRET-based SARS-CoV-2 Mpro protease activity sensor. Geethakumari AM, Ahmed WS, Rasool S, Fatima A, Nasir Uddin SM, Aouida M, Biswas KH. Commun Chem 5 117 (2022)
  81. Extending the Calpain-Cathepsin Hypothesis to the Neurovasculature: Protection of Brain Endothelial Cells and Mice from Neurotrauma. Knopp RC, Jastaniah A, Dubrovskyi O, Gaisina I, Tai L, Thatcher GRJ. ACS Pharmacol Transl Sci 4 372-385 (2021)
  82. High-throughput screening of SARS-CoV-2 main and papain-like protease inhibitors. Zang Y, Su M, Wang Q, Cheng X, Zhang W, Zhao Y, Chen T, Jiang Y, Shen Q, Du J, Tan Q, Wang P, Gao L, Jin Z, Zhang M, Li C, Zhu Y, Feng B, Tang B, Xie H, Wang MW, Zheng M, Pan X, Yang H, Xu Y, Wu B, Zhang L, Rao Z, Yang X, Jiang H, Xiao G, Zhao Q, Li J. Protein Cell 14 17-27 (2023)
  83. In Silico Identification of New Anti-SARS-CoV-2 Main Protease (Mpro) Molecules with Pharmacokinetic Properties from Natural Sources Using Molecular Dynamics (MD) Simulations and Hierarchical Virtual Screening. Onyango H, Odhiambo P, Angwenyi D, Okoth P. J Trop Med 2022 3697498 (2022)
  84. SARS-CoV-2 main protease (3CLpro) interaction with acyclovir antiviral drug/methyl-β-cyclodextrin complex: Physiochemical characterization and molecular docking. Mohandoss S, Sukanya R, Ganesan S, Alkallas FH, Ben Gouider Trabelsi A, Kusmartsev FV, Sakthi Velu K, Stalin T, Lo HM, Rok Lee Y. J Mol Liq 366 120292 (2022)
  85. Unravelling the therapeutic potential of marine drugs as SARS-CoV-2 inhibitors: An insight from essential dynamics and free energy landscape. Rampogu S, Gajula RG, Lee G, Kim MO, Lee KW. Comput Biol Med 135 104525 (2021)
  86. A genetically encoded BRET-based SARS-CoV-2 Mpro protease activity sensor. Geethakumari AM, Ahmed WS, Rasool S, Fatima A, Nasir Uddin SM, Aouida M, Biswas KH. Commun Chem 5 117 (2022)
  87. A highly sensitive cell-based luciferase assay for high-throughput automated screening of SARS-CoV-2 nsp5/3CLpro inhibitors. Chen KY, Krischuns T, Varga LO, Harigua-Souiai E, Paisant S, Zettor A, Chiaravalli J, Delpal A, Courtney D, O'Brien A, Baker SC, Decroly E, Isel C, Agou F, Jacob Y, Blondel A, Naffakh N. Antiviral Res 201 105272 (2022)
  88. Alkyne Derivatives of SARS-CoV-2 Main Protease Inhibitors Including Nirmatrelvir Inhibit by Reacting Covalently with the Nucleophilic Cysteine. Brewitz L, Dumjahn L, Zhao Y, Owen CD, Laidlaw SM, Malla TR, Nguyen D, Lukacik P, Salah E, Crawshaw AD, Warren AJ, Trincao J, Strain-Damerell C, Carroll MW, Walsh MA, Schofield CJ. J Med Chem 66 2663-2680 (2023)
  89. Celastrol: A lead compound that inhibits SARS-CoV-2 replication, the activity of viral and human cysteine proteases, and virus-induced IL-6 secretion. Fuzo CA, Martins RB, Fraga-Silva TFC, Amstalden MK, Canassa De Leo T, Souza JP, Lima TM, Faccioli LH, Okamoto DN, Juliano MA, França SC, Juliano L, Bonato VLD, Arruda E, Dias-Baruffi M. Drug Dev Res 83 1623-1640 (2022)
  90. Design and identification of novel annomontine analogues against SARS-CoV-2: An in-silico approach. Waidha K, Saxena A, Kumar P, Sharma S, Ray D, Saha B. Heliyon 7 e06657 (2021)
  91. Discovery of novel SARS-CoV-2 3CL protease covalent inhibitors using deep learning-based screen. Wang L, Yu Z, Wang S, Guo Z, Sun Q, Lai L. Eur J Med Chem 244 114803 (2022)
  92. Easy access to α-ketoamides as SARS-CoV-2 and MERS Mpro inhibitors via the PADAM oxidation route. Pelliccia S, Cerchia C, Esposito F, Cannalire R, Corona A, Costanzi E, Kuzikov M, Gribbon P, Zaliani A, Brindisi M, Storici P, Tramontano E, Summa V. Eur J Med Chem 244 114853 (2022)
  93. SARS-CoV-2 pan-variant inhibitory peptides deter S1-ACE2 interaction and neutralize delta and omicron pseudoviruses. Shah M, Ung Moon S, Hyun Kim J, Thanh Thao T, Goo Woo H. Comput Struct Biotechnol J 20 2042-2056 (2022)
  94. Should COVID-19 be branded to viral thrombotic fever? Costa-Filho RC, Castro-Faria Neto HC, Mengel J, Pelajo-Machado M, Martins MA, Leite ÉT, Mendonça-Filho HT, de Souza TACB, Bello GB, Leite JPG. Mem Inst Oswaldo Cruz 116 e200552 (2021)
  95. Small molecule interactions with the SARS-CoV-2 main protease: In silico all-atom microsecond MD simulations, PELE Monte Carlo simulations, and determination of in vitro activity inhibition. Liang J, Pitsillou E, Ververis K, Guallar V, Hung A, Karagiannis TC. J Mol Graph Model 110 108050 (2022)
  96. Structure-based lead optimization of peptide-based vinyl methyl ketones as SARS-CoV-2 main protease inhibitors. Previti S, Ettari R, Calcaterra E, Di Maro S, Hammerschmidt SJ, Müller C, Ziebuhr J, Schirmeister T, Cosconati S, Zappalà M. Eur J Med Chem 247 115021 (2023)
  97. Understanding the binding mechanism for potential inhibition of SARS-CoV-2 Mpro and exploring the modes of ACE2 inhibition by hydroxychloroquine. Choudhury M, Dhanabalan AK, Goswami N. J Cell Biochem 123 347-358 (2022)
  98. A new generation Mpro inhibitor with potent activity against SARS-CoV-2 Omicron variants. Huang C, Shuai H, Qiao J, Hou Y, Zeng R, Xia A, Xie L, Fang Z, Li Y, Yoon C, Huang Q, Hu B, You J, Quan B, Zhao X, Guo N, Zhang S, Ma R, Zhang J, Wang Y, Yang R, Zhang S, Nan J, Xu H, Wang F, Lei J, Chu H, Yang S. Signal Transduct Target Ther 8 128 (2023)
  99. Binding Studies of the Prodrug HAO472 to SARS-Cov-2 Nsp9 and Variants. Liu M, Littler DR, Rossjohn J, Quinn RJ. ACS Omega 7 7327-7332 (2022)
  100. Discovery of 2-(furan-2-ylmethylene)hydrazine-1-carbothioamide derivatives as novel inhibitors of SARS-CoV-2 main protease. Dou X, Sun Q, Xu G, Liu Y, Zhang C, Wang B, Lu Y, Guo Z, Su L, Huo T, Zhao X, Wang C, Yu Z, Song S, Zhang L, Liu Z, Lai L, Jiao N. Eur J Med Chem 238 114508 (2022)
  101. FDA approved drugs with antiviral activity against SARS-CoV-2: From structure-based repurposing to host-specific mechanisms. Ahmed MS, Farag AB, Boys IN, Wang P, Menendez-Montes I, Nguyen NUN, Eitson JL, Ohlson MB, Fan W, McDougal MB, Mar K, Thet S, Ortiz F, Kim SY, Solmonson A, Williams NS, Lemoff A, DeBerardinis RJ, Schoggins JW, Sadek HA. Biomed Pharmacother 162 114614 (2023)
  102. In Silico Drug Repositioning to Target the SARS-CoV-2 Main Protease as Covalent Inhibitors Employing a Combined Structure-Based Virtual Screening Strategy of Pharmacophore Models and Covalent Docking. Vázquez-Mendoza LH, Mendoza-Figueroa HL, García-Vázquez JB, Correa-Basurto J, García-Machorro J. Int J Mol Sci 23 3987 (2022)
  103. Molecular Docking and Molecular Dynamics Simulations Discover Curcumin Analogue as a Plausible Dual Inhibitor for SARS-CoV-2. Rampogu S, Lee G, Park JS, Lee KW, Kim MO. Int J Mol Sci 23 1771 (2022)
  104. Multiplex substrate profiling by mass spectrometry for proteases. Rohweder PJ, Jiang Z, Hurysz BM, O'Donoghue AJ, Craik CS. Methods Enzymol 682 375-411 (2023)
  105. Novel dithiocarbamates selectively inhibit 3CL protease of SARS-CoV-2 and other coronaviruses. Brier L, Hassan H, Hanoulle X, Landry V, Moschidi D, Desmarets L, Rouillé Y, Dumont J, Herledan A, Warenghem S, Piveteau C, Carré P, Ikherbane S, Cantrelle FX, Dupré E, Dubuisson J, Belouzard S, Leroux F, Deprez B, Charton J. Eur J Med Chem 250 115186 (2023)
  106. Pre-exascale HPC approaches for molecular dynamics simulations. Covid-19 research: A use case. Wieczór M, Genna V, Aranda J, Badia RM, Gelpí JL, Gapsys V, de Groot BL, Lindahl E, Municoy M, Hospital A, Orozco M. Wiley Interdiscip Rev Comput Mol Sci e1622 (2022)
  107. Pyrazolone-type compounds: synthesis and in silico assessment of antiviral potential against key viral proteins of SARS-CoV-2. Branković J, Milovanović VM, Simijonović D, Novaković S, Petrović ZD, Trifunović SS, Bogdanović GA, Petrović VP. RSC Adv 12 16054-16070 (2022)
  108. Rational design of the zonulin inhibitor AT1001 derivatives as potential anti SARS-CoV-2. Di Micco S, Rahimova R, Sala M, Scala MC, Vivenzio G, Musella S, Andrei G, Remans K, Mammri L, Snoeck R, Bifulco G, Di Matteo F, Vestuto V, Campiglia P, Márquez JA, Fasano A. Eur J Med Chem 244 114857 (2022)
  109. Targeting SARS-CoV-2 Polymerase with New Nucleoside Analogues. Daikopoulou V, Apostolou P, Mourati S, Vlachou I, Gougousi M, Papasotiriou I. Molecules 26 3461 (2021)
  110. Tenofovir antiviral drug solubility enhancement with β-cyclodextrin inclusion complex and in silico study of potential inhibitor against SARS-CoV-2 main protease (Mpro). Mohandoss S, Velu KS, Stalin T, Ahmad N, Alomar SY, Lee YR. J Mol Liq 377 121544 (2023)
  111. The Inhibitory Potential of Ferulic Acid Derivatives against the SARS-CoV-2 Main Protease: Molecular Docking, Molecular Dynamics, and ADMET Evaluation. Antonopoulou I, Sapountzaki E, Rova U, Christakopoulos P. Biomedicines 10 1787 (2022)
  112. An integrated metabolomic and proteomic approach for the identification of covalent inhibitors of the main protease (Mpro) of SARS-COV-2 from crude natural extracts. Baron G, Borella S, Della Vedova L, Vittorio S, Vistoli G, Carini M, Aldini G, Altomare A. Talanta 252 123824 (2023)
  113. Broad-Spectrum Cyclopropane-Based Inhibitors of Coronavirus 3C-like Proteases: Biochemical, Structural, and Virological Studies. Dampalla CS, Nguyen HN, Rathnayake AD, Kim Y, Perera KD, Madden TK, Thurman HA, Machen AJ, Kashipathy MM, Liu L, Battaile KP, Lovell S, Chang KO, Groutas WC. ACS Pharmacol Transl Sci 6 181-194 (2023)
  114. Dual-Reporter System for Real-Time Monitoring of SARS-CoV-2 Main Protease Activity in Live Cells Enables Identification of an Allosteric Inhibition Path. Bram Y, Duan X, Nilsson-Payant BE, Chandar V, Wu H, Shore D, Fajardo A, Sinha S, Hassan N, Weinstein H, TenOever BR, Chen S, Schwartz RE. ACS Bio Med Chem Au 2 627-641 (2022)
  115. Enantioselective inhibition of the SARS-CoV-2 main protease with rhenium(i) picolinic acid complexes. Karges J, Giardini MA, Blacque O, Woodworth B, Siqueira-Neto JL, Cohen SM. Chem Sci 14 711-720 (2023)
  116. Green and efficient one-pot three-component synthesis of novel drug-like furo[2,3-d]pyrimidines as potential active site inhibitors and putative allosteric hotspots modulators of both SARS-CoV-2 MPro and PLPro. Mousavi H, Zeynizadeh B, Rimaz M. Bioorg Chem 135 106390 (2023)
  117. Identification of a Dual Inhibitor of Secreted Phospholipase A2 (GIIA sPLA2) and SARS-CoV-2 Main Protease. Theodoropoulou MA, Koutoulogenis GS, Zhang L, Akrani I, Mikros E, Hilgenfeld R, Kokotos G. Pharmaceuticals (Basel) 15 961 (2022)
  118. In silico prediction of Severe Acute Respiratory Syndrome Coronavirus 2 main protease cleavage sites. Yang ZR. Proteins 90 791-801 (2022)
  119. Molecular interactions and inhibition of the SARS-CoV-2 main protease by a thiadiazolidinone derivative. Andrzejczyk J, Jovic K, Brown LM, Pascetta VG, Varga K, Vashisth H. Proteins 90 1896-1907 (2022)
  120. Pharmacophore based virtual screening for natural product database revealed possible inhibitors for SARS-COV-2 main protease. El-Ashrey MK, Bakr RO, Fayed MAA, Refaey RH, Nissan YM. Virology 570 18-28 (2022)
  121. SARS-CoV-2 Mpro Protease Variants of Concern Display Altered Viral Substrate and Cell Host Target Galectin-8 Processing but Retain Sensitivity toward Antivirals. Chen SA, Arutyunova E, Lu J, Khan MB, Rut W, Zmudzinski M, Shahbaz S, Iyyathurai J, Moussa EW, Turner Z, Bai B, Lamer T, Nieman JA, Vederas JC, Julien O, Drag M, Elahi S, Young HS, Lemieux MJ. ACS Cent Sci 9 696-708 (2023)
  122. Structure-guided design of direct-acting antivirals that exploit the gem-dimethyl effect and potently inhibit 3CL proteases of severe acute respiratory syndrome Coronavirus-2 (SARS-CoV-2) and middle east respiratory syndrome coronavirus (MERS-CoV). Dampalla CS, Miller MJ, Kim Y, Zabiegala A, Nguyen HN, Madden TK, Thurman HA, Machen AJ, Cooper A, Liu L, Battaile KP, Lovell S, Chang KO, Groutas WC. Eur J Med Chem 254 115376 (2023)
  123. Therapeutic use of calpeptin in COVID-19 infection. Inal J, Paizuldaeva A, Terziu E. Clin Sci (Lond) 136 1439-1447 (2022)
  124. A novel class of broad-spectrum active-site-directed 3C-like protease inhibitors with nanomolar antiviral activity against highly immune-evasive SARS-CoV-2 Omicron subvariants. Pérez-Vargas J, Worrall LJ, Olmstead AD, Ton AT, Lee J, Villanueva I, Thompson CAH, Dudek S, Ennis S, Smith JR, Shapira T, De Guzman J, Gang S, Ban F, Vuckovic M, Bielecki M, Kovacic S, Kenward C, Hong CY, Gordon DG, Levett PN, Krajden M, Leduc R, Boudreault PL, Niikura M, Paetzel M, Young RN, Cherkasov A, Strynadka NCJ, Jean F. Emerg Microbes Infect 12 2246594 (2023)
  125. A yeast-based system to study SARS-CoV-2 Mpro structure and to identify nirmatrelvir resistant mutations. Ou J, Lewandowski EM, Hu Y, Lipinski AA, Aljasser A, Colon-Ascanio M, Morgan RT, Jacobs LMC, Zhang X, Bikowitz MJ, Langlais PR, Tan H, Wang J, Chen Y, Choy JS. PLoS Pathog 19 e1011592 (2023)
  126. Calpeptin is a potent cathepsin inhibitor and drug candidate for SARS-CoV-2 infections. Reinke PYA, de Souza EE, Günther S, Falke S, Lieske J, Ewert W, Loboda J, Herrmann A, Rahmani Mashhour A, Karničar K, Usenik A, Lindič N, Sekirnik A, Botosso VF, Santelli GMM, Kapronezai J, de Araújo MV, Silva-Pereira TT, Filho AFS, Tavares MS, Flórez-Álvarez L, de Oliveira DBL, Durigon EL, Giaretta PR, Heinemann MB, Hauser M, Seychell B, Böhler H, Rut W, Drag M, Beck T, Cox R, Chapman HN, Betzel C, Brehm W, Hinrichs W, Ebert G, Latham SL, Guimarães AMS, Turk D, Wrenger C, Meents A. Commun Biol 6 1058 (2023)
  127. Chlorhexidine and SARS-CoV-2 main protease: Molecular docking study. Grover V, Kumar V, Puri V, Jain A. J Indian Soc Periodontol 26 512-514 (2022)
  128. Comprehensive Understanding of the Kinetic Behaviors of Main Protease from SARS-CoV-2 and SARS-CoV: New Data and Comparison to Published Parameters. Li F, Fang T, Guo F, Zhao Z, Zhang J. Molecules 28 4605 (2023)
  129. Computational drug design of novel COVID-19 inhibitor. Arthur DE, Elegbe BO, Aroh AO, Soliman M. Bull Natl Res Cent 46 210 (2022)
  130. Development of the Safe and Broad-Spectrum Aldehyde and Ketoamide Mpro inhibitors Derived from the Constrained α, γ-AA Peptide Scaffold. Wang L, Ma C, Sacco MD, Xue S, Mahmoud M, Calcul L, Chen Y, Wang J, Cai J. Chemistry 29 e202300476 (2023)
  131. Discovery of 2-thiobenzimidazoles as noncovalent inhibitors of SARS-CoV-2 main protease. Deodato D, Asad N, Dore TM. Bioorg Med Chem Lett 72 128867 (2022)
  132. Discovery of C-12 dithiocarbamate andrographolide analogues as inhibitors of SARS-CoV-2 main protease: In vitro and in silico studies. Nutho B, Wilasluck P, Deetanya P, Wangkanont K, Arsakhant P, Saeeng R, Rungrotmongkol T. Comput Struct Biotechnol J 20 2784-2797 (2022)
  133. Discovery of Chalcone-Based Hybrid Structures as High Affinity and Site-Specific Inhibitors against SARS-CoV-2: A Comprehensive Structural Analysis Based on Various Host-Based and Viral Targets. Valipour M, Di Giacomo S, Di Sotto A, Irannejad H. Int J Mol Sci 24 8789 (2023)
  134. Exploring diverse reactive warheads for the design of SARS-CoV-2 main protease inhibitors. Tan B, Sacco M, Tan H, Li K, Joyce R, Zhang X, Chen Y, Wang J. Eur J Med Chem 259 115667 (2023)
  135. Case Reports Fluorescence in the Sclera, Nails, and Teeth Secondary to Favipiravir Use for COVID-19 Infections. Durmaz EÖ, Demircioğlu D. J Clin Aesthet Dermatol 15 35-37 (2022)
  136. Garbage in, garbage out: how reliable training data improved a virtual screening approach against SARS-CoV-2 MPro. Ruatta SM, Prada Gori DN, Fló Díaz M, Lorenzelli F, Perelmuter K, Alberca LN, Bellera CL, Medeiros A, López GV, Ingold M, Porcal W, Dibello E, Ihnatenko I, Kunick C, Incerti M, Luzardo M, Colobbio M, Ramos JC, Manta E, Minini L, Lavaggi ML, Hernández P, Šarlauskas J, Huerta García CS, Castillo R, Hernández-Campos A, Ribaudo G, Zagotto G, Carlucci R, Medrán NS, Labadie GR, Martinez-Amezaga M, Delpiccolo CML, Mata EG, Scarone L, Posada L, Serra G, Calogeropoulou T, Prousis K, Detsi A, Cabrera M, Alvarez G, Aicardo A, Araújo V, Chavarría C, Mašič LP, Gantner ME, Llanos MA, Rodríguez S, Gavernet L, Park S, Heo J, Lee H, Paul Park KH, Bollati-Fogolín M, Pritsch O, Shum D, Talevi A, Comini MA. Front Pharmacol 14 1193282 (2023)
  137. Identification of and Mechanistic Insights into SARS-CoV-2 Main Protease Non-Covalent Inhibitors: An In-Silico Study. Shen JX, Du WW, Xia YL, Zhang ZB, Yu ZF, Fu YX, Liu SQ. Int J Mol Sci 24 4237 (2023)
  138. In silico drug repurposing carvedilol and its metabolites against SARS-CoV-2 infection using molecular docking and molecular dynamic simulation approaches. Zhang C, Liu J, Sui Y, Liu S, Yang M. Sci Rep 13 21404 (2023)
  139. Lab-on-a-chip for the easy and visual detection of SARS-CoV-2 in saliva based on sensory polymers. Arnaiz A, Guirado-Moreno JC, Guembe-García M, Barros R, Tamayo-Ramos JA, Fernández-Pampín N, García JM, Vallejos S. Sens Actuators B Chem 379 133165 (2023)
  140. Oridonin inhibits SARS-CoV-2 replication by targeting viral proteinase and polymerase. Zhang Z, Zhang H, Zhang Y, Zhang Q, Liu Q, Hu Y, Chen X, Wang J, Shi Y, Deng C, Gong P, Zhang B, Li X, Zhu B, Ye H. Virol Sin 38 470-479 (2023)
  141. Peptidyl nitroalkene inhibitors of main protease rationalized by computational and crystallographic investigations as antivirals against SARS-CoV-2. Medrano FJ, de la Hoz-Rodríguez S, Martí S, Arafet K, Schirmeister T, Hammerschmidt SJ, Müller C, González-Martínez Á, Santillana E, Ziebuhr J, Romero A, Zimmer C, Weldert A, Zimmermann R, Lodola A, Świderek K, Moliner V, González FV. Commun Chem 7 15 (2024)
  142. Potential antiviral effects of pantethine against SARS-CoV-2. Abou-Hamdan M, Saleh R, Mani S, Dournaud P, Metifiot M, Blondot ML, Andreola ML, Abdel-Sater F, De Reggi M, Gressens P, Laforge M. Sci Rep 13 2237 (2023)
  143. Protocol for high-throughput screening of SARS-CoV-2 main protease inhibitors using a robust fluorescence polarization assay. Zhang J, Yan H, Yan G, Liu X, Wang Y, Chen Y. STAR Protoc 3 101794 (2022)
  144. Repurposing and computational design of PARP inhibitors as SARS-CoV-2 inhibitors. Rampogu S, Jung TS, Ha MW, Lee KW. Sci Rep 13 10583 (2023)
  145. Synthetic Platforms for Characterizing and Targeting of SARS-CoV-2 Genome Capping Enzymes. Ornelas MY, Thomas AY, Johnson Rosas LI, Scoville RO, Mehta AP. ACS Synth Biol 11 3759-3771 (2022)