6ssx Citations

Two new polymorphic structures of human full-length alpha-synuclein fibrils solved by cryo-electron microscopy.

Abstract

Intracellular inclusions rich in alpha-synuclein are a hallmark of several neuropathological diseases including Parkinson's disease (PD). Previously, we reported the structure of alpha-synuclein fibrils (residues 1-121), composed of two protofibrils that are connected via a densely-packed interface formed by residues 50-57 (Guerrero-Ferreira, eLife 218;7:e36402). We here report two new polymorphic atomic structures of alpha-synuclein fibrils termed polymorphs 2a and 2b, at 3.0 Å and 3.4 Å resolution, respectively. These polymorphs show a radically different structure compared to previously reported polymorphs. The new structures have a 10 nm fibril diameter and are composed of two protofilaments which interact via intermolecular salt-bridges between amino acids K45, E57 (polymorph 2a) or E46 (polymorph 2b). The non-amyloid component (NAC) region of alpha-synuclein is fully buried by previously non-described interactions with the N-terminus. A hydrophobic cleft, the location of familial PD mutation sites, and the nature of the protofilament interface now invite to formulate hypotheses about fibril formation, growth and stability.

Reviews - 6ssx mentioned but not cited (2)

Articles - 6ssx mentioned but not cited (11)

  1. Seeded assembly in vitro does not replicate the structures of α-synuclein filaments from multiple system atrophy. Lövestam S, Schweighauser M, Matsubara T, Murayama S, Tomita T, Ando T, Hasegawa K, Yoshida M, Tarutani A, Hasegawa M, Goedert M, Scheres SHW. FEBS Open Bio 11 999-1013 (2021)
  2. Insights into the molecular mechanism of amyloid filament formation: Segmental folding of α-synuclein on lipid membranes. Antonschmidt L, Dervişoğlu R, Sant V, Tekwani Movellan K, Mey I, Riedel D, Steinem C, Becker S, Andreas LB, Griesinger C. Sci Adv 7 eabg2174 (2021)
  3. Structures of α-synuclein filaments from human brains with Lewy pathology. Yang Y, Shi Y, Schweighauser M, Zhang X, Kotecha A, Murzin AG, Garringer HJ, Cullinane PW, Saito Y, Foroud T, Warner TT, Hasegawa K, Vidal R, Murayama S, Revesz T, Ghetti B, Hasegawa M, Lashley T, Scheres SHW, Goedert M. Nature 610 791-795 (2022)
  4. Protein Amyloid Cofactors: Charged Side-Chain Arrays Meet Their Match? Lewkowicz E, Jayaraman S, Gursky O. Trends Biochem Sci 46 626-629 (2021)
  5. Development and validation of an expanded antibody toolset that captures alpha-synuclein pathological diversity in Lewy body diseases. Altay MF, Kumar ST, Burtscher J, Jagannath S, Strand C, Miki Y, Parkkinen L, Holton JL, Lashuel HA. NPJ Parkinsons Dis 9 161 (2023)
  6. Morphology-Dependent Interactions between α-Synuclein Monomers and Fibrils. Pálmadóttir T, Waudby CA, Bernfur K, Christodoulou J, Linse S, Malmendal A. Int J Mol Sci 24 5191 (2023)
  7. Quaternary structure of patient-homogenate amplified α-synuclein fibrils modulates seeding of endogenous α-synuclein. Frieg B, Geraets JA, Strohäker T, Dienemann C, Mavroeidi P, Jung BC, Kim WS, Lee SJ, Xilouri M, Zweckstetter M, Schröder GF. Commun Biol 5 1040 (2022)
  8. Structural Specificity of Polymorphic Forms of α-Synuclein Amyloid. Roterman I, Stapor K, Konieczny L. Biomedicines 11 1324 (2023)
  9. The clinical drug candidate anle138b binds in a cavity of lipidic α-synuclein fibrils. Antonschmidt L, Matthes D, Dervişoğlu R, Frieg B, Dienemann C, Leonov A, Nimerovsky E, Sant V, Ryazanov S, Giese A, Schröder GF, Becker S, de Groot BL, Griesinger C, Andreas LB. Nat Commun 13 5385 (2022)
  10. Two new polymorphic structures of human full-length alpha-synuclein fibrils solved by cryo-electron microscopy. Guerrero-Ferreira R, Taylor NM, Arteni AA, Kumari P, Mona D, Ringler P, Britschgi M, Lauer ME, Makky A, Verasdonck J, Riek R, Melki R, Meier BH, Böckmann A, Bousset L, Stahlberg H. Elife 8 (2019)
  11. Wild-Type α-Synuclein and Variants Occur in Different Disordered Dimers and Pre-Fibrillar Conformations in Early Stage of Aggregation. Guzzo A, Delarue P, Rojas A, Nicolaï A, Maisuradze GG, Senet P. Front Mol Biosci 9 910104 (2022)


Reviews citing this publication (39)

  1. Alpha-synuclein structure and Parkinson's disease - lessons and emerging principles. Meade RM, Fairlie DP, Mason JM. Mol Neurodegener 14 29 (2019)
  2. Amyloid Oligomers: A Joint Experimental/Computational Perspective on Alzheimer's Disease, Parkinson's Disease, Type II Diabetes, and Amyotrophic Lateral Sclerosis. Nguyen PH, Ramamoorthy A, Sahoo BR, Zheng J, Faller P, Straub JE, Dominguez L, Shea JE, Dokholyan NV, De Simone A, Ma B, Nussinov R, Najafi S, Ngo ST, Loquet A, Chiricotto M, Ganguly P, McCarty J, Li MS, Hall C, Wang Y, Miller Y, Melchionna S, Habenstein B, Timr S, Chen J, Hnath B, Strodel B, Kayed R, Lesné S, Wei G, Sterpone F, Doig AJ, Derreumaux P. Chem Rev 121 2545-2647 (2021)
  3. Alpha Synuclein Connects the Gut-Brain Axis in Parkinson's Disease Patients - A View on Clinical Aspects, Cellular Pathology and Analytical Methodology. Schaeffer E, Kluge A, Böttner M, Zunke F, Cossais F, Berg D, Arnold P. Front Cell Dev Biol 8 573696 (2020)
  4. Evidence of distinct α-synuclein strains underlying disease heterogeneity. Holec SAM, Woerman AL. Acta Neuropathol 142 73-86 (2021)
  5. Opportunities and challenges of alpha-synuclein as a potential biomarker for Parkinson's disease and other synucleinopathies. Magalhães P, Lashuel HA. NPJ Parkinsons Dis 8 93 (2022)
  6. Multiplicity of α-Synuclein Aggregated Species and Their Possible Roles in Disease. Gracia P, Camino JD, Volpicelli-Daley L, Cremades N. Int J Mol Sci 21 E8043 (2020)
  7. The expanding amyloid family: Structure, stability, function, and pathogenesis. Sawaya MR, Hughes MP, Rodriguez JA, Riek R, Eisenberg DS. Cell 184 4857-4873 (2021)
  8. Alpha-synuclein research: defining strategic moves in the battle against Parkinson's disease. Oliveira LMA, Gasser T, Edwards R, Zweckstetter M, Melki R, Stefanis L, Lashuel HA, Sulzer D, Vekrellis K, Halliday GM, Tomlinson JJ, Schlossmacher M, Jensen PH, Schulze-Hentrich J, Riess O, Hirst WD, El-Agnaf O, Mollenhauer B, Lansbury P, Outeiro TF. NPJ Parkinsons Dis 7 65 (2021)
  9. Keeping α-Synuclein at Bay: A More Active Role of Molecular Chaperones in Preventing Mitochondrial Interactions and Transition to Pathological States? Aspholm EE, Matečko-Burmann I, Burmann BM, Burmann BM. Life (Basel) 10 E289 (2020)
  10. Neuropathology and molecular diagnosis of Synucleinopathies. Koga S, Sekiya H, Kondru N, Ross OA, Dickson DW. Mol Neurodegener 16 83 (2021)
  11. Structural and Functional Insights into α-Synuclein Fibril Polymorphism. Mehra S, Gadhe L, Bera R, Sawner AS, Maji SK. Biomolecules 11 1419 (2021)
  12. An Update on the Critical Role of α-Synuclein in Parkinson's Disease and Other Synucleinopathies: from Tissue to Cellular and Molecular Levels. Serratos IN, Hernández-Pérez E, Campos C, Aschner M, Santamaría A. Mol Neurobiol 59 620-642 (2022)
  13. Effects of Mutations and Post-Translational Modifications on α-Synuclein In Vitro Aggregation. Pancoe SX, Wang YJ, Shimogawa M, Perez RM, Giannakoulias S, Petersson EJ. J Mol Biol 434 167859 (2022)
  14. Looking Beyond the Core: The Role of Flanking Regions in the Aggregation of Amyloidogenic Peptides and Proteins. Ulamec SM, Brockwell DJ, Radford SE. Front Neurosci 14 611285 (2020)
  15. Alpha-Synuclein Targeting Therapeutics for Parkinson's Disease and Related Synucleinopathies. Menon S, Armstrong S, Hamzeh A, Visanji NP, Sardi SP, Tandon A. Front Neurol 13 852003 (2022)
  16. Amyloidogenic Intrinsically Disordered Proteins: New Insights into Their Self-Assembly and Their Interaction with Membranes. Scollo F, La Rosa C. Life (Basel) 10 (2020)
  17. From structure to application: Progress and opportunities in peptide materials development. Lopez-Silva TL, Schneider JP. Curr Opin Chem Biol 64 131-144 (2021)
  18. Monitoring α-synuclein aggregation. Estaun-Panzano J, Arotcarena ML, Bezard E. Neurobiol Dis 176 105966 (2023)
  19. Structures of Pathological and Functional Amyloids and Prions, a Solid-State NMR Perspective. Daskalov A, El Mammeri N, Lends A, Shenoy J, Lamon G, Fichou Y, Saad A, Martinez D, Morvan E, Berbon M, Grélard A, Kauffmann B, Ferber M, Bardiaux B, Habenstein B, Saupe SJ, Loquet A. Front Mol Neurosci 14 670513 (2021)
  20. The Cryo-EM Effect: Structural Biology of Neurodegenerative Disease Aggregates. Creekmore BC, Chang YW, Lee EB. J Neuropathol Exp Neurol 80 514-529 (2021)
  21. Molecular pathology of neurodegenerative diseases by cryo-EM of amyloids. Scheres SHW, Ryskeldi-Falcon B, Goedert M. Nature 621 701-710 (2023)
  22. Alpha-Synuclein Aggregation Pathway in Parkinson's Disease: Current Status and Novel Therapeutic Approaches. Vidović M, Rikalovic MG. Cells 11 1732 (2022)
  23. Alpha-Synuclein Aggregation in Parkinson's Disease. Srinivasan E, Chandrasekhar G, Chandrasekar P, Anbarasu K, Vickram AS, Karunakaran R, Rajasekaran R, Srikumar PS. Front Med (Lausanne) 8 736978 (2021)
  24. Bringing synapses into focus: Recent advances in synaptic imaging and mass-spectrometry for studying synaptopathy. Hindley N, Sanchez Avila A, Henstridge C. Front Synaptic Neurosci 15 1130198 (2023)
  25. Conformational strains of pathogenic amyloid proteins in neurodegenerative diseases. Li D, Liu C. Nat Rev Neurosci 23 523-534 (2022)
  26. Consequences of variability in α-synuclein fibril structure on strain biology. Holec SAM, Liu SL, Woerman AL. Acta Neuropathol 143 311-330 (2022)
  27. Development of Small Molecules Targeting α-Synuclein Aggregation: A Promising Strategy to Treat Parkinson's Disease. Peña-Díaz S, García-Pardo J, Ventura S. Pharmaceutics 15 839 (2023)
  28. From Synaptic Protein to Prion: The Long and Controversial Journey of α-Synuclein. Heras-Garvin A, Stefanova N. Front Synaptic Neurosci 12 584536 (2020)
  29. Functional amyloids from bacterial biofilms - structural properties and interaction partners. Akbey Ü, Andreasen M. Chem Sci 13 6457-6477 (2022)
  30. General Principles Underpinning Amyloid Structure. Taylor AIP, Staniforth RA. Front Neurosci 16 878869 (2022)
  31. Hierarchical chemical determination of amyloid polymorphs in neurodegenerative disease. Li D, Liu C. Nat Chem Biol 17 237-245 (2021)
  32. Peptide-based approaches to directly target alpha-synuclein in Parkinson's disease. Allen SG, Meade RM, White Stenner LL, Mason JM. Mol Neurodegener 18 80 (2023)
  33. Proteins Do Not Replicate, They Precipitate: Phase Transition and Loss of Function Toxicity in Amyloid Pathologies. Ezzat K, Sturchio A, Espay AJ. Biology (Basel) 11 535 (2022)
  34. Solid-State NMR for Studying the Structure and Dynamics of Viral Assemblies. Lecoq L, Fogeron ML, Meier BH, Nassal M, Böckmann A. Viruses 12 (2020)
  35. The potential underlying mechanisms during learning flights. Bertrand OJN, Sonntag A. J Comp Physiol A Neuroethol Sens Neural Behav Physiol (2023)
  36. Ultrastructural and biochemical classification of pathogenic tau, α-synuclein and TDP-43. Tarutani A, Adachi T, Akatsu H, Hashizume Y, Hasegawa K, Saito Y, Robinson AC, Mann DMA, Yoshida M, Murayama S, Hasegawa M. Acta Neuropathol 143 613-640 (2022)
  37. Unzipping the Secrets of Amyloid Disassembly by the Human Disaggregase. Franco A, Velasco-Carneros L, Alvarez N, Orozco N, Moro F, Prado A, Muga A. Cells 10 2745 (2021)
  38. What makes functional amyloids work? Siemer AB. Crit Rev Biochem Mol Biol 57 399-411 (2022)
  39. α-Synuclein and biological membranes: the danger of loving too much. Mansueto S, Fusco G, De Simone A. Chem Commun (Camb) 59 8769-8778 (2023)

Articles citing this publication (65)

  1. Structure-based inhibitors halt prion-like seeding by Alzheimer's disease-and tauopathy-derived brain tissue samples. Seidler PM, Boyer DR, Murray KA, Yang TP, Bentzel M, Sawaya MR, Rosenberg G, Cascio D, Williams CK, Newell KL, Ghetti B, DeTure MA, Dickson DW, Vinters HV, Eisenberg DS. J Biol Chem 294 16451-16464 (2019)
  2. Differential Membrane Binding and Seeding of Distinct α-Synuclein Fibrillar Polymorphs. Shrivastava AN, Bousset L, Renner M, Redeker V, Savistchenko J, Triller A, Melki R. Biophys J 118 1301-1320 (2020)
  3. Architecture of the flexible tail tube of bacteriophage SPP1. Zinke M, Sachowsky KAA, Öster C, Zinn-Justin S, Ravelli R, Schröder GF, Habeck M, Lange A. Nat Commun 11 5759 (2020)
  4. Structures of α-synuclein filaments from multiple system atrophy. Schweighauser M, Shi Y, Tarutani A, Kametani F, Murzin AG, Ghetti B, Matsubara T, Tomita T, Ando T, Hasegawa K, Murayama S, Yoshida M, Hasegawa M, Scheres SHW, Goedert M. Nature 585 464-469 (2020)
  5. Amyotrophic Lateral Sclerosis: Proteins, Proteostasis, Prions, and Promises. McAlary L, Chew YL, Lum JS, Geraghty NJ, Yerbury JJ, Cashman NR. Front Cell Neurosci 14 581907 (2020)
  6. Asparagine and Glutamine Side-Chains and Ladders in HET-s(218-289) Amyloid Fibrils Studied by Fast Magic-Angle Spinning NMR. Wiegand T, Malär AA, Cadalbert R, Ernst M, Böckmann A, Meier BH. Front Mol Biosci 7 582033 (2020)
  7. The α-synuclein hereditary mutation E46K unlocks a more stable, pathogenic fibril structure. Boyer DR, Li B, Sun C, Fan W, Zhou K, Hughes MP, Sawaya MR, Jiang L, Eisenberg DS. Proc Natl Acad Sci U S A 117 3592-3602 (2020)
  8. Comment Neurodegenerative diseases distinguished through protein-structure analysis. Gerez JA, Riek R. Nature 578 223-224 (2020)
  9. Letter Cryo-EM structure of full-length α-synuclein amyloid fibril with Parkinson's disease familial A53T mutation. Sun Y, Hou S, Zhao K, Long H, Liu Z, Gao J, Zhang Y, Su XD, Li D, Liu C. Cell Res 30 360-362 (2020)
  10. Phenotypic manifestation of α-synuclein strains derived from Parkinson's disease and multiple system atrophy in human dopaminergic neurons. Tanudjojo B, Shaikh SS, Fenyi A, Bousset L, Agarwal D, Marsh J, Zois C, Heman-Ackah S, Fischer R, Sims D, Melki R, Tofaris GK. Nat Commun 12 3817 (2021)
  11. The 3D structure of lipidic fibrils of α-synuclein. Frieg B, Antonschmidt L, Dienemann C, Geraets JA, Najbauer EE, Matthes D, de Groot BL, Andreas LB, Becker S, Griesinger C, Schröder GF. Nat Commun 13 6810 (2022)
  12. All-or-none amyloid disassembly via chaperone-triggered fibril unzipping favors clearance of α-synuclein toxic species. Franco A, Gracia P, Colom A, Camino JD, Fernández-Higuero JÁ, Orozco N, Dulebo A, Saiz L, Cremades N, Vilar JMG, Prado A, Muga A. Proc Natl Acad Sci U S A 118 e2105548118 (2021)
  13. Parkinson's disease associated mutation E46K of α-synuclein triggers the formation of a distinct fibril structure. Zhao K, Li Y, Liu Z, Long H, Zhao C, Luo F, Sun Y, Tao Y, Su XD, Li D, Li X, Liu C. Nat Commun 11 2643 (2020)
  14. Cooperative amyloid fibre binding and disassembly by the Hsp70 disaggregase. Beton JG, Monistrol J, Wentink A, Johnston EC, Roberts AJ, Bukau BG, Hoogenboom BW, Saibil HR. EMBO J 41 e110410 (2022)
  15. The N terminus of α-synuclein dictates fibril formation. McGlinchey RP, Ni X, Shadish JA, Jiang J, Lee JC. Proc Natl Acad Sci U S A 118 e2023487118 (2021)
  16. The differential solvent exposure of N-terminal residues provides "fingerprints" of alpha-synuclein fibrillar polymorphs. Landureau M, Redeker V, Bellande T, Eyquem S, Melki R. J Biol Chem 296 100737 (2021)
  17. The hereditary mutation G51D unlocks a distinct fibril strain transmissible to wild-type α-synuclein. Sun Y, Long H, Xia W, Wang K, Zhang X, Sun B, Cao Q, Zhang Y, Dai B, Li D, Liu C. Nat Commun 12 6252 (2021)
  18. Wild-type α-synuclein inherits the structure and exacerbated neuropathology of E46K mutant fibril strain by cross-seeding. Long H, Zheng W, Liu Y, Sun Y, Zhao K, Liu Z, Xia W, Lv S, Liu Z, Li D, He KW, Liu C. Proc Natl Acad Sci U S A 118 e2012435118 (2021)
  19. A new alpha-synuclein missense variant (Thr72Met) in two Turkish families with Parkinson's disease. Fevga C, Park Y, Lohmann E, Kievit AJ, Breedveld GJ, Ferraro F, de Boer L, van Minkelen R, Hanagasi H, Boon A, Wang W, Petsko GA, Hoang QQ, Emre M, Bonifati V. Parkinsonism Relat Disord 89 63-72 (2021)
  20. Assembly of α-synuclein and neurodegeneration in the central nervous system of heterozygous M83 mice following the peripheral administration of α-synuclein seeds. Macdonald JA, Chen JL, Masuda-Suzukake M, Schweighauser M, Jaunmuktane Z, Warner T, Holton JL, Grossman A, Berks R, Lavenir I, Goedert M. Acta Neuropathol Commun 9 189 (2021)
  21. Charge Regulation during Amyloid Formation of α-Synuclein. Pálmadóttir T, Malmendal A, Leiding T, Lund M, Linse S. J Am Chem Soc 143 7777-7791 (2021)
  22. Development of an α-synuclein positron emission tomography tracer for imaging synucleinopathies. Xiang J, Tao Y, Xia Y, Luo S, Zhao Q, Li B, Zhang X, Sun Y, Xia W, Zhang M, Kang SS, Ahn EH, Liu X, Xie F, Guan Y, Yang JJ, Bu L, Wu S, Wang X, Cao X, Liu C, Zhang Z, Li D, Ye K. Cell 186 3350-3367.e19 (2023)
  23. Exploring Structural Flexibility and Stability of α-Synuclein by the Landau-Ginzburg-Wilson Approach. Korneev A, Begun A, Liubimov S, Kachlishvili K, Molochkov A, Niemi AJ, Maisuradze GG. J Phys Chem B 126 6878-6890 (2022)
  24. Inhibitor and substrate cooperate to inhibit amyloid fibril elongation of α-synuclein. Agerschou ED, Borgmann V, Wördehoff MM, Hoyer W. Chem Sci 11 11331-11337 (2020)
  25. Lipid-induced polymorphic amyloid fibril formation by α-synuclein. Singh BP, Morris RJ, Kunath T, MacPhee CE, Horrocks MH. Protein Sci 32 e4736 (2023)
  26. Parkinson's disease-related phosphorylation at Tyr39 rearranges α-synuclein amyloid fibril structure revealed by cryo-EM. Zhao K, Lim YJ, Liu Z, Long H, Sun Y, Hu JJ, Zhao C, Tao Y, Zhang X, Li D, Li YM, Liu C. Proc Natl Acad Sci U S A 117 20305-20315 (2020)
  27. Polyphenol-solubility alters amyloid fibril formation of α-synuclein. So M, Kimura Y, Yamaguchi K, Sugiki T, Fujiwara T, Aguirre C, Ikenaka K, Mochizuki H, Kawata Y, Goto Y. Protein Sci 30 1701-1713 (2021)
  28. Protein Quality Control Pathways at the Crossroad of Synucleinopathies. De Mattos EP, Wentink A, Nussbaum-Krammer C, Hansen C, Bergink S, Melki R, Kampinga HH. J Parkinsons Dis 10 369-382 (2020)
  29. Tau induces formation of α-synuclein filaments with distinct molecular conformations. Hojjatian A, Dasari AKR, Sengupta U, Taylor D, Daneshparvar N, Yeganeh FA, Dillard L, Michael B, Griffin RG, Borgnia MJ, Kayed R, Taylor KA, Lim KH. Biochem Biophys Res Commun 554 145-150 (2021)
  30. The E46K mutation modulates α-synuclein prion replication in transgenic mice. Holec SAM, Lee J, Oehler A, Batia L, Wiggins-Gamble A, Lau J, Ooi FK, Merz GE, Wang M, Mordes DA, Olson SH, Woerman AL. PLoS Pathog 18 e1010956 (2022)
  31. The small aromatic compound SynuClean-D inhibits the aggregation and seeded polymerization of multiple α-synuclein strains. Peña-Díaz S, Pujols J, Vasili E, Pinheiro F, Santos J, Manglano-Artuñedo Z, Outeiro TF, Ventura S. J Biol Chem 298 101902 (2022)
  32. Threonine Cavities Are Targetable Motifs That Control Alpha-Synuclein Fibril Growth. Nathan Kochen N, Vasandani V, Seaney D, Pandey AK, Walters MA, Braun AR, Sachs JN. ACS Chem Neurosci 13 2646-2657 (2022)
  33. Unconventional secretion of α-synuclein mediated by palmitoylated DNAJC5 oligomers. Wu S, Hernandez Villegas NC, Sirkis DW, Thomas-Wright I, Wade-Martins R, Schekman R. Elife 12 e85837 (2023)
  34. α-synuclein strains that cause distinct pathologies differentially inhibit proteasome. Suzuki G, Imura S, Hosokawa M, Katsumata R, Nonaka T, Hisanaga SI, Saeki Y, Hasegawa M. Elife 9 (2020)
  35. A NAC domain mutation (E83Q) unlocks the pathogenicity of human alpha-synuclein and recapitulates its pathological diversity. Kumar ST, Mahul-Mellier AL, Hegde RN, Rivière G, Moons R, Ibáñez de Opakua A, Magalhães P, Rostami I, Donzelli S, Sobott F, Zweckstetter M, Lashuel HA. Sci Adv 8 eabn0044 (2022)
  36. A series of helical α-synuclein fibril polymorphs are populated in the presence of lipid vesicles. Meade RM, Williams RJ, Mason JM. NPJ Parkinsons Dis 6 17 (2020)
  37. An antibody scanning method for the detection of α-synuclein oligomers in the serum of Parkinson's disease patients. Kulenkampff K, Emin D, Staats R, Zhang YP, Sakhnini L, Kouli A, Rimon O, Lobanova E, Williams-Gray CH, Aprile FA, Sormanni P, Klenerman D, Vendruscolo M. Chem Sci 13 13815-13828 (2022)
  38. Anionic lipid vesicles have differential effects on the aggregation of early onset-associated α-synuclein missense mutants. Watt KJC, Meade RM, Williams RJ, Mason JM. J Biol Chem 298 102565 (2022)
  39. Assembly of recombinant tau into filaments identical to those of Alzheimer's disease and chronic traumatic encephalopathy. Lövestam S, Koh FA, van Knippenberg B, Kotecha A, Murzin AG, Goedert M, Scheres SHW. Elife 11 e76494 (2022)
  40. Challenges in Experimental Methods. Gąsior-Głogowska ME, Szulc N, Szefczyk M. Methods Mol Biol 2340 281-307 (2022)
  41. Conformation-Dependent Influences of Hydrophobic Amino Acids in Two In-Register Parallel β-Sheet Amyloids, an α-Synuclein Amyloid and a Local Structural Model of PrPSc. Otaki H, Taguchi Y, Nishida N. ACS Omega 7 31271-31288 (2022)
  42. Cryo-EM observation of the amyloid key structure of polymorphic TDP-43 amyloid fibrils. Sharma K, Stockert F, Shenoy J, Berbon M, Abdul-Shukkoor MB, Habenstein B, Loquet A, Schmidt M, Fändrich M. Nat Commun 15 486 (2024)
  43. Disease Mechanisms of Multiple System Atrophy: What a Parallel Between the Form of Pasta and the Alpha-Synuclein Assemblies Involved in MSA and PD Tells Us. Melki R. Cerebellum (2022)
  44. Domain-Independent Inhibition of CBP/p300 Attenuates α-Synuclein Aggregation. Hlushchuk I, Ruskoaho H, Domanskyi A, Airavaara M, Välimäki MJ. ACS Chem Neurosci 12 2273-2279 (2021)
  45. Fibril core regions in engineered α-synuclein dimer are crucial for blocking of fibril elongation. Schulz CM, Pfitzer A, Hoyer W. BBA Adv 4 100110 (2023)
  46. Foldamers reveal and validate therapeutic targets associated with toxic α-synuclein self-assembly. Ahmed J, Fitch TC, Donnelly CM, Joseph JA, Ball TD, Bassil MM, Son A, Zhang C, Ledreux A, Horowitz S, Qin Y, Paredes D, Kumar S. Nat Commun 13 2273 (2022)
  47. Heparin induces α-synuclein to form new fibril polymorphs with attenuated neuropathology. Tao Y, Sun Y, Lv S, Xia W, Zhao K, Xu Q, Zhao Q, He L, Le W, Wang Y, Liu C, Li D. Nat Commun 13 4226 (2022)
  48. Insights into neurodegeneration from electron microscopy studies. Crowther RA. Biochem Soc Trans 49 2777-2786 (2021)
  49. Ligand Profiling to Characterize Different Polymorphic Forms of α-Synuclein Aggregates. Chisholm TS, Hunter CA. J Am Chem Soc 145 27030-27037 (2023)
  50. Micro-electron diffraction structure of the aggregation-driving N terminus of Drosophila neuronal protein Orb2A reveals amyloid-like β-sheets. Bowler JT, Sawaya MR, Boyer DR, Cascio D, Bali M, Eisenberg DS. J Biol Chem 298 102396 (2022)
  51. Missense Mutations Modify the Conformational Ensemble of the α-Synuclein Monomer Which Exhibits a Two-Phase Characteristic. Guzzo A, Delarue P, Rojas A, Nicolaï A, Maisuradze GG, Senet P. Front Mol Biosci 8 786123 (2021)
  52. Neurons with Cat's Eyes: A Synthetic Strain of α-Synuclein Fibrils Seeding Neuronal Intranuclear Inclusions. De Giorgi F, Abdul-Shukkoor MB, Kashyrina M, Largitte LA, De Nuccio F, Kauffmann B, Lends A, Laferrière F, Bonhommeau S, Lofrumento DD, Bousset L, Bezard E, Buffeteau T, Loquet A, Ichas F. Biomolecules 12 436 (2022)
  53. Novel self-replicating α-synuclein polymorphs that escape ThT monitoring can spontaneously emerge and acutely spread in neurons. De Giorgi F, Laferrière F, Zinghirino F, Faggiani E, Lends A, Bertoni M, Yu X, Grélard A, Morvan E, Habenstein B, Dutheil N, Doudnikoff E, Daniel J, Claverol S, Qin C, Loquet A, Bezard E, Ichas F. Sci Adv 6 (2020)
  54. Parkinson's disease and multiple system atrophy patient iPSC-derived oligodendrocytes exhibit alpha-synuclein-induced changes in maturation and immune reactive properties. Azevedo C, Teku G, Pomeshchik Y, Reyes JF, Chumarina M, Russ K, Savchenko E, Hammarberg A, Lamas NJ, Collin A, Gouras GK, Klementieva O, Hallbeck M, Taipa R, Vihinen M, Roybon L. Proc Natl Acad Sci U S A 119 e2111405119 (2022)
  55. Polymorphic Alpha-Synuclein Oligomers: Characterization and Differential Detection with Novel Corresponding Antibodies. Moore K, Sengupta U, Puangmalai N, Bhatt N, Kayed R. Mol Neurobiol 60 2691-2705 (2023)
  56. Revisiting the specificity and ability of phospho-S129 antibodies to capture alpha-synuclein biochemical and pathological diversity. Lashuel HA, Mahul-Mellier AL, Novello S, Hegde RN, Jasiqi Y, Altay MF, Donzelli S, DeGuire SM, Burai R, Magalhães P, Chiki A, Ricci J, Boussouf M, Sadek A, Stoops E, Iseli C, Guex N. NPJ Parkinsons Dis 8 136 (2022)
  57. Saturation mutagenesis of α-synuclein reveals monomer fold that modulates aggregation. Chlebowicz J, Russ W, Chen D, Vega A, Vernino S, White CL, Rizo J, Joachimiak LA, Diamond MI. Sci Adv 9 eadh3457 (2023)
  58. Solid-State NMR Structure of Amyloid-β Fibrils. Meier BH, Böckmann A. Methods Mol Biol 2551 53-62 (2023)
  59. Subtle change of fibrillation condition leads to substantial alteration of recombinant Tau fibril structure. Li X, Zhang S, Liu Z, Tao Y, Xia W, Sun Y, Liu C, Le W, Sun B, Li D. iScience 25 105645 (2022)
  60. The Amyloid Fibril-Forming β-Sheet Regions of Amyloid β and α-Synuclein Preferentially Interact with the Molecular Chaperone 14-3-3ζ. Williams DM, Thorn DC, Dobson CM, Meehan S, Jackson SE, Woodcock JM, Carver JA. Molecules 26 6120 (2021)
  61. The amyloid concentric β-barrel hypothesis: Models of synuclein oligomers, annular protofibrils, lipoproteins, and transmembrane channels. Durell SR, Guy HR. Proteins 90 512-542 (2022)
  62. The α-Synuclein Monomer May Have Different Misfolding Mechanisms in the Induction of α-Synuclein Fibrils with Different Polymorphs. Zhao N, Zhang Q, Yu F, Yao X, Liu H. Biomolecules 13 682 (2023)
  63. Transcriptional mutagenesis of α-synuclein caused by DNA oxidation in Parkinson's disease pathogenesis. Basu S, Song M, Adams L, Jeong I, Je G, Guhathakurta S, Jiang J, Boparai N, Dai W, Cardozo-Pelaez F, Tatulian SA, Han KY, Elliott J, Baum J, McLean PJ, Dickson DW, Kim YS. Acta Neuropathol 146 685-705 (2023)
  64. α-Synuclein Fibril, Ribbon and Fibril-91 Amyloid Polymorphs Generation for Structural Studies. Bousset L, Alik A, Arteni A, Böckmann A, Meier BH, Melki R. Methods Mol Biol 2551 345-355 (2023)
  65. α-Synuclein oligomers and fibrils: partners in crime in synucleinopathies. Bigi A, Cascella R, Cecchi C. Neural Regen Res 18 2332-2342 (2023)