6rax Citations

Molecular Basis for ATP-Hydrolysis-Driven DNA Translocation by the CMG Helicase of the Eukaryotic Replisome.

Cell Rep 28 2673-2688.e8 (2019)
Related entries: 6raw, 6ray, 6raz

Cited: 52 times
EuropePMC logo PMID: 31484077

Abstract

In the eukaryotic replisome, DNA unwinding by the Cdc45-MCM-Go-Ichi-Ni-San (GINS) (CMG) helicase requires a hexameric ring-shaped ATPase named minichromosome maintenance (MCM), which spools single-stranded DNA through its central channel. Not all six ATPase sites are required for unwinding; however, the helicase mechanism is unknown. We imaged ATP-hydrolysis-driven translocation of the CMG using cryo-electron microscopy (cryo-EM) and found that the six MCM subunits engage DNA using four neighboring protomers at a time, with ATP binding promoting DNA engagement. Morphing between different helicase states leads us to suggest a non-symmetric hand-over-hand rotary mechanism, explaining the asymmetric requirements of ATPase function around the MCM ring of the CMG. By imaging of a higher-order replisome assembly, we find that the Mrc1-Csm3-Tof1 fork-stabilization complex strengthens the interaction between parental duplex DNA and the CMG at the fork, which might support the coupling between DNA translocation and fork unwinding.

Articles - 6rax mentioned but not cited (3)

  1. Multi-Omics Analysis of MCM2 as a Promising Biomarker in Pan-Cancer. Yuan J, Lan H, Huang D, Guo X, Liu C, Liu S, Zhang P, Cheng Y, Xiao S. Front Cell Dev Biol 10 852135 (2022)
  2. 3dDNA: A Computational Method of Building DNA 3D Structures. Zhang Y, Xiong Y, Xiao Y. Molecules 27 5936 (2022)
  3. Molecular Basis for ATP-Hydrolysis-Driven DNA Translocation by the CMG Helicase of the Eukaryotic Replisome. Eickhoff P, Kose HB, Martino F, Petojevic T, Abid Ali F, Locke J, Tamberg N, Nans A, Berger JM, Botchan MR, Yardimci H, Costa A. Cell Rep 28 2673-2688.e8 (2019)


Reviews citing this publication (14)

  1. Mechanisms of hexameric helicases. Fernandez AJ, Berger JM. Crit Rev Biochem Mol Biol 56 621-639 (2021)
  2. AAA+ ATPases: structural insertions under the magnifying glass. Jessop M, Felix J, Gutsche I. Curr Opin Struct Biol 66 119-128 (2021)
  3. Caught in the act: structural dynamics of replication origin activation and fork progression. Lewis JS, Costa A. Biochem Soc Trans 48 1057-1066 (2020)
  4. The Interplay of Cohesin and the Replisome at Processive and Stressed DNA Replication Forks. van Schie JJM, de Lange J. Cells 10 3455 (2021)
  5. Mechanisms for Maintaining Eukaryotic Replisome Progression in the Presence of DNA Damage. Guilliam TA. Front Mol Biosci 8 712971 (2021)
  6. Myc and the Replicative CMG Helicase: The Creation and Destruction of Cancer: Myc Over-Activation of CMG Helicases Drives Tumorigenesis and Creates a Vulnerability in CMGs for Therapeutic Intervention. Reed DR, Alexandrow MG. Bioessays 42 e1900218 (2020)
  7. Towards a Structural Mechanism for Sister Chromatid Cohesion Establishment at the Eukaryotic Replication Fork. Henrikus SS, Costa A. Biology (Basel) 10 466 (2021)
  8. Approaching Protein Barriers: Emerging Mechanisms of Replication Pausing in Eukaryotes. Shyian M, Shore D. Front Cell Dev Biol 9 672510 (2021)
  9. DNA replication: Mechanisms and therapeutic interventions for diseases. Song HY, Shen R, Mahasin H, Guo YN, Wang DG. MedComm (2020) 4 e210 (2023)
  10. Determining translocation orientations of nucleic acid helicases. Perera HM, Trakselis MA. Methods 204 160-171 (2022)
  11. Embracing Heterogeneity: Challenging the Paradigm of Replisomes as Deterministic Machines. Lewis JS, van Oijen AM, Spenkelink LM. Chem Rev 123 13419-13440 (2023)
  12. The CMG helicase and cancer: a tumor "engine" and weakness with missing mutations. Xiang S, Reed DR, Alexandrow MG. Oncogene 42 473-490 (2023)
  13. The Fate of Two Unstoppable Trains After Arriving Destination: Replisome Disassembly During DNA Replication Termination. Xia Y. Front Cell Dev Biol 9 658003 (2021)
  14. The Response of the Replication Apparatus to Leading Template Strand Blocks. Bellani MA, Shaik A, Majumdar I, Ling C, Seidman MM. Cells 12 2607 (2023)

Articles citing this publication (35)

  1. Cryo-EM Structure of the Fork Protection Complex Bound to CMG at a Replication Fork. Baretić D, Jenkyn-Bedford M, Aria V, Cannone G, Skehel M, Yeeles JTP. Mol Cell 78 926-940.e13 (2020)
  2. DNA unwinding mechanism of a eukaryotic replicative CMG helicase. Yuan Z, Georgescu R, Bai L, Zhang D, Li H, O'Donnell ME. Nat Commun 11 688 (2020)
  3. Mechanism of replication origin melting nucleated by CMG helicase assembly. Lewis JS, Gross MH, Sousa J, Henrikus SS, Greiwe JF, Nans A, Diffley JFX, Costa A. Nature 606 1007-1014 (2022)
  4. Kinetic Characterization of SARS-CoV-2 nsp13 ATPase Activity and Discovery of Small-Molecule Inhibitors. Yazdi AK, Pakarian P, Perveen S, Hajian T, Santhakumar V, Bolotokova A, Li F, Vedadi M. ACS Infect Dis 8 1533-1542 (2022)
  5. Molecular basis for ATPase-powered substrate translocation by the Lon AAA+ protease. Li S, Hsieh KY, Su SC, Pintilie GD, Zhang K, Chang CI. J Biol Chem 101239 (2021)
  6. Structure of a human replisome shows the organisation and interactions of a DNA replication machine. Jones ML, Baris Y, Taylor MRG, Yeeles JTP. EMBO J 40 e108819 (2021)
  7. A conserved mechanism for regulating replisome disassembly in eukaryotes. Jenkyn-Bedford M, Jones ML, Baris Y, Labib KPM, Cannone G, Yeeles JTP, Deegan TD. Nature 600 743-747 (2021)
  8. CryoEM structures of human CMG-ATPγS-DNA and CMG-AND-1 complexes. Rzechorzek NJ, Hardwick SW, Jatikusumo VA, Chirgadze DY, Pellegrini L. Nucleic Acids Res 48 6980-6995 (2020)
  9. Crystal structure and interactions of the Tof1-Csm3 (Timeless-Tipin) fork protection complex. Grabarczyk DB. Nucleic Acids Res 48 6996-7004 (2020)
  10. DONSON and FANCM associate with different replisomes distinguished by replication timing and chromatin domain. Zhang J, Bellani MA, James RC, Pokharel D, Zhang Y, Reynolds JJ, McNee GS, Jackson AP, Stewart GS, Seidman MM. Nat Commun 11 3951 (2020)
  11. Genome stability is guarded by yeast Rtt105 through multiple mechanisms. Corda Y, Maestroni L, Luciano P, Najem MY, Géli V. Genetics 217 iyaa035 (2021)
  12. How Pol α-primase is targeted to replisomes to prime eukaryotic DNA replication. Jones ML, Aria V, Baris Y, Yeeles JTP. Mol Cell 83 2911-2924.e16 (2023)
  13. Nucleotide binding halts diffusion of the eukaryotic replicative helicase during activation. Ramírez Montero D, Sánchez H, van Veen E, van Laar T, Solano B, Diffley JFX, Dekker NH. Nat Commun 14 2082 (2023)
  14. Anatomy of a twin DNA replication factory. Li H, Yao NY, O'Donnell ME. Biochem Soc Trans 48 2769-2778 (2020)
  15. Atomic Force Microscopy Investigation of the Interactions between the MCM Helicase and DNA. Mohammed Khalid AA, Parisse P, Medagli B, Onesti S, Casalis L. Materials (Basel) 14 (2021)
  16. CMG helicase can use ATPγS to unwind DNA: Implications for the rate-limiting step in the reaction mechanism. Yao NY, Zhang D, Yurieva O, O'Donnell ME. Proc Natl Acad Sci U S A 119 e2119580119 (2022)
  17. Computationally exploring the mechanism of bacteriophage T7 gp4 helicase translocating along ssDNA. Jin S, Bueno C, Lu W, Wang Q, Chen M, Chen X, Wolynes PG, Gao Y. Proc Natl Acad Sci U S A 119 e2202239119 (2022)
  18. Cryo-EM structure of the RuvAB-Holliday junction intermediate complex from Pseudomonas aeruginosa. Zhang X, Zhou Z, Dai L, Chao Y, Liu Z, Huang M, Qu Q, Lin Z. Front Plant Sci 14 1139106 (2023)
  19. Ctf4 organizes sister replisomes and Pol α into a replication factory. Yuan Z, Georgescu R, Santos RLA, Zhang D, Bai L, Yao NY, Zhao G, O'Donnell ME, Li H. Elife 8 (2019)
  20. DNA replication protein Cdc45 directly interacts with PCNA via its PIP box in Leishmania donovani and the Cdc45 PIP box is essential for cell survival. Yadav A, Sharma V, Pal J, Gulati P, Goel M, Chandra U, Bansal N, Saha S. PLoS Pathog 16 e1008190 (2020)
  21. Distinct RPA functions promote eukaryotic DNA replication initiation and elongation. Pike AM, Friend CM, Bell SP. Nucleic Acids Res 51 10506-10518 (2023)
  22. Duplex DNA engagement and RPA oppositely regulate the DNA-unwinding rate of CMG helicase. Kose HB, Xie S, Cameron G, Strycharska MS, Yardimci H. Nat Commun 11 3713 (2020)
  23. FtsK in motion reveals its mechanism for double-stranded DNA translocation. Jean NL, Rutherford TJ, Löwe J. Proc Natl Acad Sci U S A 117 14202-14208 (2020)
  24. Genome-wide mapping of individual replication fork velocities using nanopore sequencing. Theulot B, Lacroix L, Arbona JM, Millot GA, Jean E, Cruaud C, Pellet J, Proux F, Hennion M, Engelen S, Lemainque A, Audit B, Hyrien O, Le Tallec B. Nat Commun 13 3295 (2022)
  25. Molecular mechanisms of eukaryotic origin initiation, replication fork progression, and chromatin maintenance. Yuan Z, Li H. Biochem J 477 3499-3525 (2020)
  26. Multiple roles of Pol epsilon in eukaryotic chromosome replication. Cvetkovic MA, Ortega E, Bellelli R, Costa A. Biochem Soc Trans 50 309-320 (2022)
  27. Replisome-cohesin interactions provided by the Tof1-Csm3 and Mrc1 cohesion establishment factors. Shrestha S, Minamino M, Chen ZA, Bouchoux C, Rappsilber J, Uhlmann F. Chromosoma 132 117-135 (2023)
  28. SV40 T-antigen uses a DNA shearing mechanism to initiate origin unwinding. Langston LD, Yuan Z, Georgescu R, Li H, O'Donnell ME. Proc Natl Acad Sci U S A 119 e2216240119 (2022)
  29. Structural and dynamic basis of DNA capture and translocation by mitochondrial Twinkle helicase. Li Z, Kaur P, Lo CY, Chopra N, Smith J, Wang H, Gao Y. Nucleic Acids Res 50 11965-11978 (2022)
  30. Structural and mechanistic insights into the MCM8/9 helicase complex. Weng Z, Zheng J, Zhou Y, Lu Z, Wu Y, Xu D, Li H, Liang H, Liu Y. Elife 12 RP87468 (2023)
  31. Structure of CRL2Lrr1, the E3 ubiquitin ligase that promotes DNA replication termination in vertebrates. Zhou H, Zaher MS, Walter JC, Brown A. Nucleic Acids Res 49 13194-13206 (2021)
  32. Synergism between CMG helicase and leading strand DNA polymerase at replication fork. Xu Z, Feng J, Yu D, Huo Y, Ma X, Lam WH, Liu Z, Li XD, Ishibashi T, Dang S, Zhai Y. Nat Commun 14 5849 (2023)
  33. The Fork Protection Complex: A Regulatory Hub at the Head of the Replisome. Grabarczyk DB. Subcell Biochem 99 83-107 (2022)
  34. Two Distinct Modes of DNA Binding by an MCM Helicase Enable DNA Translocation. Meagher M, Myasnikov A, Enemark EJ. Int J Mol Sci 23 14678 (2022)
  35. Unwinding of a DNA replication fork by a hexameric viral helicase. Javed A, Major B, Stead JA, Sanders CM, Orlova EV. Nat Commun 12 5535 (2021)