6pqv Citations

Cryo-EM structures provide insight into how E. coli F1Fo ATP synthase accommodates symmetry mismatch.

Nat Commun 11 2615 (2020)
Related entries: 6oqr, 6oqs, 6oqt, 6oqu, 6oqv, 6oqw, 6vwk, 6wnq, 6wnr

Cited: 43 times
EuropePMC logo PMID: 32457314

Abstract

F1Fo ATP synthase functions as a biological rotary generator that makes a major contribution to cellular energy production. It comprises two molecular motors coupled together by a central and a peripheral stalk. Proton flow through the Fo motor generates rotation of the central stalk, inducing conformational changes in the F1 motor that catalyzes ATP production. Here we present nine cryo-EM structures of E. coli ATP synthase to 3.1-3.4 Å resolution, in four discrete rotational sub-states, which provide a comprehensive structural model for this widely studied bacterial molecular machine. We observe torsional flexing of the entire complex and a rotational sub-step of Fo associated with long-range conformational changes that indicates how this flexibility accommodates the mismatch between the 3- and 10-fold symmetries of the F1 and Fo motors. We also identify density likely corresponding to lipid molecules that may contribute to the rotor/stator interaction within the Fo motor.

Reviews citing this publication (12)

  1. Structure, Assembly, and Function of Tripartite Efflux and Type 1 Secretion Systems in Gram-Negative Bacteria. Alav I, Kobylka J, Kuth MS, Pos KM, Picard M, Blair JMA, Bavro VN. Chem Rev 121 5479-5596 (2021)
  2. Impact of Hydrogen Sulfide on Mitochondrial and Bacterial Bioenergetics. Borisov VB, Forte E. Int J Mol Sci 22 12688 (2021)
  3. A new class of biological ion-driven rotary molecular motors with 5:2 symmetry. Rieu M, Krutyholowa R, Taylor NMI, Berry RM. Front Microbiol 13 948383 (2022)
  4. Assessing the Role of Lipids in the Molecular Mechanism of Membrane Proteins. Jodaitis L, van Oene T, Martens C. Int J Mol Sci 22 7267 (2021)
  5. F1FO ATP synthase molecular motor mechanisms. Frasch WD, Bukhari ZA, Yanagisawa S. Front Microbiol 13 965620 (2022)
  6. Rotor subunits adaptations in ATP synthases from photosynthetic organisms. Cheuk A, Meier T. Biochem Soc Trans 49 541-550 (2021)
  7. F1·Fo ATP Synthase/ATPase: Contemporary View on Unidirectional Catalysis. Zharova TV, Grivennikova VG, Borisov VB. Int J Mol Sci 24 5417 (2023)
  8. Recent advances in membrane mimetics for membrane protein research. Young JW. Biochem Soc Trans 51 1405-1416 (2023)
  9. Modulation of the H+/ATP coupling ratio by ADP and ATP as a possible regulatory feature in the F-type ATP synthases. Turina P. Front Mol Biosci 9 1023031 (2022)
  10. The biogenesis and regulation of the plant oxidative phosphorylation system. Ghifari AS, Saha S, Murcha MW. Plant Physiol 192 728-747 (2023)
  11. Comparative Analysis of T4SS Molecular Architectures. Zehra M, Heo J, Chung JM, Durie CL. J Microbiol Biotechnol 33 1543-1551 (2023)
  12. Molecular Biophysics of Class A G Protein Coupled Receptors-Lipids Interactome at a Glance-Highlights from the A2A Adenosine Receptor. Tzortzini E, Kolocouris A. Biomolecules 13 957 (2023)

Articles citing this publication (31)

  1. Structure of the dimeric ATP synthase from bovine mitochondria. Spikes TE, Montgomery MG, Walker JE. Proc Natl Acad Sci U S A 117 23519-23526 (2020)
  2. Structure of mycobacterial ATP synthase bound to the tuberculosis drug bedaquiline. Guo H, Courbon GM, Bueler SA, Mai J, Liu J, Liu J, Rubinstein JL. Nature 589 143-147 (2021)
  3. The six steps of the complete F1-ATPase rotary catalytic cycle. Sobti M, Ueno H, Noji H, Stewart AG. Nat Commun 12 4690 (2021)
  4. Computational design of mechanically coupled axle-rotor protein assemblies. Courbet A, Hansen J, Hsia Y, Bethel N, Park YJ, Xu C, Moyer A, Boyken SE, Ueda G, Nattermann U, Nagarajan D, Silva DA, Sheffler W, Quispe J, Nord A, King N, Bradley P, Veesler D, Kollman J, Baker D. Science 376 383-390 (2022)
  5. Interface mobility between monomers in dimeric bovine ATP synthase participates in the ultrastructure of inner mitochondrial membranes. Spikes TE, Montgomery MG, Walker JE. Proc Natl Acad Sci U S A 118 e2021012118 (2021)
  6. Structure of a type IV secretion system core complex encoded by multi-drug resistance F plasmids. Liu X, Khara P, Baker ML, Christie PJ, Hu B. Nat Commun 13 379 (2022)
  7. Structure of the ATP synthase from Mycobacterium smegmatis provides targets for treating tuberculosis. Montgomery MG, Petri J, Spikes TE, Walker JE. Proc Natl Acad Sci U S A 118 e2111899118 (2021)
  8. Structure of ATP synthase from ESKAPE pathogen Acinetobacter baumannii. Demmer JK, Phillips BP, Uhrig OL, Filloux A, Allsopp LP, Bublitz M, Meier T. Sci Adv 8 eabl5966 (2022)
  9. pH-dependent 11° F1FO ATP synthase sub-steps reveal insight into the FO torque generating mechanism. Yanagisawa S, Frasch WD. Elife 10 e70016 (2021)
  10. An ancestral interaction module promotes oligomerization in divergent mitochondrial ATP synthases. Gahura O, Mühleip A, Hierro-Yap C, Panicucci B, Jain M, Hollaus D, Slapničková M, Zíková A, Amunts A. Nat Commun 13 5989 (2022)
  11. Changes within the central stalk of E. coli F1Fo ATP synthase observed after addition of ATP. Sobti M, Zeng YC, Walshe JL, Brown SHJ, Ishmukhametov R, Stewart AG. Commun Biol 6 26 (2023)
  12. Complex effects of macrolide venturicidins on bacterial F-ATPases likely contribute to their action as antibiotic adjuvants. Milgrom YM, Duncan TM. Sci Rep 11 13631 (2021)
  13. Laboratory evolution of synthetic electron transport system variants reveals a larger metabolic respiratory system and its plasticity. Anand A, Patel A, Chen K, Olson CA, Phaneuf PV, Lamoureux C, Hefner Y, Szubin R, Feist AM, Palsson BO. Nat Commun 13 3682 (2022)
  14. Computational Design of Inhibitors Targeting the Catalytic β Subunit of Escherichia coli FOF1-ATP Synthase. Avila-Barrientos LP, Cofas-Vargas LF, Agüero-Chapin G, Hernández-García E, Ruiz-Carmona S, Valdez-Cruz NA, Trujillo-Roldán M, Weber J, Ruiz-Blanco YB, Barril X, García-Hernández E. Antibiotics (Basel) 11 557 (2022)
  15. Direct observation of stepping rotation of V-ATPase reveals rigid component in coupling between Vo and V1 motors. Otomo A, Iida T, Okuni Y, Ueno H, Murata T, Iino R. Proc Natl Acad Sci U S A 119 e2210204119 (2022)
  16. FO-F1 coupling and symmetry mismatch in ATP synthase resolved in every FO rotation step. Kubo S, Niina T, Takada S. Biophys J 122 2898-2909 (2023)
  17. Probing the pathogenicity of patient-derived variants of MT-ATP6 in yeast. Baranowska E, Niedzwiecka K, Panja C, Charles C, Dautant A, Poznanski J, di Rago JP, Tribouillard-Tanvier D, Kucharczyk R. Dis Model Mech 16 dmm049783 (2023)
  18. Exploring the druggability of the binding site of aurovertin, an exogenous allosteric inhibitor of FOF1-ATP synthase. Cofas-Vargas LF, Mendoza-Espinosa P, Avila-Barrientos LP, Prada-Gracia D, Riveros-Rosas H, García-Hernández E. Front Pharmacol 13 1012008 (2022)
  19. Mechanism of ADP-Inhibited ATP Hydrolysis in Single Proton-Pumping FoF1-ATP Synthase Trapped in Solution. Pérez I, Heitkamp T, Börsch M. Int J Mol Sci 24 8442 (2023)
  20. Molecular basis of diseases induced by the mitochondrial DNA mutation m.9032T>C. Baranowska E, Niedzwiecka K, Panja C, Charles C, Dautant A, di Rago JP, Tribouillard-Tanvier D, Kucharczyk R. Hum Mol Genet 32 1313-1323 (2023)
  21. Mutational analysis of a conserved positive charge in the c-ring of E. coli ATP synthase. Shrestha RK, Founds MW, Shepard SJ, Rothrock MM, Defnet AE, Steed PR. Biochim Biophys Acta Bioenerg 1864 148962 (2023)
  22. Quinoline Compounds Targeting the c-Ring of ATP Synthase Inhibit Drug-Resistant Pseudomonas aeruginosa. Fraunfelter VM, Pugh BA, Williams APL, Ward KT, Jackson DO, Austin M, Ciprich JF, Dippy L, Dunford J, Edwards GN, Glass E, Handy KM, Kellogg CN, Llewellyn K, Nyberg KQ, Shepard SJ, Thomas C, Wolfe AL, Steed PR. ACS Infect Dis 9 2448-2456 (2023)
  23. Rotation of the c-Ring Promotes the Curvature Sorting of Monomeric ATP Synthases. Valdivieso González D, Makowski M, Lillo MP, Cao-García FJ, Melo MN, Almendro-Vedia VG, López-Montero I. Adv Sci (Weinh) 10 e2301606 (2023)
  24. Activity modulation of the Escherichia coli F1FO ATP synthase by a designed antimicrobial peptide via cardiolipin sequestering. Makowski M, Almendro-Vedia VG, Domingues MM, Franco OL, López-Montero I, Melo MN, Santos NC. iScience 26 107004 (2023)
  25. Angle-dependent rotation velocity consistent with ADP release in bacterial F1-ATPase. Suiter N, Volkán-Kacsó S. Front Mol Biosci 10 1184249 (2023)
  26. Benzoquinoline Chemical Space: A Helpful Approach in Antibacterial and Anticancer Drug Design. Lungu CN, Mangalagiu V, Mangalagiu II, Mehedinti MC. Molecules 28 1069 (2023)
  27. Characterization of a soluble library of the Pseudomonas aeruginosa PAO1 membrane proteome with emphasis on c-di-GMP turnover enzymes. Scherhag A, Räschle M, Unbehend N, Venn B, Glueck D, Mühlhaus T, Keller S, Pérez Patallo E, Zehner S, Frankenberg-Dinkel N. Microlife 4 uqad028 (2023)
  28. CryoEM structure of a post-assembly MS-ring reveals plasticity in stoichiometry and conformation. Singh PK, Cecchini G, Nakagawa T, Iverson TM. PLoS One 18 e0285343 (2023)
  29. FOF1-ATPase Motor-Embedded Chromatophore as Drug Delivery System: Extraction, Cargo Loading Ability and Mucus Penetration Ability. Wu Y, Lou B, Zheng N, Zhou X, Gao Y, Hong W, Yang Q, Yang G. Pharmaceutics 15 1681 (2023)
  30. Membrane Lipid Composition Influences the Hydration of Proton Half-Channels in FoF1-ATP Synthase. Ivontsin LA, Mashkovtseva EV, Nartsissov YR. Life (Basel) 13 1816 (2023)
  31. The Ancestral Shape of the Access Proton Path of Mitochondrial ATP Synthases Revealed by a Split Subunit-a. Wong JE, Zíková A, Gahura O. Mol Biol Evol 40 msad146 (2023)