6p8p Citations

HORMA Domain Proteins and a Trip13-like ATPase Regulate Bacterial cGAS-like Enzymes to Mediate Bacteriophage Immunity.

Mol Cell 77 709-722.e7 (2020)
Related entries: 6p80, 6p82, 6p8j, 6p8o, 6p8r, 6p8s, 6p8u, 6p8v, 6pb3, 6u7b

Cited: 59 times
EuropePMC logo PMID: 31932165

Abstract

Bacteria are continually challenged by foreign invaders, including bacteriophages, and have evolved a variety of defenses against these invaders. Here, we describe the structural and biochemical mechanisms of a bacteriophage immunity pathway found in a broad array of bacteria, including E. coli and Pseudomonas aeruginosa. This pathway uses eukaryotic-like HORMA domain proteins that recognize specific peptides, then bind and activate a cGAS/DncV-like nucleotidyltransferase (CD-NTase) to generate a cyclic triadenylate (cAAA) second messenger; cAAA in turn activates an endonuclease effector, NucC. Signaling is attenuated by a homolog of the AAA+ ATPase Pch2/TRIP13, which binds and disassembles the active HORMA-CD-NTase complex. When expressed in non-pathogenic E. coli, this pathway confers immunity against bacteriophage λ through an abortive infection mechanism. Our findings reveal the molecular mechanisms of a bacterial defense pathway integrating a cGAS-like nucleotidyltransferase with HORMA domain proteins for threat sensing through protein detection and negative regulation by a Trip13 ATPase.

Articles - 6p8p mentioned but not cited (1)

  1. HORMA Domain Proteins and a Trip13-like ATPase Regulate Bacterial cGAS-like Enzymes to Mediate Bacteriophage Immunity. Ye Q, Lau RK, Mathews IT, Birkholz EA, Watrous JD, Azimi CS, Pogliano J, Jain M, Corbett KD. Mol Cell 77 709-722.e7 (2020)


Reviews citing this publication (19)

  1. Bacterial origins of human cell-autonomous innate immune mechanisms. Wein T, Sorek R. Nat Rev Immunol 22 629-638 (2022)
  2. Cyclic di-AMP, a second messenger of primary importance: tertiary structures and binding mechanisms. He J, Yin W, Galperin MY, Chou SH. Nucleic Acids Res 48 2807-2829 (2020)
  3. Engineered Bacteriophage Therapeutics: Rationale, Challenges and Future. Łobocka M, Dąbrowska K, Górski A. BioDrugs 35 255-280 (2021)
  4. Conserved strategies for pathogen evasion of cGAS-STING immunity. Eaglesham JB, Kranzusch PJ. Curr Opin Immunol 66 27-34 (2020)
  5. The Central Role of Interbacterial Antagonism in Bacterial Life. Peterson SB, Bertolli SK, Mougous JD. Curr Biol 30 R1203-R1214 (2020)
  6. The cGAS-STING Pathway in Bacterial Infection and Bacterial Immunity. Liu N, Pang X, Zhang H, Ji P. Front Immunol 12 814709 (2021)
  7. Chemistry of Class 1 CRISPR-Cas effectors: Binding, editing, and regulation. Liu TY, Doudna JA. J Biol Chem 295 14473-14487 (2020)
  8. The ever-expanding world of bacterial cyclic oligonucleotide second messengers. Yoon SH, Waters CM. Curr Opin Microbiol 60 96-103 (2021)
  9. Cyclic dinucleotides at the forefront of innate immunity. Zaver SA, Woodward JJ. Curr Opin Cell Biol 63 49-56 (2020)
  10. REV7 directs DNA repair pathway choice. Clairmont CS, D'Andrea AD. Trends Cell Biol 31 965-978 (2021)
  11. Type III CRISPR-Cas Systems: Deciphering the Most Complex Prokaryotic Immune System. Kolesnik MV, Fedorova I, Karneyeva KA, Artamonova DN, Severinov KV. Biochemistry (Mosc) 86 1301-1314 (2021)
  12. cGAS-STING: insight on the evolution of a primordial antiviral signaling cassette. Cai H, Imler JL. Fac Rev 10 54 (2021)
  13. Bacteriophage strategies for overcoming host antiviral immunity. Gao Z, Feng Y. Front Microbiol 14 1211793 (2023)
  14. Bacterial origins of cyclic nucleotide-activated antiviral immune signaling. Patel DJ, Yu Y, Jia N. Mol Cell 82 4591-4610 (2022)
  15. The Cyclic Oligoadenylate Signaling Pathway of Type III CRISPR-Cas Systems. Huang F, Zhu B. Front Microbiol 11 602789 (2020)
  16. Disassembly of the Shieldin Complex by TRIP13. Sarangi P, Clairmont CS, D'Andrea AD. Cell Cycle 19 1565-1575 (2020)
  17. Unveil the Secret of the Bacteria and Phage Arms Race. Wang Y, Fan H, Tong Y. Int J Mol Sci 24 4363 (2023)
  18. Conservation and similarity of bacterial and eukaryotic innate immunity. Ledvina HE, Whiteley AT. Nat Rev Microbiol (2024)
  19. The arms race between bacteria CBASS and bacteriophages. Wang L, Zhang L. Front Immunol 14 1224341 (2023)

Articles citing this publication (39)

  1. STING cyclic dinucleotide sensing originated in bacteria. Morehouse BR, Govande AA, Millman A, Keszei AFA, Lowey B, Ofir G, Shao S, Sorek R, Kranzusch PJ. Nature 586 429-433 (2020)
  2. Structure and Mechanism of a Cyclic Trinucleotide-Activated Bacterial Endonuclease Mediating Bacteriophage Immunity. Lau RK, Ye Q, Birkholz EA, Berg KR, Patel L, Mathews IT, Watrous JD, Ego K, Whiteley AT, Lowey B, Mekalanos JJ, Kranzusch PJ, Jain M, Pogliano J, Corbett KD. Mol Cell 77 723-733.e6 (2020)
  3. Diversity and classification of cyclic-oligonucleotide-based anti-phage signalling systems. Millman A, Melamed S, Amitai G, Sorek R. Nat Microbiol 5 1608-1615 (2020)
  4. Antiviral activity of bacterial TIR domains via immune signalling molecules. Ofir G, Herbst E, Baroz M, Cohen D, Millman A, Doron S, Tal N, Malheiro DBA, Malitsky S, Amitai G, Sorek R. Nature 600 116-120 (2021)
  5. cGAS-like receptors sense RNA and control 3'2'-cGAMP signalling in Drosophila. Slavik KM, Morehouse BR, Ragucci AE, Zhou W, Ai X, Chen Y, Li L, Wei Z, Bähre H, König M, Seifert R, Lee ASY, Cai H, Imler JL, Kranzusch PJ. Nature 597 109-113 (2021)
  6. A functional selection reveals previously undetected anti-phage defence systems in the E. coli pangenome. Vassallo CN, Doering CR, Littlehale ML, Teodoro GIC, Laub MT. Nat Microbiol 7 1568-1579 (2022)
  7. Identification of Uncharacterized Components of Prokaryotic Immune Systems and Their Diverse Eukaryotic Reformulations. Burroughs AM, Aravind L. J Bacteriol 202 e00365-20 (2020)
  8. Bacteriophages inhibit and evade cGAS-like immune function in bacteria. Huiting E, Cao X, Ren J, Athukoralage JS, Luo Z, Silas S, An N, Carion H, Zhou Y, Fraser JS, Feng Y, Bondy-Denomy J. Cell 186 864-876.e21 (2023)
  9. Cyclic oligoadenylate signalling and regulation by ring nucleases during type III CRISPR defence. Athukoralage JS, White MF. RNA rna.078739.121 (2021)
  10. Highly regulated, diversifying NTP-dependent biological conflict systems with implications for the emergence of multicellularity. Kaur G, Burroughs AM, Iyer LM, Aravind L. Elife 9 e52696 (2020)
  11. Fuse to defuse: a self-limiting ribonuclease-ring nuclease fusion for type III CRISPR defence. Samolygo A, Athukoralage JS, Graham S, White MF. Nucleic Acids Res 48 6149-6156 (2020)
  12. Molecular mechanisms of the CdnG-Cap5 antiphage defense system employing 3',2'-cGAMP as the second messenger. Fatma S, Chakravarti A, Zeng X, Huang RH. Nat Commun 12 6381 (2021)
  13. Identification and characterization of the WYL BrxR protein and its gene as separable regulatory elements of a BREX phage restriction system. Luyten YA, Hausman DE, Young JC, Doyle LA, Higashi KM, Ubilla-Rodriguez NC, Lambert AR, Arroyo CS, Forsberg KJ, Morgan RD, Stoddard BL, Kaiser BK. Nucleic Acids Res 50 5171-5190 (2022)
  14. Spacer acquisition by Type III CRISPR-Cas system during bacteriophage infection of Thermus thermophilus. Artamonova D, Karneyeva K, Medvedeva S, Klimuk E, Kolesnik M, Yasinskaya A, Samolygo A, Severinov K. Nucleic Acids Res 48 9787-9803 (2020)
  15. An E1-E2 fusion protein primes antiviral immune signalling in bacteria. Ledvina HE, Ye Q, Gu Y, Sullivan AE, Quan Y, Lau RK, Zhou H, Corbett KD, Whiteley AT. Nature 616 319-325 (2023)
  16. Control of bacterial immune signaling by a WYL domain transcription factor. Blankenchip CL, Nguyen JV, Lau RK, Ye Q, Gu Y, Corbett KD. Nucleic Acids Res 50 5239-5250 (2022)
  17. Origin and Evolution of Studiervirinae Bacteriophages Infecting Pectobacterium: Horizontal Transfer Assists Adaptation to New Niches. Evseev PV, Lukianova AA, Shneider MM, Korzhenkov AA, Bugaeva EN, Kabanova AP, Miroshnikov KK, Kulikov EE, Toshchakov SV, Ignatov AN, Miroshnikov KA. Microorganisms 8 E1707 (2020)
  18. A conserved signaling pathway activates bacterial CBASS immune signaling in response to DNA damage. Lau RK, Enustun E, Gu Y, Nguyen JV, Corbett KD. EMBO J 41 e111540 (2022)
  19. PCH-2 collaborates with CMT-1 to proofread meiotic homolog interactions. Giacopazzi S, Vong D, Devigne A, Bhalla N. PLoS Genet 16 e1008904 (2020)
  20. Production of 3',3'-cGAMP by a Bdellovibrio bacteriovorus promiscuous GGDEF enzyme, Bd0367, regulates exit from prey by gliding motility. Lowry RC, Hallberg ZF, Till R, Simons TJ, Nottingham R, Want F, Sockett RE, Hammond MC, Lambert C. PLoS Genet 18 e1010164 (2022)
  21. cGLRs are a diverse family of pattern recognition receptors in innate immunity. Li Y, Slavik KM, Toyoda HC, Morehouse BR, de Oliveira Mann CC, Elek A, Levy S, Wang Z, Mears KS, Liu J, Kashin D, Guo X, Mass T, Sebé-Pedrós A, Schwede F, Kranzusch PJ. Cell 186 3261-3276.e20 (2023)
  22. Metabolic programs of T cell tissue residency empower tumour immunity. Reina-Campos M, Heeg M, Kennewick K, Mathews IT, Galletti G, Luna V, Nguyen Q, Huang H, Milner JJ, Hu KH, Vichaidit A, Santillano N, Boland BS, Chang JT, Jain M, Sharma S, Krummel MF, Chi H, Bensinger SJ, Goldrath AW. Nature 621 179-187 (2023)
  23. Sequence-specific capture and concentration of viral RNA by type III CRISPR system enhances diagnostic. Nemudraia A, Nemudryi A, Buyukyoruk M, Scherffius AM, Zahl T, Wiegand T, Pandey S, Nichols JE, Hall LN, McVey A, Lee HH, Wilkinson RA, Snyder LR, Jones JD, Koutmou KS, Santiago-Frangos A, Wiedenheft B. Nat Commun 13 7762 (2022)
  24. Congress AAA+ proteins: converging mechanisms, diverging functions. Glynn SE, Kardon JR, Mueller-Cajar O, Cho C. Nat Struct Mol Biol 27 515-518 (2020)
  25. Bacterial cGAS senses a viral RNA to initiate immunity. Banh DV, Roberts CG, Morales-Amador A, Berryhill BA, Chaudhry W, Levin BR, Brady SF, Marraffini LA. Nature 623 1001-1008 (2023)
  26. CLPP Depletion Causes Diplotene Arrest; Underlying Testis Mitochondrial Dysfunction Occurs with Accumulation of Perrault Proteins ERAL1, PEO1, and HARS2. Key J, Gispert S, Koornneef L, Sleddens-Linkels E, Kohli A, Torres-Odio S, Koepf G, Amr S, Reichlmeir M, Harter PN, West AP, Münch C, Baarends WM, Auburger G. Cells 12 52 (2022)
  27. Eukaryotic CD-NTase, STING, and viperin proteins evolved via domain shuffling, horizontal transfer, and ancient inheritance from prokaryotes. Culbertson EM, Levin TC. PLoS Biol 21 e3002436 (2023)
  28. Crystal structure and functional implication of a bacterial cyclic AMP-AMP-GMP synthetase. Ko TP, Wang YC, Tsai CL, Yang CS, Hou MH, Chen Y. Nucleic Acids Res 49 4725-4737 (2021)
  29. The Signaling Pathway That cGAMP Riboswitches Found: Analysis and Application of Riboswitches to Study cGAMP Signaling in Geobacter sulfurreducens. Tan Z, Chan CH, Maleska M, Banuelos Jara B, Lohman BK, Ricks NJ, Bond DR, Hammond MC. Int J Mol Sci 23 1183 (2022)
  30. Structure and activity of a bacterial defense-associated 3'-5' exonuclease. Liang Q, Richey ST, Ur SN, Ye Q, Lau RK, Corbett KD. Protein Sci 31 e4374 (2022)
  31. Accumulation of defense systems in phage-resistant strains of Pseudomonas aeruginosa. Costa AR, van den Berg DF, Esser JQ, Muralidharan A, van den Bossche H, Bonilla BE, van der Steen BA, Haagsma AC, Fluit AC, Nobrega FL, Haas PJ, Brouns SJJ. Sci Adv 10 eadj0341 (2024)
  32. Activation of CBASS Cap5 endonuclease immune effector by cyclic nucleotides. Rechkoblit O, Sciaky D, Kreitler DF, Buku A, Kottur J, Aggarwal AK. Nat Struct Mol Biol (2024)
  33. Au naturale: use of biologically derived cyclic di-nucleotides for cancer immunotherapy. Waters CM. Open Biol 11 210277 (2021)
  34. Crystal structure and functional implications of cyclic di-pyrimidine-synthesizing cGAS/DncV-like nucleotidyltransferases. Yang CS, Ko TP, Chen CJ, Hou MH, Wang YC, Chen Y. Nat Commun 14 5078 (2023)
  35. Diversity and evolution of an abundant ICEclc family of integrative and conjugative elements in Pseudomonas aeruginosa. Benigno V, Carraro N, Sarton-Lohéac G, Romano-Bertrand S, Blanc DS, van der Meer JR. mSphere 8 e0051723 (2023)
  36. Inactivation of Target RNA Cleavage of a III-B CRISPR-Cas System Induces Robust Autoimmunity in Saccharolobus islandicus. Zhang Y, Lin J, Tian X, Wang Y, Zhao R, Wu C, Wang X, Zhao P, Bi X, Yu Z, Han W, Peng N, Liang YX, She Q. Int J Mol Sci 23 8515 (2022)
  37. Comment Killing the messenger to evade bacterial defences. Jenal U. Nature 605 431-432 (2022)
  38. Regulation of the physiology and virulence of Ralstonia solanacearum by the second messenger 2',3'-cyclic guanosine monophosphate. Li X, Yin W, Lin JD, Zhang Y, Guo Q, Wang G, Chen X, Cui B, Wang M, Chen M, Li P, He YW, Qian W, Luo H, Zhang LH, Liu XW, Song S, Deng Y. Nat Commun 14 7654 (2023)
  39. The Linguistics of Bacterial Conflict Systems Reveal Ancient Origins of Eukaryotic Innate Immunity. Kibby EM, Whiteley AT. J Bacteriol 202 e00507-20 (2020)