6nyc Citations

Munc13 C2B domain is an activity-dependent Ca2+ regulator of synaptic exocytosis.

Abstract

Munc13 is a multidomain protein present in presynaptic active zones that mediates the priming and plasticity of synaptic vesicle exocytosis, but the mechanisms involved remain unclear. Here we use biophysical, biochemical and electrophysiological approaches to show that the central C(2)B domain of Munc13 functions as a Ca(2+) regulator of short-term synaptic plasticity. The crystal structure of the C(2)B domain revealed an unusual Ca(2+)-binding site with an amphipathic alpha-helix. This configuration confers onto the C(2)B domain unique Ca(2+)-dependent phospholipid-binding properties that favor phosphatidylinositolphosphates. A mutation that inactivated Ca(2+)-dependent phospholipid binding to the C(2)B domain did not alter neurotransmitter release evoked by isolated action potentials, but it did depress release evoked by action-potential trains. In contrast, a mutation that increased Ca(2+)-dependent phosphatidylinositolbisphosphate binding to the C(2)B domain enhanced release evoked by isolated action potentials and by action-potential trains. Our data suggest that, during repeated action potentials, Ca(2+) and phosphatidylinositolphosphate binding to the Munc13 C(2)B domain potentiate synaptic vesicle exocytosis, thereby offsetting synaptic depression induced by vesicle depletion.

Reviews citing this publication (50)

  1. Phosphoinositides: tiny lipids with giant impact on cell regulation. Balla T. Physiol Rev 93 1019-1137 (2013)
  2. Neurotransmitter release: the last millisecond in the life of a synaptic vesicle. Südhof TC. Neuron 80 675-690 (2013)
  3. The presynaptic active zone. Südhof TC. Neuron 75 11-25 (2012)
  4. The membrane fusion enigma: SNAREs, Sec1/Munc18 proteins, and their accomplices--guilty as charged? Rizo J, Südhof TC. Annu Rev Cell Dev Biol 28 279-308 (2012)
  5. Synaptic vesicle exocytosis. Südhof TC, Rizo J. Cold Spring Harb Perspect Biol 3 a005637 (2011)
  6. Short-term presynaptic plasticity. Regehr WG. Cold Spring Harb Perspect Biol 4 a005702 (2012)
  7. Short-term forms of presynaptic plasticity. Fioravante D, Regehr WG. Curr Opin Neurobiol 21 269-274 (2011)
  8. Transcellular Nanoalignment of Synaptic Function. Biederer T, Kaeser PS, Blanpied TA. Neuron 96 680-696 (2017)
  9. Synaptic vesicle pools and dynamics. Alabi AA, Tsien RW. Cold Spring Harb Perspect Biol 4 a013680 (2012)
  10. Platelet secretory behaviour: as diverse as the granules … or not? Heijnen H, van der Sluijs P. J Thromb Haemost 13 2141-2151 (2015)
  11. Mechanism of neurotransmitter release coming into focus. Rizo J. Protein Sci 27 1364-1391 (2018)
  12. Molecular Mechanisms of Fast Neurotransmitter Release. Brunger AT, Choi UB, Lai Y, Leitz J, Zhou Q. Annu Rev Biophys 47 469-497 (2018)
  13. Otoferlin: a multi-C2 domain protein essential for hearing. Pangršič T, Reisinger E, Moser T. Trends Neurosci 35 671-680 (2012)
  14. The molecular machinery of neurotransmitter release (Nobel lecture). Südhof TC. Angew Chem Int Ed Engl 53 12696-12717 (2014)
  15. PI(4,5)P₂-binding effector proteins for vesicle exocytosis. Martin TF. Biochim Biophys Acta 1851 785-793 (2015)
  16. Presynaptic active zones in invertebrates and vertebrates. Ackermann F, Waites CL, Garner CC. EMBO Rep 16 923-938 (2015)
  17. Presynaptic long-term plasticity. Yang Y, Calakos N. Front Synaptic Neurosci 5 8 (2013)
  18. CAPS and Munc13: CATCHRs that SNARE Vesicles. James DJ, Martin TF. Front Endocrinol (Lausanne) 4 187 (2013)
  19. C2-domain containing calcium sensors in neuroendocrine secretion. Pinheiro PS, Houy S, Sørensen JB. J Neurochem 139 943-958 (2016)
  20. Role of PI(4,5)P(2) in vesicle exocytosis and membrane fusion. Martin TF. Subcell Biochem 59 111-130 (2012)
  21. The pre-synaptic fusion machinery. Brunger AT, Choi UB, Lai Y, Leitz J, White KI, Zhou Q. Curr Opin Struct Biol 54 179-188 (2019)
  22. Chaperoning SNARE Folding and Assembly. Zhang Y, Hughson FM. Annu Rev Biochem 90 581-603 (2021)
  23. Molecular Mechanisms Underlying Neurotransmitter Release. Rizo J. Annu Rev Biophys 51 377-408 (2022)
  24. Role of phosphoinositides at the neuronal synapse. Frere SG, Chang-Ileto B, Di Paolo G. Subcell Biochem 59 131-175 (2012)
  25. Assembly of the presynaptic active zone. Emperador-Melero J, Kaeser PS. Curr Opin Neurobiol 63 95-103 (2020)
  26. Unc13: a multifunctional synaptic marvel. Dittman JS. Curr Opin Neurobiol 57 17-25 (2019)
  27. Translating neuronal activity at the synapse: presynaptic calcium sensors in short-term plasticity. de Jong AP, Fioravante D. Front Cell Neurosci 8 356 (2014)
  28. Coupling the Structural and Functional Assembly of Synaptic Release Sites. Ghelani T, Sigrist SJ. Front Neuroanat 12 81 (2018)
  29. Enlightening molecular mechanisms through study of protein interactions. Rizo J, Rosen MK, Gardner KH. J Mol Cell Biol 4 270-283 (2012)
  30. Late steps in secretory lysosome exocytosis in cytotoxic lymphocytes. van der Sluijs P, Zibouche M, van Kerkhof P. Front Immunol 4 359 (2013)
  31. The role of phosphoinositides in synapse function. Ueda Y. Mol Neurobiol 50 821-838 (2014)
  32. Biophysical properties of presynaptic short-term plasticity in hippocampal neurons: insights from electrophysiology, imaging and mechanistic models. Dutta Roy R, Stefan MI, Rosenmund C. Front Cell Neurosci 8 141 (2014)
  33. Phosphatidylinositol 4,5-bisphosphate in the Control of Membrane Trafficking. Li S, Ghosh C, Xing Y, Sun Y. Int J Biol Sci 16 2761-2774 (2020)
  34. Regulation of synaptic release-site Ca2+ channel coupling as a mechanism to control release probability and short-term plasticity. Böhme MA, Grasskamp AT, Walter AM. FEBS Lett 592 3516-3531 (2018)
  35. Unraveling the mechanisms of calcium-dependent secretion. Anantharam A, Kreutzberger AJB. J Gen Physiol 151 417-434 (2019)
  36. GPCR regulation of secretion. Yim YY, Zurawski Z, Hamm H. Pharmacol Ther 192 124-140 (2018)
  37. Function of Drosophila Synaptotagmins in membrane trafficking at synapses. Quiñones-Frías MC, Littleton JT. Cell Mol Life Sci 78 4335-4364 (2021)
  38. Macromolecular complexes at active zones: integrated nano-machineries for neurotransmitter release. Chua JJ. Cell Mol Life Sci 71 3903-3916 (2014)
  39. Visualization of expanding fusion pores in secretory cells. Abbineni PS, Axelrod D, Holz RW. J Gen Physiol 150 1640-1646 (2018)
  40. (M)Unc13s in Active Zone Diversity: A Drosophila Perspective. Piao C, Sigrist SJ. Front Synaptic Neurosci 13 798204 (2021)
  41. Energetics, kinetics, and pathways of SNARE assembly in membrane fusion. Zhang Y, Ma L, Bao H. Crit Rev Biochem Mol Biol 57 443-460 (2022)
  42. Neuronal SNARE complex assembly guided by Munc18-1 and Munc13-1. Wang S, Ma C. FEBS Open Bio 12 1939-1957 (2022)
  43. Presynaptic Calmodulin targets: lessons from structural proteomics. Lipstein N, Göth M, Piotrowski C, Pagel K, Sinz A, Jahn O. Expert Rev Proteomics 14 223-242 (2017)
  44. Stable and Flexible Synaptic Transmission Controlled by the Active Zone Protein Interactions. Mochida S. Int J Mol Sci 22 11775 (2021)
  45. Synaptic Secretion and Beyond: Targeting Synapse and Neurotransmitters to Treat Neurodegenerative Diseases. Wei Z, Wei M, Yang X, Xu Y, Gao S, Ren K. Oxid Med Cell Longev 2022 9176923 (2022)
  46. On the difficulties of characterizing weak protein interactions that are critical for neurotransmitter release. Rizo J, David G, Fealey ME, Jaczynska K. FEBS Open Bio 12 1912-1938 (2022)
  47. Transient docking of synaptic vesicles: Implications and mechanisms. Kusick GF, Ogunmowo TH, Watanabe S. Curr Opin Neurobiol 74 102535 (2022)
  48. An Emerging Role for Phosphoinositides in the Pathophysiology of Parkinson's Disease. Schechter M, Sharon R. J Parkinsons Dis 11 1725-1750 (2021)
  49. Functional Roles of UNC-13/Munc13 and UNC-18/Munc18 in Neurotransmission. Meunier FA, Hu Z. Adv Neurobiol 33 203-231 (2023)
  50. The Polarized Redistribution of the Contractile Vacuole to the Rear of the Cell is Critical for Streaming and is Regulated by PI(4,5)P2-Mediated Exocytosis. Fadil SA, Janetopoulos C. Front Cell Dev Biol 9 765316 (2021)

Articles citing this publication (102)

  1. Reconstitution of the vital functions of Munc18 and Munc13 in neurotransmitter release. Ma C, Su L, Seven AB, Xu Y, Rizo J. Science 339 421-425 (2013)
  2. The structural basis for membrane binding and pore formation by lymphocyte perforin. Law RH, Lukoyanova N, Voskoboinik I, Caradoc-Davies TT, Baran K, Dunstone MA, D'Angelo ME, Orlova EV, Coulibaly F, Verschoor S, Browne KA, Ciccone A, Kuiper MJ, Bird PI, Trapani JA, Saibil HR, Whisstock JC. Nature 468 447-451 (2010)
  3. Molecular Mechanisms of Synaptic Vesicle Priming by Munc13 and Munc18. Lai Y, Choi UB, Leitz J, Rhee HJ, Lee C, Altas B, Zhao M, Pfuetzner RA, Wang AL, Brose N, Rhee J, Brunger AT. Neuron 95 591-607.e10 (2017)
  4. In vitro system capable of differentiating fast Ca2+-triggered content mixing from lipid exchange for mechanistic studies of neurotransmitter release. Kyoung M, Srivastava A, Zhang Y, Diao J, Vrljic M, Grob P, Nogales E, Chu S, Brunger AT. Proc Natl Acad Sci U S A 108 E304-13 (2011)
  5. Dynamic control of synaptic vesicle replenishment and short-term plasticity by Ca(2+)-calmodulin-Munc13-1 signaling. Lipstein N, Sakaba T, Cooper BH, Lin KH, Strenzke N, Ashery U, Rhee JS, Taschenberger H, Neher E, Brose N. Neuron 79 82-96 (2013)
  6. Active zone scaffolds differentially accumulate Unc13 isoforms to tune Ca(2+) channel-vesicle coupling. Böhme MA, Beis C, Reddy-Alla S, Reynolds E, Mampell MM, Grasskamp AT, Lützkendorf J, Bergeron DD, Driller JH, Babikir H, Göttfert F, Robinson IM, O'Kane CJ, Hell SW, Wahl MC, Stelzl U, Loll B, Walter AM, Sigrist SJ. Nat Neurosci 19 1311-1320 (2016)
  7. The munc13-4-rab27 complex is specifically required for tethering secretory lysosomes at the plasma membrane. Elstak ED, Neeft M, Nehme NT, Voortman J, Cheung M, Goodarzifard M, Gerritsen HC, van Bergen En Henegouwen PM, Callebaut I, de Saint Basile G, van der Sluijs P. Blood 118 1570-1578 (2011)
  8. Mechanistic insights into neurotransmitter release and presynaptic plasticity from the crystal structure of Munc13-1 C1C2BMUN. Xu J, Camacho M, Xu Y, Esser V, Liu X, Trimbuch T, Pan YZ, Ma C, Tomchick DR, Rosenmund C, Rizo J. Elife 6 e22567 (2017)
  9. The crystal structure of a Munc13 C-terminal module exhibits a remarkable similarity to vesicle tethering factors. Li W, Ma C, Guan R, Xu Y, Tomchick DR, Rizo J. Structure 19 1443-1455 (2011)
  10. Functional synergy between the Munc13 C-terminal C1 and C2 domains. Liu X, Seven AB, Camacho M, Esser V, Xu J, Trimbuch T, Quade B, Su L, Ma C, Rosenmund C, Rizo J. Elife 5 e13696 (2016)
  11. Munc13-4 reconstitutes calcium-dependent SNARE-mediated membrane fusion. Boswell KL, James DJ, Esquibel JM, Bruinsma S, Shirakawa R, Horiuchi H, Martin TF. J Cell Biol 197 301-312 (2012)
  12. Synaptotagmin-7-Mediated Asynchronous Release Boosts High-Fidelity Synchronous Transmission at a Central Synapse. Luo F, Südhof TC. Neuron 94 826-839.e3 (2017)
  13. Superpriming of synaptic vesicles after their recruitment to the readily releasable pool. Lee JS, Ho WK, Neher E, Lee SH. Proc Natl Acad Sci U S A 110 15079-15084 (2013)
  14. Membrane bridging by Munc13-1 is crucial for neurotransmitter release. Quade B, Camacho M, Zhao X, Orlando M, Trimbuch T, Xu J, Li W, Nicastro D, Rosenmund C, Rizo J. Elife 8 e42806 (2019)
  15. Autoinhibition of Munc18-1 modulates synaptobrevin binding and helps to enable Munc13-dependent regulation of membrane fusion. Sitarska E, Xu J, Park S, Liu X, Quade B, Stepien K, Sugita K, Brautigam CA, Sugita S, Rizo J. Elife 6 e24278 (2017)
  16. Heterodimerization of Munc13 C2A domain with RIM regulates synaptic vesicle docking and priming. Camacho M, Basu J, Trimbuch T, Chang S, Pulido-Lozano C, Chang SS, Duluvova I, Abo-Rady M, Rizo J, Rosenmund C. Nat Commun 8 15293 (2017)
  17. Synaptic UNC13A protein variant causes increased neurotransmission and dyskinetic movement disorder. Lipstein N, Verhoeven-Duif NM, Michelassi FE, Calloway N, van Hasselt PM, Pienkowska K, van Haaften G, van Haelst MM, van Empelen R, Cuppen I, van Teeseling HC, Evelein AM, Vorstman JA, Thoms S, Jahn O, Duran KJ, Monroe GR, Ryan TA, Taschenberger H, Dittman JS, Rhee JS, Visser G, Jans JJ, Brose N. J Clin Invest 127 1005-1018 (2017)
  18. CAPS and Munc13 utilize distinct PIP2-linked mechanisms to promote vesicle exocytosis. Kabachinski G, Yamaga M, Kielar-Grevstad DM, Bruinsma S, Martin TF. Mol Biol Cell 25 508-521 (2014)
  19. Munc13-independent vesicle priming at mouse photoreceptor ribbon synapses. Cooper B, Hemmerlein M, Ammermüller J, Imig C, Reim K, Lipstein N, Kalla S, Kawabe H, Brose N, Brandstätter JH, Varoqueaux F. J Neurosci 32 8040-8052 (2012)
  20. A C1-C2 Module in Munc13 Inhibits Calcium-Dependent Neurotransmitter Release. Michelassi F, Liu H, Hu Z, Dittman JS. Neuron 95 577-590.e5 (2017)
  21. Calcium-dependent isoforms of protein kinase C mediate posttetanic potentiation at the calyx of Held. Fioravante D, Chu Y, Myoga MH, Leitges M, Regehr WG. Neuron 70 1005-1019 (2011)
  22. Synaptotagmin-7 Is Essential for Ca2+-Triggered Delayed Asynchronous Release But Not for Ca2+-Dependent Vesicle Priming in Retinal Ribbon Synapses. Luo F, Bacaj T, Südhof TC. J Neurosci 35 11024-11033 (2015)
  23. Nonconserved Ca(2+)/calmodulin binding sites in Munc13s differentially control synaptic short-term plasticity. Lipstein N, Schaks S, Dimova K, Kalkhof S, Ihling C, Kölbel K, Ashery U, Rhee J, Brose N, Sinz A, Jahn O. Mol Cell Biol 32 4628-4641 (2012)
  24. Multiple factors maintain assembled trans-SNARE complexes in the presence of NSF and αSNAP. Prinslow EA, Stepien KP, Pan YZ, Xu J, Rizo J. Elife 8 e38880 (2019)
  25. ELKS1 localizes the synaptic vesicle priming protein bMunc13-2 to a specific subset of active zones. Kawabe H, Mitkovski M, Kaeser PS, Hirrlinger J, Opazo F, Nestvogel D, Kalla S, Fejtova A, Verrier SE, Bungers SR, Cooper BH, Varoqueaux F, Wang Y, Nehring RB, Gundelfinger ED, Rosenmund C, Rizzoli SO, Südhof TC, Rhee JS, Brose N. J Cell Biol 216 1143-1161 (2017)
  26. Additive effects on the energy barrier for synaptic vesicle fusion cause supralinear effects on the vesicle fusion rate. Schotten S, Meijer M, Walter AM, Huson V, Mamer L, Kalogreades L, ter Veer M, Ruiter M, Brose N, Rosenmund C, Sørensen JB, Verhage M, Cornelisse LN. Elife 4 e05531 (2015)
  27. Morphologies of synaptic protein membrane fusion interfaces. Gipson P, Fukuda Y, Danev R, Lai Y, Chen DH, Baumeister W, Brunger AT. Proc Natl Acad Sci U S A 114 9110-9115 (2017)
  28. Munc13-1 MUN domain and Munc18-1 cooperatively chaperone SNARE assembly through a tetrameric complex. Shu T, Jin H, Rothman JE, Zhang Y. Proc Natl Acad Sci U S A 117 1036-1041 (2020)
  29. Munc13-1 is required for presynaptic long-term potentiation. Yang Y, Calakos N. J Neurosci 31 12053-12057 (2011)
  30. RIM C2B Domains Target Presynaptic Active Zone Functions to PIP2-Containing Membranes. de Jong APH, Roggero CM, Ho MR, Wong MY, Brautigam CA, Rizo J, Kaeser PS. Neuron 98 335-349.e7 (2018)
  31. Frequency-dependent mobilization of heterogeneous pools of synaptic vesicles shapes presynaptic plasticity. Doussau F, Schmidt H, Dorgans K, Valera AM, Poulain B, Isope P. Elife 6 e28935 (2017)
  32. Structural analysis uncovers lipid-binding properties of Notch ligands. Chillakuri CR, Sheppard D, Ilagan MX, Holt LR, Abbott F, Liang S, Kopan R, Handford PA, Lea SM. Cell Rep 5 861-867 (2013)
  33. Structure and Ca²⁺-binding properties of the tandem C₂ domains of E-Syt2. Xu J, Bacaj T, Zhou A, Tomchick DR, Südhof TC, Rizo J. Structure 22 269-280 (2014)
  34. The crystal structure of the C₂A domain of otoferlin reveals an unconventional top loop region. Helfmann S, Neumann P, Tittmann K, Moser T, Ficner R, Reisinger E. J Mol Biol 406 479-490 (2011)
  35. Phosphatidylinositol 4,5-bisphosphate optical uncaging potentiates exocytosis. Walter AM, Müller R, Tawfik B, Wierda KD, Pinheiro PS, Nadler A, McCarthy AW, Ziomkiewicz I, Kruse M, Reither G, Rettig J, Lehmann M, Haucke V, Hille B, Schultz C, Sørensen JB. Elife 6 e30203 (2017)
  36. Munc13 proteins control regulated exocytosis in mast cells. Rodarte EM, Ramos MA, Davalos AJ, Moreira DC, Moreno DS, Cardenas EI, Rodarte AI, Petrova Y, Molina S, Rendon LE, Sanchez E, Breaux K, Tortoriello A, Manllo J, Gonzalez EA, Tuvim MJ, Dickey BF, Burns AR, Heidelberger R, Adachi R. J Biol Chem 293 345-358 (2018)
  37. A sequential vesicle pool model with a single release sensor and a Ca(2+)-dependent priming catalyst effectively explains Ca(2+)-dependent properties of neurosecretion. Walter AM, Pinheiro PS, Verhage M, Sørensen JB. PLoS Comput Biol 9 e1003362 (2013)
  38. Disentangling the Roles of RIM and Munc13 in Synaptic Vesicle Localization and Neurotransmission. Zarebidaki F, Camacho M, Brockmann MM, Trimbuch T, Herman MA, Rosenmund C. J Neurosci 40 9372-9385 (2020)
  39. Munc13-4 functions as a Ca2+ sensor for homotypic secretory granule fusion to generate endosomal exocytic vacuoles. Woo SS, James DJ, Martin TF. Mol Biol Cell 28 792-808 (2017)
  40. Differential Expression of Munc13-2 Produces Unique Synaptic Phenotypes in the Basolateral Amygdala of C57BL/6J and DBA/2J Mice. Gioia DA, Alexander NJ, McCool BA. J Neurosci 36 10964-10977 (2016)
  41. A molecular mechanism for calcium-mediated synaptotagmin-triggered exocytosis. Kiessling V, Kreutzberger AJB, Liang B, Nyenhuis SB, Seelheim P, Castle JD, Cafiso DS, Tamm LK. Nat Struct Mol Biol 25 911-917 (2018)
  42. An active vesicle priming machinery suppresses axon regeneration upon adult CNS injury. Hilton BJ, Husch A, Schaffran B, Lin TC, Burnside ER, Dupraz S, Schelski M, Kim J, Müller JA, Schoch S, Imig C, Brose N, Bradke F. Neuron 110 51-69.e7 (2022)
  43. Munc13 structural transitions and oligomers that may choreograph successive stages in vesicle priming for neurotransmitter release. Grushin K, Kalyana Sundaram RV, Sindelar CV, Rothman JE. Proc Natl Acad Sci U S A 119 e2121259119 (2022)
  44. Munc13 binds and recruits SNAP25 to chaperone SNARE complex assembly. Kalyana Sundaram RV, Jin H, Li F, Shu T, Coleman J, Yang J, Pincet F, Zhang Y, Rothman JE, Krishnakumar SS. FEBS Lett 595 297-309 (2021)
  45. Munc13-1 is a Ca2+-phospholipid-dependent vesicle priming hub that shapes synaptic short-term plasticity and enables sustained neurotransmission. Lipstein N, Chang S, Lin KH, López-Murcia FJ, Neher E, Taschenberger H, Brose N. Neuron 109 3980-4000.e7 (2021)
  46. Structural Basis for Ca2+-mediated Interaction of the Perforin C2 Domain with Lipid Membranes. Yagi H, Conroy PJ, Leung EW, Law RH, Trapani JA, Voskoboinik I, Whisstock JC, Norton RS. J Biol Chem 290 25213-25226 (2015)
  47. UNC13B variants associated with partial epilepsy with favourable outcome. Wang J, Qiao JD, Liu XR, Liu DT, Chen YH, Wu Y, Sun Y, Yu J, Ren RN, Mei Z, Liu YX, Shi YW, Jiang M, Lin SM, He N, Li B, Bian WJ, Li BM, Yi YH, Su T, Liu HK, Gu WY, Liao WP. Brain 144 3050-3060 (2021)
  48. Apparent calcium dependence of vesicle recruitment. Ritzau-Jost A, Jablonski L, Viotti J, Lipstein N, Eilers J, Hallermann S. J Physiol 596 4693-4707 (2018)
  49. Doc2-mediated superpriming supports synaptic augmentation. Xue R, Ruhl DA, Briguglio JS, Figueroa AG, Pearce RA, Chapman ER. Proc Natl Acad Sci U S A 115 E5605-E5613 (2018)
  50. Incomplete vesicular docking limits synaptic strength under high release probability conditions. Malagon G, Miki T, Tran V, Gomez LC, Marty A. Elife 9 e52137 (2020)
  51. Sequential actions of phosphatidylinositol phosphates regulate phagosome-lysosome fusion. Jeschke A, Haas A. Mol Biol Cell 29 452-465 (2018)
  52. Synaptotagmin-1-, Munc18-1-, and Munc13-1-dependent liposome fusion with a few neuronal SNAREs. Stepien KP, Rizo J. Proc Natl Acad Sci U S A 118 e2019314118 (2021)
  53. Defining the interaction of perforin with calcium and the phospholipid membrane. Traore DA, Brennan AJ, Law RH, Dogovski C, Perugini MA, Lukoyanova N, Leung EW, Norton RS, Lopez JA, Browne KA, Yagita H, Lloyd GJ, Ciccone A, Verschoor S, Trapani JA, Whisstock JC, Voskoboinik I. Biochem J 456 323-335 (2013)
  54. Ethanol Regulates Presynaptic Activity and Sedation through Presynaptic Unc13 Proteins in Drosophila. Xu S, Pany S, Benny K, Tarique K, Al-Hatem O, Gajewski K, Leasure JL, Das J, Roman G. eNeuro 5 ENEURO.0125-18.2018 (2018)
  55. Protein kinase C is a calcium sensor for presynaptic short-term plasticity. Fioravante D, Chu Y, de Jong AP, Leitges M, Kaeser PS, Regehr WG. Elife 3 e03011 (2014)
  56. NLP-12 engages different UNC-13 proteins to potentiate tonic and evoked release. Hu Z, Vashlishan-Murray AB, Kaplan JM. J Neurosci 35 1038-1042 (2015)
  57. Simultaneous lipid and content mixing assays for in vitro reconstitution studies of synaptic vesicle fusion. Liu X, Seven AB, Xu J, Esser V, Su L, Ma C, Rizo J. Nat Protoc 12 2014-2028 (2017)
  58. C2 Domains of Munc13-4 Are Crucial for Ca2+-Dependent Degranulation and Cytotoxicity in NK Cells. Bin NR, Ma K, Tien CW, Wang S, Zhu D, Park S, Turlova E, Sugita K, Shirakawa R, van der Sluijs P, Horiuchi H, Sun HS, Monnier PP, Gaisano HY, Sugita S. J Immunol 201 700-713 (2018)
  59. Control of neurotransmitter release by two distinct membrane-binding faces of the Munc13-1 C1C2B region. Camacho M, Quade B, Trimbuch T, Xu J, Sari L, Rizo J, Rosenmund C. Elife 10 e72030 (2021)
  60. Munc13-1 Translocates to the Plasma Membrane in a Doc2B- and Calcium-Dependent Manner. Friedrich R, Gottfried I, Ashery U. Front Endocrinol (Lausanne) 4 119 (2013)
  61. Vesicle Docking Is a Key Target of Local PI(4,5)P2 Metabolism in the Secretory Pathway of INS-1 Cells. Ji C, Fan F, Lou X. Cell Rep 20 1409-1421 (2017)
  62. Ethanol Mediated Inhibition of Synaptic Vesicle Recycling at Amygdala Glutamate Synapses Is Dependent upon Munc13-2. Gioia DA, Alexander N, McCool BA. Front Neurosci 11 424 (2017)
  63. Roles of the fission yeast UNC-13/Munc13 protein Ync13 in late stages of cytokinesis. Zhu YH, Hyun J, Pan YZ, Hopper JE, Rizo J, Wu JQ. Mol Biol Cell 29 2259-2279 (2018)
  64. A Hyperactive Form of unc-13 Enhances Ca2+ Sensitivity and Synaptic Vesicle Release Probability in C. elegans. Li L, Liu H, Hall Q, Wang W, Yu Y, Kaplan JM, Hu Z. Cell Rep 28 2979-2995.e4 (2019)
  65. Calcium dependence of neurotransmitter release at a high fidelity synapse. Eshra A, Schmidt H, Eilers J, Hallermann S. Elife 10 e70408 (2021)
  66. Cross-talk between metabotropic glutamate receptor 7 and beta adrenergic receptor signaling at cerebrocortical nerve terminals. Ferrero JJ, Ramírez-Franco J, Martín R, Bartolomé-Martín D, Torres M, Sánchez-Prieto J. Neuropharmacology 101 412-425 (2016)
  67. When a module is not a domain: the case of the REJ module and the redefinition of the architecture of polycystin-1. Schröder S, Fraternali F, Quan X, Scott D, Qian F, Pfuhl M. Biochem J 435 651-660 (2011)
  68. Adaptive regulation maintains posttetanic potentiation at cerebellar granule cell synapses in the absence of calcium-dependent PKC. Fioravante D, Myoga MH, Leitges M, Regehr WG. J Neurosci 32 13004-13009 (2012)
  69. Non-additive potentiation of glutamate release by phorbol esters and metabotropic mGlu7 receptor in cerebrocortical nerve terminals. Martín R, Bartolomé-Martín D, Torres M, Sánchez-Prieto J. J Neurochem 116 476-485 (2011)
  70. Autaptic cultures of human induced neurons as a versatile platform for studying synaptic function and neuronal morphology. Fenske P, Grauel MK, Brockmann MM, Dorrn AL, Trimbuch T, Rosenmund C. Sci Rep 9 4890 (2019)
  71. Critical Role of Trp-588 of Presynaptic Munc13-1 for Ligand Binding and Membrane Translocation. Das J, Kedei N, Kelsey JS, You Y, Pany S, Mitchell GA, Lewin NE, Blumberg PM. Biochemistry 57 732-741 (2018)
  72. Munc13-4*rab27 complex tethers secretory lysosomes at the plasma membrane. Elstak ED, Neeft M, Nehme NT, Callebaut I, de Saint Basile G, van der Sluijs P. Commun Integr Biol 5 64-67 (2012)
  73. DOC2B and Munc13-1 differentially regulate neuronal network activity. Lavi A, Sheinin A, Shapira R, Zelmanoff D, Ashery U. Cereb Cortex 24 2309-2323 (2014)
  74. RIM-Binding Protein 2 Organizes Ca2+ Channel Topography and Regulates Release Probability and Vesicle Replenishment at a Fast Central Synapse. Butola T, Alvanos T, Hintze A, Koppensteiner P, Kleindienst D, Shigemoto R, Wichmann C, Moser T. J Neurosci 41 7742-7767 (2021)
  75. Synaptic activity regulates the abundance and binding of complexin. Wragg RT, Gouzer G, Bai J, Arianna G, Ryan TA, Dittman JS. Biophys J 108 1318-1329 (2015)
  76. A platform for complementation and characterization of familial haemophagocytic lymphohistiocytosis 3 mutations. Elstak E, de Jong A, van der Sluijs P. J Immunol Methods 365 58-66 (2011)
  77. Cocaine Self-Administration and Abstinence Modulate NMDA Receptor Subunits and Active Zone Proteins in the Rat Nucleus Accumbens. Smaga I, Wydra K, Frankowska M, Fumagalli F, Sanak M, Filip M. Molecules 25 E3480 (2020)
  78. Potentiation of mGlu7 receptor-mediated glutamate release at nerve terminals containing N and P/Q type Ca2+ channels. Ferrero JJ, Bartolomé-Martín D, Torres M, Sánchez-Prieto J. Neuropharmacology 67 213-222 (2013)
  79. A unique C2 domain at the C terminus of Munc13 promotes synaptic vesicle priming. Padmanarayana M, Liu H, Michelassi F, Li L, Betensky D, Dominguez MJ, Sutton RB, Hu Z, Dittman JS. Proc Natl Acad Sci U S A 118 e2016276118 (2021)
  80. Effect of ethanol on Munc13-1 C1 in Membrane: A Molecular Dynamics Simulation Study. You Y, Das J. Alcohol Clin Exp Res 44 1344-1355 (2020)
  81. Endogenous tagging of Unc-13 reveals nanoscale reorganization at active zones during presynaptic homeostatic potentiation. Dannhäuser S, Mrestani A, Gundelach F, Pauli M, Komma F, Kollmannsberger P, Sauer M, Heckmann M, Paul MM. Front Cell Neurosci 16 1074304 (2022)
  82. Phospholipase Cη2 Activation Redirects Vesicle Trafficking by Regulating F-actin. Yamaga M, Kielar-Grevstad DM, Martin TF. J Biol Chem 290 29010-29021 (2015)
  83. Preferential localization of type I phosphatidylinositol 4-phosphate 5-kinase γ at the periactive zone of mouse photoreceptor ribbon synapses. Sakagami H, Katsumata O, Hara Y, Tamaki H, Fukaya M. Brain Res 1586 23-33 (2014)
  84. The M domain in UNC-13 regulates the probability of neurotransmitter release. Liu H, Li L, Sheoran S, Yu Y, Richmond JE, Xia J, Tang J, Liu J, Hu Z. Cell Rep 34 108828 (2021)
  85. Probing the Diacylglycerol Binding Site of Presynaptic Munc13-1. You Y, Katti S, Yu B, Igumenova TI, Das J. Biochemistry 60 1286-1298 (2021)
  86. Search for a minimal machinery for Ca2+-triggered millisecond neuroexocytosis. Kweon DH, Kong B, Shin YK. Neuroscience 420 4-11 (2019)
  87. Allosteric stabilization of calcium and phosphoinositide dual binding engages several synaptotagmins in fast exocytosis. Kobbersmed JRL, Berns MMM, Ditlevsen S, Sørensen JB, Walter AM. Elife 11 e74810 (2022)
  88. Different priming states of synaptic vesicles underlie distinct release probabilities at hippocampal excitatory synapses. Aldahabi M, Balint F, Holderith N, Lorincz A, Reva M, Nusser Z. Neuron 110 4144-4161.e7 (2022)
  89. Fast resupply of synaptic vesicles requires synaptotagmin-3. Weingarten DJ, Shrestha A, Juda-Nelson K, Kissiwaa SA, Spruston E, Jackman SL. Nature 611 320-325 (2022)
  90. Inhibitory potential of flavonoids on PtdIns(3,4,5)P3 binding with the phosphoinositide-dependent kinase 1 pleckstrin homology domain. Kang Y, Kim BG, Kim S, Lee Y, Yoon Y. Bioorg Med Chem Lett 27 420-426 (2017)
  91. L-type Ca2+ channels mediate regulation of glutamate release by subthreshold potential changes. Lee BJ, Lee U, Ryu SH, Han S, Lee SY, Lee JS, Ju A, Chang S, Lee SH, Kim SH, Ho WK. Proc Natl Acad Sci U S A 120 e2220649120 (2023)
  92. Molecular dynamics simulation studies on binding of activator and inhibitor to Munc13-1 C1 in the presence of membrane. You Y, Das J. J Biomol Struct Dyn 40 14160-14175 (2022)
  93. Post-tetanic potentiation lowers the energy barrier for synaptic vesicle fusion independently of Synaptotagmin-1. Huson V, Meijer M, Dekker R, Ter Veer M, Ruiter M, van Weering JR, Verhage M, Cornelisse LN. Elife 9 e55713 (2020)
  94. Ca2+ and Annexins - Emerging Players for Sensing and Transferring Cholesterol and Phosphoinositides via Membrane Contact Sites. Enrich C, Lu A, Tebar F, Rentero C, Grewal T. Adv Exp Med Biol 1422 393-438 (2023)
  95. Differential Expression of Presynaptic Munc13-1 and Munc13-2 in Mouse Hippocampus Following Ethanol Drinking. Ghosh A, Muthuraju S, Badal S, Wooden J, Leasure JL, Roman G, Das J. Neuroscience 487 166-183 (2022)
  96. Influence of T-Bar on Calcium Concentration Impacting Release Probability. Knodel MM, Dutta Roy R, Wittum G. Front Comput Neurosci 16 855746 (2022)
  97. Interpretation of presynaptic phenotypes of synaptic plasticity in terms of a two-step priming process. Neher E. J Gen Physiol 156 e202313454 (2024)
  98. Munc13- and SNAP25-dependent molecular bridges play a key role in synaptic vesicle priming. Papantoniou C, Laugks U, Betzin J, Capitanio C, Ferrero JJ, Sánchez-Prieto J, Schoch S, Brose N, Baumeister W, Cooper BH, Imig C, Lučić V. Sci Adv 9 eadf6222 (2023)
  99. Novel types of frequency filtering in the lateral perforant path projections to dentate gyrus. Quintanilla J, Jia Y, Lauterborn JC, Pruess BS, Le AA, Cox CD, Gall CM, Lynch G, Gunn BG. J Physiol 600 3865-3896 (2022)
  100. Roles for diacylglycerol in synaptic vesicle priming and release revealed by complete reconstitution of core protein machinery. Kalyana Sundaram RV, Chatterjee A, Bera M, Grushin K, Panda A, Li F, Coleman J, Lee S, Ramakrishnan S, Ernst AM, Gupta K, Rothman JE, Krishnakumar SS. Proc Natl Acad Sci U S A 120 e2309516120 (2023)
  101. Studying synaptic efficiency by post-hoc immunolabelling. Ramírez-Franco J, Alonso B, Bartolomé-Martín D, Sánchez-Prieto J, Torres M. BMC Neurosci 14 127 (2013)
  102. The activation of mGluR4 rescues parallel fiber synaptic transmission and LTP, motor learning and social behavior in a mouse model of Fragile X Syndrome. Martín R, Suárez-Pinilla AS, García-Font N, Laguna-Luque ML, López-Ramos JC, Oset-Gasque MJ, Gruart A, Delgado-García JM, Torres M, Sánchez-Prieto J. Mol Autism 14 14 (2023)


Related citations provided by authors (3)

  1. Calmodulin and Munc13 form a Ca2+ sensor/effector complex that controls short-term synaptic plasticity.. Junge HJ, Rhee JS, Jahn O, Varoqueaux F, Spiess J, Waxham MN, Rosenmund C, Brose N Cell 118 389-401 (2004)
  2. Munc13-1 is essential for fusion competence of glutamatergic synaptic vesicles.. Augustin I, Rosenmund C, Südhof TC, Brose N Nature 400 457-61 (1999)
  3. Mammalian homologues of Caenorhabditis elegans unc-13 gene define novel family of C2-domain proteins.. Brose N, Hofmann K, Hata Y, Südhof TC J Biol Chem 270 25273-80 (1995)