6n4k Citations

Site-Specific Oxidation State Assignments of the Iron Atoms in the [4Fe:4S]2+/1+/0 States of the Nitrogenase Fe-Protein.

Angew Chem Int Ed Engl 58 3894-3897 (2019)
Related entries: 6n4j, 6n4l, 6n4m

Cited: 16 times
EuropePMC logo PMID: 30698901

Abstract

The nitrogenase iron protein (Fe-protein) contains an unusual [4Fe:4S] iron-sulphur cluster that is stable in three oxidation states: 2+, 1+, and 0. Here, we use spatially resolved anomalous dispersion (SpReAD) refinement to determine oxidation assignments for the individual irons for each state. Additionally, we report the 1.13-Å resolution structure for the ADP bound Fe-protein, the highest resolution Fe-protein structure presently determined. In the dithionite-reduced [4Fe:4S]1+ state, our analysis identifies a solvent exposed, delocalized Fe2.5+ pair and a buried Fe2+ pair. We propose that ATP binding by the Fe-protein promotes an internal redox rearrangement such that the solvent-exposed Fe pair becomes reduced, thereby facilitating electron transfer to the nitrogenase molybdenum iron-protein. In the [4Fe:4S]0 and [4Fe:4S]2+ states, the SpReAD analysis supports oxidation states assignments for all irons in these clusters of Fe2+ and valence delocalized Fe2.5+ , respectively.

Reviews - 6n4k mentioned but not cited (1)

  1. Electron Transfer in Nitrogenase. Rutledge HL, Tezcan FA. Chem Rev 120 5158-5193 (2020)

Articles - 6n4k mentioned but not cited (1)

  1. Preparation and spectroscopic characterization of lyophilized Mo nitrogenase. Van Stappen C, Decamps L, DeBeer S. J Biol Inorg Chem 26 81-91 (2021)


Reviews citing this publication (5)

  1. Structural Enzymology of Nitrogenase Enzymes. Einsle O, Rees DC. Chem Rev 120 4969-5004 (2020)
  2. The Spectroscopy of Nitrogenases. Van Stappen C, Decamps L, Cutsail GE, Bjornsson R, Henthorn JT, Birrell JA, DeBeer S. Chem Rev 120 5005-5081 (2020)
  3. Enzymatic Fischer-Tropsch-Type Reactions. Hu Y, Lee CC, Grosch M, Solomon JB, Weigand W, Ribbe MW. Chem Rev 123 5755-5797 (2023)
  4. Nitrogenase Fe Protein: A Multi-Tasking Player in Substrate Reduction and Metallocluster Assembly. Ribbe MW, Górecki K, Grosch M, Solomon JB, Quechol R, Liu YA, Lee CC, Hu Y. Molecules 27 6743 (2022)
  5. Nitrogenase beyond the Resting State: A Structural Perspective. Warmack RA, Rees DC. Molecules 28 7952 (2023)

Articles citing this publication (9)

  1. Resolving the structure of the E1 state of Mo nitrogenase through Mo and Fe K-edge EXAFS and QM/MM calculations. Van Stappen C, Thorhallsson AT, Decamps L, Bjornsson R, DeBeer S. Chem Sci 10 9807-9821 (2019)
  2. Selenocyanate derived Se-incorporation into the nitrogenase Fe protein cluster. Buscagan TM, Kaiser JT, Rees DC. Elife 11 e79311 (2022)
  3. UvrC Coordinates an O2-Sensitive [4Fe4S] Cofactor. Silva RMB, Grodick MA, Barton JK. J Am Chem Soc 142 10964-10977 (2020)
  4. Determining the oxidation state of elements by X-ray crystallography. Lennartz F, Jeoung JH, Ruenger S, Dobbek H, Weiss MS. Acta Crystallogr D Struct Biol 78 238-247 (2022)
  5. A complete biomimetic iron-sulfur cubane redox series. Grunwald L, Clémancey M, Klose D, Dubois L, Gambarelli S, Jeschke G, Wörle M, Blondin G, Mougel V. Proc Natl Acad Sci U S A 119 e2122677119 (2022)
  6. A conformational role for NifW in the maturation of molybdenum nitrogenase P-cluster. Van Stappen C, Jiménez-Vicente E, Pérez-González A, Yang ZY, Seefeldt LC, DeBeer S, Dean DR, Decamps L. Chem Sci 13 3489-3500 (2022)
  7. The flexible N-terminus of BchL autoinhibits activity through interaction with its [4Fe-4S] cluster and released upon ATP binding. Corless EI, Saad Imran SM, Watkins MB, Bacik JP, Mattice JR, Patterson A, Danyal K, Soffe M, Kitelinger R, Seefeldt LC, Origanti S, Bennett B, Bothner B, Ando N, Antony E. J Biol Chem 296 100107 (2021)
  8. Revealing redox isomerism in trichromium imides by anomalous diffraction. Bartholomew AK, Musgrave RA, Anderton KJ, Juda CE, Dong Y, Bu W, Wang SY, Chen YS, Betley TA. Chem Sci 12 15739-15749 (2021)
  9. Studies Using Mutant Strains of Azospirillum brasilense Reveal That Atmospheric Nitrogen Fixation and Auxin Production Are Light Dependent Processes. Housh AB, Noel R, Powell A, Waller S, Wilder SL, Sopko S, Benoit M, Powell G, Schueller MJ, Ferrieri RA. Microorganisms 11 1727 (2023)