6id1 Citations

Structures of the human spliceosomes before and after release of the ligated exon.

Cell Res 29 274-285 (2019)
Related entries: 6icz, 6id0

Cited: 45 times
EuropePMC logo PMID: 30728453

Abstract

Pre-mRNA splicing is executed by the spliceosome, which has eight major functional states each with distinct composition. Five of these eight human spliceosomal complexes, all preceding exon ligation, have been structurally characterized. In this study, we report the cryo-electron microscopy structures of the human post-catalytic spliceosome (P complex) and intron lariat spliceosome (ILS) at average resolutions of 3.0 and 2.9 Å, respectively. In the P complex, the ligated exon remains anchored to loop I of U5 small nuclear RNA, and the 3'-splice site is recognized by the junction between the 5'-splice site and the branch point sequence. The ATPase/helicase Prp22, along with the ligated exon and eight other proteins, are dissociated in the P-to-ILS transition. Intriguingly, the ILS complex exists in two distinct conformations, one with the ATPase/helicase Prp43 and one without. Comparison of these three late-stage human spliceosomes reveals mechanistic insights into exon release and spliceosome disassembly.

Articles - 6id1 mentioned but not cited (3)

  1. Structures of the human spliceosomes before and after release of the ligated exon. Zhang X, Zhan X, Yan C, Zhang W, Liu D, Lei J, Shi Y. Cell Res. 29 274-285 (2019)
  2. A Snu114-GTP-Prp8 module forms a relay station for efficient splicing in yeast. Jia J, Ganichkin OM, Preußner M, Absmeier E, Alings C, Loll B, Heyd F, Wahl MC. Nucleic Acids Res. 48 4572-4584 (2020)
  3. research-article The debranching enzyme Dbr1 regulates lariat turnover and intron splicing. Buerer L, Clark N, Welch A, Duan C, Taggart A, Townley B, Wang J, Soemedi R, Rong S, Lin CL, Zeng Y, Katolik A, Staley J, Damha M, Mosammaparast N, Fairbrother W. Res Sq rs.3.rs-2931976 (2023)


Reviews citing this publication (13)

  1. DEAH-Box RNA Helicases in Pre-mRNA Splicing. De Bortoli F, Espinosa S, Zhao R. Trends Biochem Sci 46 225-238 (2021)
  2. Understanding the mechanistic basis of non-coding RNA through molecular dynamics simulations. Palermo G, Casalino L, Magistrato A, Andrew McCammon J. J. Struct. Biol. 206 267-279 (2019)
  3. Recent advances and current trends in cryo-electron microscopy. Guaita M, Watters SC, Loerch S. Curr Opin Struct Biol 77 102484 (2022)
  4. Mechanisms of germ cell survival and plasticity in Caenorhabditis elegans. Cao W, Pocock R. Biochem Soc Trans 50 1517-1526 (2022)
  5. Principles and correction of 5'-splice site selection. Malard F, Mackereth CD, Campagne S. RNA Biol 19 943-960 (2022)
  6. Zinc finger structure determination by NMR: Why zinc fingers can be a handful. Neuhaus D. Prog Nucl Magn Reson Spectrosc 130-131 62-105 (2022)
  7. Machines on Genes through the Computational Microscope. Sinha S, Pindi C, Ahsan M, Arantes PR, Palermo G. J Chem Theory Comput 19 1945-1964 (2023)
  8. Post-Transcriptional Modification by Alternative Splicing and Pathogenic Splicing Variants in Cardiovascular Development and Congenital Heart Defects. Mehta Z, Touma M. Int J Mol Sci 24 1555 (2023)
  9. Regulation of pre-mRNA splicing: roles in physiology and disease, and therapeutic prospects. Rogalska ME, Vivori C, Valcárcel J. Nat Rev Genet 24 251-269 (2023)
  10. SLU7: A New Hub of Gene Expression Regulation-From Epigenetics to Protein Stability in Health and Disease. Gárate-Rascón M, Recalde M, Rojo C, Fernández-Barrena MG, Ávila MA, Arechederra M, Berasain C. Int J Mol Sci 23 13411 (2022)
  11. Self-empowerment of life through RNA networks, cells and viruses. Villarreal L, Witzany G. F1000Res 12 138 (2023)
  12. Spliceosome assembly and regulation: insights from analysis of highly reduced spliceosomes. Black CS, Whelan TA, Garside EL, MacMillan AM, Fast NM, Rader SD. RNA 29 531-550 (2023)
  13. The PRP19 Ubiquitin Ligase, Standing at the Cross-Roads of mRNA Processing and Genome Stability. Idrissou M, Maréchal A. Cancers (Basel) 14 878 (2022)

Articles citing this publication (29)

  1. The 3.2-Å resolution structure of human mTORC2. Scaiola A, Mangia F, Imseng S, Boehringer D, Berneiser K, Shimobayashi M, Stuttfeld E, Hall MN, Ban N, Maier T. Sci Adv 6 eabc1251 (2020)
  2. Bottom-up structural proteomics: cryoEM of protein complexes enriched from the cellular milieu. Ho CM, Li X, Lai M, Terwilliger TC, Beck JR, Wohlschlegel J, Goldberg DE, Fitzpatrick AWP, Zhou ZH. Nat Methods 17 79-85 (2020)
  3. TSSC4 is a component of U5 snRNP that promotes tri-snRNP formation. Klimešová K, Vojáčková J, Radivojević N, Vandermoere F, Bertrand E, Verheggen C, Staněk D. Nat Commun 12 3646 (2021)
  4. A multi-factor trafficking site on the spliceosome remodeling enzyme BRR2 recruits C9ORF78 to regulate alternative splicing. Bergfort A, Preußner M, Kuropka B, Ilik İA, Hilal T, Weber G, Freund C, Aktaş T, Heyd F, Wahl MC. Nat Commun 13 1132 (2022)
  5. Attacking a DEAD problem: The role of DEAD-box ATPases in ribosome assembly and beyond. Karbstein K. Methods Enzymol 673 19-38 (2022)
  6. Calorie restriction modulates the transcription of genes related to stress response and longevity in human muscle: The CALERIE study. Das JK, Banskota N, Candia J, Griswold ME, Orenduff M, de Cabo R, Corcoran DL, Das SK, De S, Huffman KM, Kraus VB, Kraus WE, Martin CK, Racette SB, Redman LM, Schilling B, Belsky DW, Ferrucci L. Aging Cell 22 e13963 (2023)
  7. Characterization of the SF3B1-SUGP1 interface reveals how numerous cancer mutations cause mRNA missplicing. Zhang J, Xie J, Huang J, Liu X, Xu R, Tholen J, Galej WP, Tong L, Manley JL, Liu Z. Genes Dev 37 968-983 (2023)
  8. Mutations in Spliceosomal Genes PPIL1 and PRP17 Cause Neurodegenerative Pontocerebellar Hypoplasia with Microcephaly. Chai G, Webb A, Li C, Antaki D, Lee S, Breuss MW, Lang N, Stanley V, Anzenberg P, Yang X, Marshall T, Gaffney P, Wierenga KJ, Chung BH, Tsang MH, Pais LS, Lovgren AK, VanNoy GE, Rehm HL, Mirzaa G, Leon E, Diaz J, Neumann A, Kalverda AP, Manfield IW, Parry DA, Logan CV, Johnson CA, Bonthron DT, Valleley EMA, Issa MY, Abdel-Ghafar SF, Abdel-Hamid MS, Jennings P, Zaki MS, Sheridan E, Gleeson JG. Neuron 109 241-256.e9 (2021)
  9. Structural and functional insights into CWC27/CWC22 heterodimer linking the exon junction complex to spliceosomes. Busetto V, Barbosa I, Basquin J, Marquenet É, Hocq R, Hennion M, Paternina JA, Namane A, Conti E, Bensaude O, Le Hir H. Nucleic Acids Res. 48 5670-5683 (2020)
  10. The inactive C-terminal cassette of the dual-cassette RNA helicase BRR2 both stimulates and inhibits the activity of the N-terminal helicase unit. Vester K, Santos KF, Kuropka B, Weise C, Wahl MC. J Biol Chem 295 2097-2112 (2020)
  11. Unraveling the Molecular Mechanism of Pre-mRNA Splicing From Multi-Scale Simulations. Casalino L, Magistrato A. Front Mol Biosci 6 62 (2019)
  12. Zinc-finger protein CNBP alters the 3-D structure of lncRNA Braveheart in solution. Kim DN, Thiel BC, Mrozowich T, Hennelly SP, Hofacker IL, Patel TR, Sanbonmatsu KY. Nat Commun 11 148 (2020)
  13. A helicase-independent role of DHX15 promotes MYC stability and acute leukemia cell survival. Li Q, Guo H, Xu J, Li X, Wang D, Guo Y, Qing G, Van Vlierberghe P, Liu H. iScience 27 108571 (2024)
  14. Alternative Splicing in Human Biology and Disease. Jutzi D, Ruepp MD. Methods Mol Biol 2537 1-19 (2022)
  15. Co-evolution-based prediction of metal-binding sites in proteomes by machine learning. Cheng Y, Wang H, Xu H, Liu Y, Ma B, Chen X, Zeng X, Wang X, Wang B, Shiau C, Ovchinnikov S, Su XD, Wang C. Nat Chem Biol 19 548-555 (2023)
  16. IARA: a complete and curated atlas of the biogenesis of spliceosome machinery during RNA splicing. Rodrigues KS, Petroski LP, Utumi PH, Ferrasa A, Herai RH. Life Sci Alliance 6 e202201593 (2023)
  17. Mechanisms of the RNA helicases DDX42 and DDX46 in human U2 snRNP assembly. Yang F, Bian T, Zhan X, Chen Z, Xing Z, Larsen NA, Zhang X, Shi Y. Nat Commun 14 897 (2023)
  18. Mouse nuclear RNAi-defective 2 promotes splicing of weak 5' splice sites. Flemr M, Schwaiger M, Hess D, Iesmantavicius V, Ahel J, Tuck AC, Mohn F, Bühler M. RNA 29 1140-1165 (2023)
  19. Multi-omics data integration analysis identifies the spliceosome as a key regulator of DNA double-strand break repair. Sherill-Rofe D, Raban O, Findlay S, Rahat D, Unterman I, Samiei A, Yasmeen A, Kaiser Z, Kuasne H, Park M, Foulkes WD, Bloch I, Zick A, Gotlieb WH, Tabach Y, Orthwein A. NAR Cancer 4 zcac013 (2022)
  20. Prp43/DHX15 exemplify RNA helicase multifunctionality in the gene expression network. Bohnsack KE, Kanwal N, Bohnsack MT. Nucleic Acids Res 50 9012-9022 (2022)
  21. RNA helicase DHX15 exemplifies a unique dependency in acute leukemia. Guo H, Xu J, Xing P, Li Q, Wang D, Tang C, Palhais B, Roels J, Liu J, Pan S, Huang J, Liu Z, Zhu P, Taghon T, Qing G, Van Vlierberghe P, Liu H. Haematologica 108 2029-2043 (2023)
  22. Regulation of 3' splice site selection after step 1 of splicing by spliceosomal C* proteins. Dybkov O, Preußner M, El Ayoubi L, Feng VY, Harnisch C, Merz K, Leupold P, Yudichev P, Agafonov DE, Will CL, Girard C, Dienemann C, Urlaub H, Kastner B, Heyd F, Lührmann R. Sci Adv 9 eadf1785 (2023)
  23. Roles for the Synechococcus elongatus RNA-Binding Protein Rbp2 in Regulating the Circadian Clock. McKnight BM, Kang S, Le TH, Fang M, Carbonel G, Rodriguez E, Govindarajan S, Albocher-Kedem N, Tran AL, Duncan NR, Amster-Choder O, Golden SS, Cohen SE. J Biol Rhythms 38 447-460 (2023)
  24. SARS-CoV-2 structural coverage map reveals viral protein assembly, mimicry, and hijacking mechanisms. O'Donoghue SI, Schafferhans A, Sikta N, Stolte C, Kaur S, Ho BK, Anderson S, Procter JB, Dallago C, Bordin N, Adcock M, Rost B. Mol Syst Biol 17 e10079 (2021)
  25. Termination of pre-mRNA splicing requires that the ATPase and RNA unwindase Prp43p acts on the catalytic snRNA U6. Toroney R, Nielsen KH, Staley JP. Genes Dev. 33 1555-1574 (2019)
  26. The intrinsically disordered TSSC4 protein acts as a helicase inhibitor, placeholder and multi-interaction coordinator during snRNP assembly and recycling. Bergfort A, Hilal T, Kuropka B, Ilik İA, Weber G, Aktaş T, Freund C, Wahl MC. Nucleic Acids Res 50 2938-2958 (2022)
  27. U2 snRNA structure is influenced by SF3A and SF3B proteins but not by SF3B inhibitors. Urabe VK, Stevers M, Ghosh AK, Jurica MS. PLoS One 16 e0258551 (2021)
  28. U5 snRNA Interactions With Exons Ensure Splicing Precision. Artemyeva-Isman OV, Porter ACG. Front Genet 12 676971 (2021)
  29. mRNA Editing, Processing and Quality Control in Caenorhabditis elegans. Arribere JA, Kuroyanagi H, Hundley HA. Genetics 215 531-568 (2020)