6gct Citations

Cryo-EM structure of the human neutral amino acid transporter ASCT2.

Nat Struct Mol Biol 25 515-521 (2018)
Cited: 70 times
EuropePMC logo PMID: 29872227

Abstract

Human ASCT2 belongs to the SLC1 family of secondary transporters and is specific for the transport of small neutral amino acids. ASCT2 is upregulated in cancer cells and serves as the receptor for many retroviruses; hence, it has importance as a potential drug target. Here we used single-particle cryo-EM to determine a structure of the functional and unmodified human ASCT2 at 3.85-Å resolution. ASCT2 forms a homotrimeric complex in which each subunit contains a transport and a scaffold domain. Prominent extracellular extensions on the scaffold domain form the predicted docking site for retroviruses. Relative to structures of other SLC1 members, ASCT2 is in the most extreme inward-oriented state, with the transport domain largely detached from the central scaffold domain on the cytoplasmic side. This domain detachment may be required for substrate binding and release on the intracellular side of the membrane.

Reviews - 6gct mentioned but not cited (3)

  1. Elevator-type mechanisms of membrane transport. Garaeva AA, Slotboom DJ. Biochem Soc Trans 48 1227-1241 (2020)
  2. The Human SLC1A5 (ASCT2) Amino Acid Transporter: From Function to Structure and Role in Cell Biology. Scalise M, Pochini L, Console L, Losso MA, Indiveri C. Front Cell Dev Biol 6 96 (2018)
  3. ASCT2 and LAT1 Contribution to the Hallmarks of Cancer: From a Molecular Perspective to Clinical Translation. Lopes C, Pereira C, Medeiros R. Cancers (Basel) 13 (2021)

Articles - 6gct mentioned but not cited (16)

  1. Cryo-EM structures of excitatory amino acid transporter 3 visualize coupled substrate, sodium, and proton binding and transport. Qiu B, Matthies D, Fortea E, Yu Z, Boudker O. Sci Adv 7 eabf5814 (2021)
  2. A one-gate elevator mechanism for the human neutral amino acid transporter ASCT2. Garaeva AA, Guskov A, Slotboom DJ, Paulino C. Nat Commun 10 3427 (2019)
  3. A structural view onto disease-linked mutations in the human neutral amino acid exchanger ASCT1. Stehantsev P, Stetsenko A, Nemchinova M, Aduri NG, Marrink SJ, Gati C, Guskov A. Comput Struct Biotechnol J 19 5246-5254 (2021)
  4. Structural insights into inhibitory mechanism of human excitatory amino acid transporter EAAT2. Kato T, Kusakizako T, Jin C, Zhou X, Ohgaki R, Quan L, Xu M, Okuda S, Kobayashi K, Yamashita K, Nishizawa T, Kanai Y, Nureki O. Nat Commun 13 4714 (2022)
  5. The Human SLC1A5 Neutral Amino Acid Transporter Catalyzes a pH-Dependent Glutamate/Glutamine Antiport, as Well. Scalise M, Mazza T, Pappacoda G, Pochini L, Cosco J, Rovella F, Indiveri C. Front Cell Dev Biol 8 603 (2020)
  6. The Structure and Mechanism of Drug Transporters. Roberts AG. Methods Mol Biol 2342 193-234 (2021)
  7. The ion-coupling mechanism of human excitatory amino acid transporters. Canul-Tec JC, Kumar A, Dhenin J, Assal R, Legrand P, Rey M, Chamot-Rooke J, Reyes N. EMBO J 41 e108341 (2022)
  8. O-GlcNAcylation Coordinates Glutaminolysis by Regulating the Stability and Membrane Trafficking of ASCT2 in Hepatic Stellate Cells. Wang F, Chen L, Zhang B, Li Z, Shen M, Tang L, Zhang Z, Shao J, Zhang F, Zheng S, Tan S. J Clin Transl Hepatol 10 1107-1116 (2022)
  9. Anti-tumor effects of P-LPK-CPT, a peptide-camptothecin conjugate, in colorectal cancer. Hou L, Hou Y, Liang Y, Chen B, Zhang X, Wang Y, Zhou K, Zhong T, Long B, Pang W, Wang L, Han X, Li L, Xu C, Gross I, Gaiddon C, Fu W, Yao H, Meng X. Commun Biol 5 1248 (2022)
  10. Covalently modified carboxyl side chains on cell surface leads to a novel method toward topology analysis of transmembrane proteins. Müller A, Langó T, Turiák L, Ács A, Várady G, Kucsma N, Drahos L, Tusnády GE. Sci Rep 9 15729 (2019)
  11. Cryo-EM structures of the human glutamine transporter SLC1A5 (ASCT2) in the outward-facing conformation. Yu X, Plotnikova O, Bonin PD, Subashi TA, McLellan TJ, Dumlao D, Che Y, Dong YY, Carpenter EP, West GM, Qiu X, Culp JS, Han S. Elife 8 (2019)
  12. Cysteine 467 of the ASCT2 Amino Acid Transporter Is a Molecular Determinant of the Antiport Mechanism. Scalise M, Pappacoda G, Mazza T, Console L, Pochini L, Indiveri C. Int J Mol Sci 23 1127 (2022)
  13. Inhibition of ASCT2 induces hepatic stellate cell senescence with modified proinflammatory secretome through an IL-1α/NF-κB feedback pathway to inhibit liver fibrosis. Wang F, Li Z, Chen L, Yang T, Liang B, Zhang Z, Shao J, Xu X, Yin G, Wang S, Ding H, Zhang F, Zheng S. Acta Pharm Sin B 12 3618-3638 (2022)
  14. Interaction of Cholesterol With the Human SLC1A5 (ASCT2): Insights Into Structure/Function Relationships. Scalise M, Pochini L, Cosco J, Aloe E, Mazza T, Console L, Esposito A, Indiveri C. Front Mol Biosci 6 110 (2019)
  15. Partial proteolysis improves the identification of the extracellular segments of transmembrane proteins by surface biotinylation. Langó T, Pataki ZG, Turiák L, Ács A, Varga JK, Várady G, Kucsma N, Drahos L, Tusnády GE. Sci Rep 10 8880 (2020)
  16. SLC1A1-mediated cellular and mitochondrial influx of R-2-hydroxyglutarate in vascular endothelial cells promotes tumor angiogenesis in IDH1-mutant solid tumors. Wang X, Chen Z, Xu J, Tang S, An N, Jiang L, Zhang Y, Zhang S, Zhang Q, Shen Y, Chen S, Lan X, Wang T, Zhai L, Cao S, Guo S, Liu Y, Bi A, Chen Y, Gai X, Duan Y, Zheng Y, Fu Y, Li Y, Yuan L, Tong L, Mo K, Wang M, Lin SH, Tan M, Luo C, Chen Y, Liu J, Zhang Q, Li L, Huang M. Cell Res (2022)


Reviews citing this publication (15)

  1. ECF-Type ATP-Binding Cassette Transporters. Rempel S, Stanek WK, Slotboom DJ. Annu Rev Biochem 88 551-576 (2019)
  2. Interplay of Carbonic Anhydrase IX With Amino Acid and Acid/Base Transporters in the Hypoxic Tumor Microenvironment. Venkateswaran G, Dedhar S. Front Cell Dev Biol 8 602668 (2020)
  3. Frontiers in Cryo Electron Microscopy of Complex Macromolecular Assemblies. Ognjenović J, Grisshammer R, Subramaniam S. Annu Rev Biomed Eng 21 395-415 (2019)
  4. Regulation of Glutamate, GABA and Dopamine Transporter Uptake, Surface Mobility and Expression. Ryan RM, Ingram SL, Scimemi A. Front Cell Neurosci 15 670346 (2021)
  5. Advances and Challenges in Rational Drug Design for SLCs. Garibsingh RA, Schlessinger A. Trends Pharmacol Sci 40 790-800 (2019)
  6. Solute carrier transporters: the metabolic gatekeepers of immune cells. Song W, Li D, Tao L, Luo Q, Chen L. Acta Pharm Sin B 10 61-78 (2020)
  7. Chemical Targeting of Membrane Transporters: Insights into Structure/Function Relationships. Scalise M, Console L, Galluccio M, Pochini L, Indiveri C. ACS Omega 5 2069-2080 (2020)
  8. Membrane Transporters for Amino Acids as Players of Cancer Metabolic Rewiring. Scalise M, Console L, Rovella F, Galluccio M, Pochini L, Indiveri C. Cells 9 (2020)
  9. Minimal Out-of-Equilibrium Metabolism for Synthetic Cells: A Membrane Perspective. Bailoni E, Partipilo M, Coenradij J, Grundel DAJ, Slotboom DJ, Poolman B. ACS Synth Biol 12 922-946 (2023)
  10. Transporter oligomerisation: roles in structure and function. Cecchetti C, Pyle E, Byrne B. Biochem. Soc. Trans. 47 433-440 (2019)
  11. General principles of secondary active transporter function. Beckstein O, Naughton F. Biophys Rev (Melville) 3 011307 (2022)
  12. Glutamine transporters as pharmacological targets: From function to drug design. Scalise M, Pochini L, Galluccio M, Console L, Indiveri C. Asian J Pharm Sci 15 207-219 (2020)
  13. Heterologous (Over) Expression of Human SoLute Carrier (SLC) in Yeast: A Well-Recognized Tool for Human Transporter Function/Structure Studies. Pochini L, Galluccio M. Life (Basel) 12 1206 (2022)
  14. Strategies for Successful Over-Expression of Human Membrane Transport Systems Using Bacterial Hosts: Future Perspectives. Galluccio M, Console L, Pochini L, Scalise M, Giangregorio N, Indiveri C. Int J Mol Sci 23 3823 (2022)
  15. Toward a Systematic Structural and Functional Annotation of Solute Carriers Transporters-Example of the SLC6 and SLC7 Families. Colas C. Front Pharmacol 11 1229 (2020)

Articles citing this publication (36)

  1. Large domain movements through the lipid bilayer mediate substrate release and inhibition of glutamate transporters. Wang X, Boudker O. Elife 9 e58417 (2020)
  2. Structural ensemble of a glutamate transporter homologue in lipid nanodisc environment. Arkhipova V, Guskov A, Slotboom DJ. Nat Commun 11 998 (2020)
  3. Millisecond dynamics of an unlabeled amino acid transporter. Matin TR, Heath GR, Huysmans GHM, Boudker O, Scheuring S. Nat Commun 11 5016 (2020)
  4. Membrane Lipid Requirements of the Lysine Transporter Lyp1 from Saccharomyces cerevisiae. van 't Klooster JS, Cheng TY, Sikkema HR, Jeucken A, Moody DB, Poolman B. J Mol Biol 432 4023-4031 (2020)
  5. Rational design of ASCT2 inhibitors using an integrated experimental-computational approach. Garibsingh RA, Ndaru E, Garaeva AA, Shi Y, Zielewicz L, Zakrepine P, Bonomi M, Slotboom DJ, Paulino C, Grewer C, Schlessinger A. Proc Natl Acad Sci U S A 118 e2104093118 (2021)
  6. Research Support, Non-U.S. Gov't ASCT2: a potential cancer drug target. Wahi K, Holst J. Expert Opin Ther Targets 23 555-558 (2019)
  7. Cryo-EM grid optimization for membrane proteins. Kampjut D, Steiner J, Sazanov LA. iScience 24 102139 (2021)
  8. Interaction of the neutral amino acid transporter ASCT2 with basic amino acids. Ndaru E, Garibsingh RA, Zielewicz L, Schlessinger A, Grewer C. Biochem J 477 1443-1457 (2020)
  9. Optimized cryo-EM data-acquisition workflow by sample-thickness determination. Rheinberger J, Oostergetel G, Resch GP, Paulino C. Acta Crystallogr D Struct Biol 77 565-571 (2021)
  10. Saturation transfer difference NMR on the integral trimeric membrane transport protein GltPh determines cooperative substrate binding. Hall JL, Sohail A, Cabrita EJ, Macdonald C, Stockner T, Sitte HH, Angulo J, MacMillan F. Sci Rep 10 16483 (2020)
  11. The evolutionary history of topological variations in the CPA/AT transporters. Sudha G, Bassot C, Lamb J, Shu N, Huang Y, Elofsson A. PLoS Comput Biol 17 e1009278 (2021)
  12. Applications of Cryo-EM in small molecule and biologics drug design. Lees JA, Dias JM, Han S. Biochem Soc Trans 49 2627-2638 (2021)
  13. Binding and transport of D-aspartate by the glutamate transporter homolog GltTk. Arkhipova V, Trinco G, Ettema TW, Jensen S, Slotboom DJ, Guskov A. Elife 8 (2019)
  14. Transfer of stabilising mutations between different secondary active transporter families. Cecchetti C, Scull NJ, Mohan TC, Alguel Y, Jones AMC, Cameron AD, Byrne B. FEBS Open Bio 11 1685-1694 (2021)
  15. A Novel ASCT2 Inhibitor, C118P, Blocks Glutamine Transport and Exhibits Antitumour Efficacy in Breast Cancer. Lyu XD, Liu Y, Wang J, Wei YC, Han Y, Li X, Zhang Q, Liu ZR, Li ZZ, Jiang JW, Hu HL, Yuan ST, Sun L. Cancers (Basel) 15 5082 (2023)
  16. An amino-terminal point mutation increases EAAT2 anion currents without affecting glutamate transport rates. Kolen B, Kortzak D, Franzen A, Fahlke C. J Biol Chem 295 14936-14947 (2020)
  17. Antitumor activity of mianserin (a tetracyclic antidepressant) primarily driven by the inhibition of SLC1A5-mediated glutamine transport. Duan Z, Zhou Z, Lu F, Zhang Y, Guo X, Gui C, Zhang H. Invest New Drugs 40 977-989 (2022)
  18. Berberine Inhibits Growth of Liver Cancer Cells by Suppressing Glutamine Uptake. Zhang P, Wang Q, Lin Z, Yang P, Dou K, Zhang R. Onco Targets Ther 12 11751-11763 (2019)
  19. Characterizing unexpected interactions of a glutamine transporter inhibitor with members of the SLC1A transporter family. Freidman NJ, Briot C, Ryan RM. J Biol Chem 298 102178 (2022)
  20. Do Amino Acid Antiporters Have Asymmetric Substrate Specificity? Gauthier-Coles G, Fairweather SJ, Bröer A, Bröer S. Biomolecules 13 301 (2023)
  21. Ferroptosis-related local immune cytolytic activity in tumor microenvironment of basal cell and squamous cell carcinoma. Wang J, Xie D, Wu H, Li Y, Wan C. Aging (Albany NY) 14 3956-3972 (2022)
  22. Functional and Kinetic Comparison of Alanine Cysteine Serine Transporters ASCT1 and ASCT2. Wang J, Dong Y, Grewer C. Biomolecules 12 113 (2022)
  23. Glutamate transporters have a chloride channel with two hydrophobic gates. Chen I, Pant S, Wu Q, Cater RJ, Sobti M, Vandenberg RJ, Stewart AG, Tajkhorshid E, Font J, Ryan RM. Nature (2021)
  24. Heterologous avian system for quantitative analysis of Syncytin-1 interaction with ASCT2 receptor. Štafl K, Trávníček M, Kučerová D, Pecnová Ľ, Krchlíková V, Gáliková E, Stepanets V, Hejnar J, Trejbalová K. Retrovirology 18 15 (2021)
  25. Identification of the Receptor Used by the Ecotropic Mouse GLN Endogenous Retrovirus. Tsang J, Ribet D, Heidmann T, Dewannieux M. J. Virol. 93 (2019)
  26. Linking function to global and local dynamics in an elevator-type transporter. Ciftci D, Martens C, Ghani VG, Blanchard SC, Politis A, Huysmans GHM, Boudker O. Proc Natl Acad Sci U S A 118 e2025520118 (2021)
  27. Low temperature bacterial expression of the neutral amino acid transporters SLC1A5 (ASCT2), and SLC6A19 (B0AT1). Galluccio M, Pantanella M, Giudice D, Brescia S, Indiveri C. Mol Biol Rep 47 7283-7289 (2020)
  28. Models to determine the kinetic mechanisms of ion-coupled transporters. Lolkema JS, Slotboom DJ. J. Gen. Physiol. 151 369-380 (2019)
  29. Molecular Basis of Coupled Transport and Anion Conduction in Excitatory Amino Acid Transporters. Alleva C, Machtens JP, Kortzak D, Weyand I, Fahlke C. Neurochem Res (2021)
  30. Novel alanine serine cysteine transporter 2 (ASCT2) inhibitors based on sulfonamide and sulfonic acid ester scaffolds. Ndaru E, Garibsingh RA, Shi Y, Wallace E, Zakrepine P, Wang J, Schlessinger A, Grewer C. J. Gen. Physiol. 151 357-368 (2019)
  31. Reconstitution in Proteoliposomes of the Recombinant Human Riboflavin Transporter 2 (SLC52A2) Overexpressed in E. coli. Console L, Tolomeo M, Colella M, Barile M, Indiveri C. Int J Mol Sci 20 (2019)
  32. Structural basis of ligand binding modes of human EAAT2. Zhang Z, Chen H, Geng Z, Yu Z, Li H, Dong Y, Zhang H, Huang Z, Jiang J, Zhao Y. Nat Commun 13 3329 (2022)
  33. TFEB inhibition induces melanoma shut-down by blocking the cell cycle and rewiring metabolism. Ariano C, Costanza F, Akman M, Riganti C, Corà D, Casanova E, Astanina E, Comunanza V, Bussolino F, Doronzo G. Cell Death Dis 14 314 (2023)
  34. The NERP-4-SNAT2 axis regulates pancreatic β-cell maintenance and function. Zhang W, Miura A, Abu Saleh MM, Shimizu K, Mita Y, Tanida R, Hirako S, Shioda S, Gmyr V, Kerr-Conte J, Pattou F, Jin C, Kanai Y, Sasaki K, Minamino N, Sakoda H, Nakazato M. Nat Commun 14 8158 (2023)
  35. Thermostability-based binding assays reveal complex interplay of cation, substrate and lipid binding in the bacterial DASS transporter, VcINDY. Sampson CDD, Fàbregas Bellavista C, Stewart MJ, Mulligan C. Biochem J 478 3847-3867 (2021)
  36. Yeast as a tool for membrane protein production and structure determination. Carlesso A, Delgado R, Ruiz Isant O, Uwangue O, Valli D, Bill RM, Hedfalk K. FEMS Yeast Res 22 foac047 (2022)