6ef3 Citations

Substrate-engaged 26S proteasome structures reveal mechanisms for ATP-hydrolysis-driven translocation.

Science 362 (2018)
Related entries: 6ef0, 6ef1, 6ef2

Cited: 145 times
EuropePMC logo PMID: 30309908

Abstract

The 26S proteasome is the primary eukaryotic degradation machine and thus is critically involved in numerous cellular processes. The heterohexameric adenosine triphosphatase (ATPase) motor of the proteasome unfolds and translocates targeted protein substrates into the open gate of a proteolytic core while a proteasomal deubiquitinase concomitantly removes substrate-attached ubiquitin chains. However, the mechanisms by which ATP hydrolysis drives the conformational changes responsible for these processes have remained elusive. Here we present the cryo-electron microscopy structures of four distinct conformational states of the actively ATP-hydrolyzing, substrate-engaged 26S proteasome. These structures reveal how mechanical substrate translocation accelerates deubiquitination and how ATP-binding, -hydrolysis, and phosphate-release events are coordinated within the AAA+ (ATPases associated with diverse cellular activities) motor to induce conformational changes and propel the substrate through the central pore.

Reviews - 6ef3 mentioned but not cited (5)

  1. Stairway to translocation: AAA+ motor structures reveal the mechanisms of ATP-dependent substrate translocation. Gates SN, Martin A. Protein Sci 29 407-419 (2020)
  2. Proteasome interaction with ubiquitinated substrates: from mechanisms to therapies. Chen X, Htet ZM, López-Alfonzo E, Martin A, Walters KJ. FEBS J 288 5231-5251 (2021)
  3. Understanding the 26S proteasome molecular machine from a structural and conformational dynamics perspective. Greene ER, Dong KC, Martin A. Curr Opin Struct Biol 61 33-41 (2020)
  4. The Cryo-EM Effect: Structural Biology of Neurodegenerative Disease Proteostasis Factors. Creekmore BC, Chang YW, Lee EB. J Neuropathol Exp Neurol 80 494-513 (2021)
  5. Functional Differences between Proteasome Subtypes. Abi Habib J, Lesenfants J, Vigneron N, Van den Eynde BJ. Cells 11 421 (2022)

Articles - 6ef3 mentioned but not cited (8)

  1. Substrate-engaged 26S proteasome structures reveal mechanisms for ATP-hydrolysis-driven translocation. de la Peña AH, Goodall EA, Gates SN, Lander GC, Martin A. Science 362 (2018)
  2. Cryo-EM Reveals Unanchored M1-Ubiquitin Chain Binding at hRpn11 of the 26S Proteasome. Chen X, Dorris Z, Shi D, Huang RK, Khant H, Fox T, de Val N, Williams D, Zhang P, Walters KJ. Structure 28 1206-1217.e4 (2020)
  3. The Proteasome and Its Network: Engineering for Adaptability. Finley D, Prado MA. Cold Spring Harb Perspect Biol 12 (2020)
  4. Allosteric control of Ubp6 and the proteasome via a bidirectional switch. Hung KYS, Klumpe S, Eisele MR, Elsasser S, Tian G, Sun S, Moroco JA, Cheng TC, Joshi T, Seibel T, Van Dalen D, Feng XH, Lu Y, Ovaa H, Engen JR, Lee BH, Rudack T, Sakata E, Finley D. Nat Commun 13 838 (2022)
  5. Design principles that protect the proteasome from self-destruction. Singh Gautam AK, Yu H, Yellman C, Elcock AH, Matouschek A. Protein Sci 31 556-567 (2022)
  6. A Role for the Proteasome Alpha2 Subunit N-Tail in Substrate Processing. Sahu I, Bajorek M, Tan X, Srividya M, Krutauz D, Reis N, Osmulski PA, Gaczynska ME, Glickman MH. Biomolecules 13 480 (2023)
  7. Active conformation of the p97-p47 unfoldase complex. Xu Y, Han H, Cooney I, Guo Y, Moran NG, Zuniga NR, Price JC, Hill CP, Shen PS. Nat Commun 13 2640 (2022)
  8. An optimized protocol for acquiring and processing cryo-EM data of human 26S proteasome with M1-Ub6. Chen X, Shi D, Zhang P, Walters KJ. STAR Protoc 2 100278 (2021)


Reviews citing this publication (38)

  1. The molecular principles governing the activity and functional diversity of AAA+ proteins. Puchades C, Sandate CR, Lander GC. Nat Rev Mol Cell Biol 21 43-58 (2020)
  2. Functional Modules of the Proteostasis Network. Jayaraj GG, Hipp MS, Hartl FU. Cold Spring Harb Perspect Biol 12 a033951 (2020)
  3. Proteotoxic Stress and Cell Death in Cancer Cells. Brancolini C, Iuliano L. Cancers (Basel) 12 E2385 (2020)
  4. Mechanisms of substrate recognition by the 26S proteasome. Davis C, Spaller BL, Matouschek A. Curr Opin Struct Biol 67 161-169 (2021)
  5. Structural Insights into Substrate Recognition and Processing by the 20S Proteasome. Sahu I, Glickman MH. Biomolecules 11 148 (2021)
  6. An expanded lexicon for the ubiquitin code. Dikic I, Schulman BA. Nat Rev Mol Cell Biol 24 273-287 (2023)
  7. PA28γ: New Insights on an Ancient Proteasome Activator. Cascio P. Biomolecules 11 228 (2021)
  8. Structure and function of ClpXP, a AAA+ proteolytic machine powered by probabilistic ATP hydrolysis. Sauer RT, Fei X, Bell TA, Baker TA. Crit Rev Biochem Mol Biol 57 188-204 (2022)
  9. Present and Emerging Methodologies in Cryo-EM Single-Particle Analysis. Wu M, Lander GC. Biophys J 119 1281-1289 (2020)
  10. Proteasome in action: substrate degradation by the 26S proteasome. Sahu I, Glickman MH. Biochem Soc Trans 49 629-644 (2021)
  11. Deubiquitination Reactions on the Proteasome for Proteasome Versatility. Shin JY, Muniyappan S, Tran NN, Park H, Lee SB, Lee BH. Int J Mol Sci 21 (2020)
  12. Substrate selection by the proteasome through initiation regions. Tomita T, Matouschek A. Protein Sci 28 1222-1232 (2019)
  13. AAA+ ATPases: structural insertions under the magnifying glass. Jessop M, Felix J, Gutsche I. Curr Opin Struct Biol 66 119-128 (2021)
  14. Small-Molecule Inhibitors Targeting Proteasome-Associated Deubiquitinases. Moon S, Muniyappan S, Lee SB, Lee BH. Int J Mol Sci 22 6213 (2021)
  15. The PDB and protein homeostasis: From chaperones to degradation and disaggregase machines. Saibil HR. J Biol Chem 296 100744 (2021)
  16. Expanding Role of Ubiquitin in Translational Control. Dougherty SE, Maduka AO, Inada T, Silva GM. Int J Mol Sci 21 (2020)
  17. Site-specific ubiquitination: Deconstructing the degradation tag. Carroll EC, Marqusee S. Curr Opin Struct Biol 73 102345 (2022)
  18. Frozen in time: analyzing molecular dynamics with time-resolved cryo-EM. Amann SJ, Keihsler D, Bodrug T, Brown NG, Haselbach D. Structure 31 4-19 (2023)
  19. Order through destruction: how ER-associated protein degradation contributes to organelle homeostasis. Christianson JC, Carvalho P. EMBO J 41 e109845 (2022)
  20. Structure and mechanism of the ESCRT pathway AAA+ ATPase Vps4. Han H, Hill CP. Biochem. Soc. Trans. 47 37-45 (2019)
  21. A conserved strategy for structure change and energy transduction in Hsp104 and other AAA+ protein motors. Ye X, Mayne L, Englander SW. J Biol Chem 297 101066 (2021)
  22. AAA+ ATPases in Protein Degradation: Structures, Functions and Mechanisms. Zhang S, Mao Y. Biomolecules 10 (2020)
  23. Advances in Proteasome Enhancement by Small Molecules. George DE, Tepe JJ. Biomolecules 11 1789 (2021)
  24. Bortezomib advanced mechanisms of action in multiple myeloma, solid and liquid tumors along with its novel therapeutic applications. Alwahsh M, Farhat J, Talhouni S, Hamadneh L, Hergenröder R. EXCLI J 22 146-168 (2023)
  25. Dynamic Regulation of the 26S Proteasome: From Synthesis to Degradation. Marshall RS, Vierstra RD. Front Mol Biosci 6 40 (2019)
  26. How the 26S Proteasome Degrades Ubiquitinated Proteins in the Cell. Coll-Martínez B, Crosas B. Biomolecules 9 (2019)
  27. Insights into the Structure and Function of the Pex1/Pex6 AAA-ATPase in Peroxisome Homeostasis. Judy RM, Sheedy CJ, Gardner BM. Cells 11 2067 (2022)
  28. Localized Proteasomal Degradation: From the Nucleus to Cell Periphery. Guo X. Biomolecules 12 229 (2022)
  29. Mitochondrial AAA proteases: A stairway to degradation. Steele TE, Glynn SE. Mitochondrion 49 121-127 (2019)
  30. Nuclear Transport of Yeast Proteasomes. Wendler P, Enenkel C. Front Mol Biosci 6 34 (2019)
  31. Proteasome substrate receptors and their therapeutic potential. Osei-Amponsa V, Walters KJ. Trends Biochem Sci 47 950-964 (2022)
  32. Protein quality control: from mechanism to disease : EMBO Workshop, Costa de la Calma (Mallorca), Spain, April 28 - May 03, 2019. Kampinga HH, Mayer MP, Mogk A. Cell Stress Chaperones 24 1013-1026 (2019)
  33. Shaping the Nascent Ribosome: AAA-ATPases in Eukaryotic Ribosome Biogenesis. Prattes M, Lo YH, Bergler H, Stanley RE. Biomolecules 9 (2019)
  34. Structural and Functional Basis of JAMM Deubiquitinating Enzymes in Disease. Pan X, Wu S, Wei W, Chen Z, Wu Y, Gong K. Biomolecules 12 910 (2022)
  35. Structure, Function, and Allosteric Regulation of the 20S Proteasome by the 11S/PA28 Family of Proteasome Activators. Thomas T, Salcedo-Tacuma D, Smith DM. Biomolecules 13 1326 (2023)
  36. To Kill or to Be Killed: How Does the Battle between the UPS and Autophagy Maintain the Intracellular Homeostasis in Eukaryotes? Yu P, Hua Z. Int J Mol Sci 24 2221 (2023)
  37. Ubiquitin-Dependent and Independent Proteasomal Degradation in Host-Pathogen Interactions. Bialek W, Collawn JF, Bartoszewski R. Molecules 28 6740 (2023)
  38. Wiggle and Shake: Managing and Exploiting Conformational Dynamics during Proteasome Biogenesis. Betancourt D, Lawal T, Tomko RJ. Biomolecules 13 1223 (2023)

Articles citing this publication (94)

  1. Structures and operating principles of the replisome. Gao Y, Cui Y, Fox T, Lin S, Wang H, de Val N, Zhou ZH, Yang W. Science 363 eaav7003 (2019)
  2. Substrate processing by the Cdc48 ATPase complex is initiated by ubiquitin unfolding. Twomey EC, Ji Z, Wales TE, Bodnar NO, Ficarro SB, Marto JA, Engen JR, Rapoport TA. Science 365 (2019)
  3. An allosteric network in spastin couples multiple activities required for microtubule severing. Sandate CR, Szyk A, Zehr EA, Lander GC, Roll-Mecak A. Nat Struct Mol Biol 26 671-678 (2019)
  4. Structure of the Cdc48 segregase in the act of unfolding an authentic substrate. Cooney I, Han H, Stewart MG, Carson RH, Hansen DT, Iwasa JH, Price JC, Hill CP, Shen PS. Science 365 502-505 (2019)
  5. Structure of the Bcs1 AAA-ATPase suggests an airlock-like translocation mechanism for folded proteins. Kater L, Wagener N, Berninghausen O, Becker T, Neupert W, Beckmann R. Nat Struct Mol Biol 27 142-149 (2020)
  6. The 26S Proteasome Utilizes a Kinetic Gateway to Prioritize Substrate Degradation. Bard JAM, Bashore C, Dong KC, Martin A. Cell 177 286-298.e15 (2019)
  7. Structures of AAA protein translocase Bcs1 suggest translocation mechanism of a folded protein. Tang WK, Borgnia MJ, Hsu AL, Esser L, Fox T, de Val N, Xia D. Nat Struct Mol Biol 27 202-209 (2020)
  8. Unique Structural Features of the Mitochondrial AAA+ Protease AFG3L2 Reveal the Molecular Basis for Activity in Health and Disease. Puchades C, Ding B, Song A, Wiseman RL, Lander GC, Glynn SE. Mol Cell 75 1073-1085.e6 (2019)
  9. K29-linked ubiquitin signaling regulates proteotoxic stress response and cell cycle. Yu Y, Zheng Q, Erramilli SK, Pan M, Park S, Xie Y, Li J, Fei J, Kossiakoff AA, Liu L, Zhao M. Nat Chem Biol 17 896-905 (2021)
  10. Site-specific ubiquitination affects protein energetics and proteasomal degradation. Carroll EC, Greene ER, Martin A, Marqusee S. Nat Chem Biol 16 866-875 (2020)
  11. A processive rotary mechanism couples substrate unfolding and proteolysis in the ClpXP degradation machinery. Ripstein ZA, Vahidi S, Houry WA, Rubinstein JL, Kay LE. Elife 9 (2020)
  12. Structures of the human LONP1 protease reveal regulatory steps involved in protease activation. Shin M, Watson ER, Song AS, Mindrebo JT, Novick SJ, Griffin PR, Wiseman RL, Lander GC. Nat Commun 12 3239 (2021)
  13. A viral genome packaging motor transitions between cyclic and helical symmetry to translocate dsDNA. Woodson M, Pajak J, Mahler BP, Zhao W, Zhang W, Arya G, White MA, Jardine PJ, Morais MC. Sci Adv 7 eabc1955 (2021)
  14. Modular and coordinated activity of AAA+ active sites in the double-ring ClpA unfoldase of the ClpAP protease. Zuromski KL, Sauer RT, Baker TA. Proc Natl Acad Sci U S A 117 25455-25463 (2020)
  15. Proteins containing ubiquitin-like (Ubl) domains not only bind to 26S proteasomes but also induce their activation. Collins GA, Goldberg AL. Proc Natl Acad Sci U S A 117 4664-4674 (2020)
  16. Structures of the ATP-fueled ClpXP proteolytic machine bound to protein substrate. Fei X, Bell TA, Jenni S, Stinson BM, Baker TA, Harrison SC, Sauer RT. Elife 9 (2020)
  17. Cryo-EM structure of substrate-free E. coli Lon protease provides insights into the dynamics of Lon machinery. Botos I, Lountos GT, Wu W, Cherry S, Ghirlando R, Kudzhaev AM, Rotanova TV, de Val N, Tropea JE, Gustchina A, Wlodawer A. Curr Res Struct Biol 1 13-20 (2019)
  18. Data-guided Multi-Map variables for ensemble refinement of molecular movies. Vant JW, Sarkar D, Streitwieser E, Fiorin G, Skeel R, Vermaas JV, Singharoy A. J Chem Phys 153 214102 (2020)
  19. Structural asymmetry governs the assembly and GTPase activity of McrBC restriction complexes. Niu Y, Suzuki H, Hosford CJ, Walz T, Chappie JS. Nat Commun 11 5907 (2020)
  20. Atomistic basis of force generation, translocation, and coordination in a viral genome packaging motor. Pajak J, Dill E, Reyes-Aldrete E, White MA, Kelch BA, Jardine PJ, Arya G, Morais MC. Nucleic Acids Res 49 6474-6488 (2021)
  21. Conformational plasticity of the ClpAP AAA+ protease couples protein unfolding and proteolysis. Lopez KE, Rizo AN, Tse E, Lin J, Scull NW, Thwin AC, Lucius AL, Shorter J, Southworth DR. Nat Struct Mol Biol 27 406-416 (2020)
  22. Cryo-EM structures of the archaeal PAN-proteasome reveal an around-the-ring ATPase cycle. Majumder P, Rudack T, Beck F, Danev R, Pfeifer G, Nagy I, Baumeister W. Proc. Natl. Acad. Sci. U.S.A. 116 534-539 (2019)
  23. Exploring the Proteolysis Mechanism of the Proteasomes. Saha A, Oanca G, Mondal D, Warshel A. J Phys Chem B 124 5626-5635 (2020)
  24. Katanin Grips the β-Tubulin Tail through an Electropositive Double Spiral to Sever Microtubules. Zehr EA, Szyk A, Szczesna E, Roll-Mecak A. Dev Cell 52 118-131.e6 (2020)
  25. Molecular basis for ATPase-powered substrate translocation by the Lon AAA+ protease. Li S, Hsieh KY, Su SC, Pintilie GD, Zhang K, Chang CI. J Biol Chem 101239 (2021)
  26. Reversible phosphorylation of Rpn1 regulates 26S proteasome assembly and function. Liu X, Xiao W, Zhang Y, Wiley SE, Zuo T, Zheng Y, Chen N, Chen L, Wang X, Zheng Y, Huang L, Lin S, Murphy AN, Dixon JE, Xu P, Guo X. Proc Natl Acad Sci U S A 117 328-336 (2020)
  27. Structural basis of nucleosome assembly by the Abo1 AAA+ ATPase histone chaperone. Cho C, Jang J, Kang Y, Watanabe H, Uchihashi T, Kim SJ, Kato K, Lee JY, Song JJ. Nat Commun 10 5764 (2019)
  28. Structure of E3 ligase E6AP with a proteasome-binding site provided by substrate receptor hRpn10. Buel GR, Chen X, Chari R, O'Neill MJ, Ebelle DL, Jenkins C, Sridharan V, Tarasov SG, Tarasova NI, Andresson T, Walters KJ. Nat Commun 11 1291 (2020)
  29. An Extended Conformation for K48 Ubiquitin Chains Revealed by the hRpn2:Rpn13:K48-Diubiquitin Structure. Lu X, Ebelle DL, Matsuo H, Walters KJ. Structure 28 495-506.e3 (2020)
  30. ClpG Provides Increased Heat Resistance by Acting as Superior Disaggregase. Katikaridis P, Meins L, Kamal SM, Römling U, Mogk A. Biomolecules 9 (2019)
  31. STABILON, a Novel Sequence Motif That Enhances the Expression and Accumulation of Intracellular and Secreted Proteins. Rethi-Nagy Z, Abraham E, Udvardy K, Klement E, Darula Z, Pal M, Katona RL, Tubak V, Pali T, Kota Z, Sinka R, Udvardy A, Lipinszki Z. Int J Mol Sci 23 8168 (2022)
  32. Simulating the directional translocation of a substrate by the AAA+ motor in the 26S proteasome. Saha A, Warshel A. Proc Natl Acad Sci U S A 118 e2104245118 (2021)
  33. The 20S as a stand-alone proteasome in cells can degrade the ubiquitin tag. Sahu I, Mali SM, Sulkshane P, Xu C, Rozenberg A, Morag R, Sahoo MP, Singh SK, Ding Z, Wang Y, Day S, Cong Y, Kleifeld O, Brik A, Glickman MH. Nat Commun 12 6173 (2021)
  34. The Non-dominant AAA+ Ring in the ClpAP Protease Functions as an Anti-stalling Motor to Accelerate Protein Unfolding and Translocation. Kotamarthi HC, Sauer RT, Baker TA. Cell Rep 30 2644-2654.e3 (2020)
  35. The proteasome as a druggable target with multiple therapeutic potentialities: Cutting and non-cutting edges. Tundo GR, Sbardella D, Santoro AM, Coletta A, Oddone F, Grasso G, Milardi D, Lacal PM, Marini S, Purrello R, Graziani G, Coletta M. Pharmacol Ther 213 107579 (2020)
  36. Viral packaging ATPases utilize a glutamate switch to couple ATPase activity and DNA translocation. Pajak J, Atz R, Hilbert BJ, Morais MC, Kelch BA, Jardine PJ, Arya G. Proc Natl Acad Sci U S A 118 e2024928118 (2021)
  37. 26S proteasomes become stably activated upon heat shock when ubiquitination and protein degradation increase. Lee D, Goldberg AL. Proc Natl Acad Sci U S A 119 e2122482119 (2022)
  38. A DNA packaging motor inchworms along one strand allowing it to adapt to alternative double-helical structures. Castillo JP, B Tong A, Tafoya S, Jardine PJ, Bustamante C. Nat Commun 12 3439 (2021)
  39. A modular toolbox to generate complex polymeric ubiquitin architectures using orthogonal sortase enzymes. Fottner M, Weyh M, Gaussmann S, Schwarz D, Sattler M, Lang K. Nat Commun 12 6515 (2021)
  40. An Allosteric Interaction Network Promotes Conformation State-Dependent Eviction of the Nas6 Assembly Chaperone from Nascent 26S Proteasomes. Nemec AA, Peterson AK, Warnock JL, Reed RG, Tomko RJ. Cell Rep 26 483-495.e5 (2019)
  41. An empirical energy landscape reveals mechanism of proteasome in polypeptide translocation. Fang R, Hon J, Zhou M, Lu Y. Elife 11 e71911 (2022)
  42. Conserved structural elements specialize ATAD1 as a membrane protein extraction machine. Wang L, Toutkoushian H, Belyy V, Kokontis CY, Walter P. Elife 11 e73941 (2022)
  43. Engineered disulfide crosslinking to measure conformational changes in the 26S proteasome. Reed RG, Tomko RJ. Methods Enzymol 619 145-159 (2019)
  44. HECT ubiquitin ligases as accessory proteins of the plant proteasome. Wang Z, Spoel SH. Essays Biochem 66 135-145 (2022)
  45. Molecular Basis for ATP-Hydrolysis-Driven DNA Translocation by the CMG Helicase of the Eukaryotic Replisome. Eickhoff P, Kose HB, Martino F, Petojevic T, Abid Ali F, Locke J, Tamberg N, Nans A, Berger JM, Botchan MR, Yardimci H, Costa A. Cell Rep 28 2673-2688.e8 (2019)
  46. Observing Protein Degradation by the PAN-20S Proteasome by Time-Resolved Neutron Scattering. Mahieu E, Covès J, Krüger G, Martel A, Moulin M, Carl N, Härtlein M, Carlomagno T, Franzetti B, Gabel F. Biophys J 119 375-388 (2020)
  47. PSMC1 variant causes a novel neurological syndrome. Aharoni S, Proskorovski-Ohayon R, Krishnan RK, Yogev Y, Wormser O, Hadar N, Bakhrat A, Alshafee I, Gombosh M, Agam N, Gradstein L, Shorer Z, Zarivach R, Eskin-Schwartz M, Abdu U, Birk OS. Clin Genet 102 324-332 (2022)
  48. Proteasomal conformation controls unfolding ability. Cresti JR, Manfredonia AJ, Bragança CE, Boscia JA, Hurley CM, Cundiff MD, Kraut DA. Proc Natl Acad Sci U S A 118 e2101004118 (2021)
  49. Structural basis for distinct operational modes and protease activation in AAA+ protease Lon. Shin M, Puchades C, Asmita A, Puri N, Adjei E, Wiseman RL, Karzai AW, Lander GC. Sci Adv 6 eaba8404 (2020)
  50. Structural insights into the human PA28-20S proteasome enabled by efficient tagging and purification of endogenous proteins. Zhao J, Makhija S, Zhou C, Zhang H, Wang Y, Muralidharan M, Huang B, Cheng Y. Proc Natl Acad Sci U S A 119 e2207200119 (2022)
  51. Structure of Vps4 with circular peptides and implications for translocation of two polypeptide chains by AAA+ ATPases. Han H, Fulcher JM, Dandey VP, Iwasa JH, Sundquist WI, Kay MS, Shen PS, Hill CP. Elife 8 (2019)
  52. Structure of spastin bound to a glutamate-rich peptide implies a hand-over-hand mechanism of substrate translocation. Han H, Schubert HL, McCullough J, Monroe N, Purdy MD, Yeager M, Sundquist WI, Hill CP. J Biol Chem 295 435-443 (2020)
  53. Structure of the AAA protein Msp1 reveals mechanism of mislocalized membrane protein extraction. Wang L, Myasnikov A, Pan X, Walter P. Elife 9 (2020)
  54. Two-Step Activation Mechanism of the ClpB Disaggregase for Sequential Substrate Threading by the Main ATPase Motor. Deville C, Franke K, Mogk A, Bukau B, Saibil HR. Cell Rep 27 3433-3446.e4 (2019)
  55. AMPK regulates ESCRT-dependent microautophagy of proteasomes concomitant with proteasome storage granule assembly during glucose starvation. Li J, Breker M, Graham M, Schuldiner M, Hochstrasser M. PLoS Genet. 15 e1008387 (2019)
  56. ATAD3A has a scaffolding role regulating mitochondria inner membrane structure and protein assembly. Arguello T, Peralta S, Antonicka H, Gaidosh G, Diaz F, Tu YT, Garcia S, Shiekhattar R, Barrientos A, Moraes CT. Cell Rep 37 110139 (2021)
  57. ATP-binding and hydrolysis of human NLRP3. Brinkschulte R, Fußhöller DM, Hoss F, Rodríguez-Alcázar JF, Lauterbach MA, Kolbe CC, Rauen M, Ince S, Herrmann C, Latz E, Geyer M. Commun Biol 5 1176 (2022)
  58. ClpAP proteolysis does not require rotation of the ClpA unfoldase relative to ClpP. Kim S, Zuromski KL, Bell TA, Sauer RT, Baker TA. Elife 9 (2020)
  59. Communication network within the essential AAA-ATPase Rix7 drives ribosome assembly. Kocaman S, Lo YH, Krahn JM, Sobhany M, Dandey VP, Petrovich ML, Etigunta SK, Williams JG, Deterding LJ, Borgnia MJ, Stanley RE. PNAS Nexus 1 pgac118 (2022)
  60. Cryo-EM structure of the ClpXP protein degradation machinery. Gatsogiannis C, Balogh D, Merino F, Sieber SA, Raunser S. Nat. Struct. Mol. Biol. 26 946-954 (2019)
  61. Cryo-EM structures of Helicobacter pylori vacuolating cytotoxin A oligomeric assemblies at near-atomic resolution. Zhang K, Zhang H, Li S, Pintilie GD, Mou TC, Gao Y, Zhang Q, van den Bedem H, Schmid MF, Au SWN, Chiu W. Proc. Natl. Acad. Sci. U.S.A. 116 6800-6805 (2019)
  62. Deciphering the mechanism and function of Hsp100 unfoldases from protein structure. Lee G, Kim RS, Lee SB, Lee S, Tsai FTF. Biochem Soc Trans 50 1725-1736 (2022)
  63. Electronic Circular Dichroism Detects Conformational Changes Associated with Proteasome Gating Confirmed Using AFM Imaging. D'Urso A, Purrello R, Cunsolo A, Milardi D, Fattorusso C, Persico M, Gaczynska M, Osmulski PA, Santoro AM. Biomolecules 13 704 (2023)
  64. Experimental evaluation of super-resolution imaging and magnification choice in single-particle cryo-EM. Feathers JR, Spoth KA, Fromme JC. J Struct Biol X 5 100047 (2021)
  65. FAT10 and NUB1L cooperate to activate the 26S proteasome. Brockmann F, Catone N, Wünsch C, Offensperger F, Scheffner M, Schmidtke G, Aichem A. Life Sci Alliance 6 e202201463 (2023)
  66. Factors underlying asymmetric pore dynamics of disaggregase and microtubule-severing AAA+ machines. Damre M, Dayananda A, Varikoti RA, Stan G, Dima RI. Biophys J 120 3437-3454 (2021)
  67. Fast and Effective Prediction of the Absolute Binding Free Energies of Covalent Inhibitors of SARS-CoV-2 Main Protease and 20S Proteasome. Zhou J, Saha A, Huang Z, Warshel A. J Am Chem Soc 144 7568-7572 (2022)
  68. FtsK in motion reveals its mechanism for double-stranded DNA translocation. Jean NL, Rutherford TJ, Löwe J. Proc Natl Acad Sci U S A 117 14202-14208 (2020)
  69. Helical inchworming: a novel translocation mechanism for a ring ATPase. Tong AB, Bustamante C. Biophys Rev 13 885-888 (2021)
  70. High resolution structures define divergent and convergent mechanisms of archaeal proteasome activation. Chuah JJY, Rexroad MS, Smith DM. Commun Biol 6 733 (2023)
  71. High-Throughput Assay for Characterizing Rpn11 Deubiquitinase Activity. Xie G, Dong KC, Worden EJ, Martin A. Methods Mol Biol 2591 79-100 (2023)
  72. Identification of two rate-limiting steps in the degradation of partially folded immunoglobulin light chains. Mann MJ, Flory AR, Oikonomou C, Hayes CA, Melendez-Suchi C, Hendershot LM. Front Cell Dev Biol 10 924848 (2022)
  73. Interactions between a subset of substrate side chains and AAA+ motor pore loops determine grip during protein unfolding. Bell TA, Baker TA, Sauer RT. Elife 8 (2019)
  74. Mechanism of AAA+ ATPase-mediated RuvAB-Holliday junction branch migration. Wald J, Fahrenkamp D, Goessweiner-Mohr N, Lugmayr W, Ciccarelli L, Vesper O, Marlovits TC. Nature 609 630-639 (2022)
  75. Mechanisms of DNA opening revealed in AAA+ transcription complex structures. Ye F, Gao F, Liu X, Buck M, Zhang X. Sci Adv 8 eadd3479 (2022)
  76. Molecular dynamics of DNA translocation by FtsK. Pajak J, Arya G. Nucleic Acids Res 50 8459-8470 (2022)
  77. Molecular mechanism for activation of the 26S proteasome by ZFAND5. Lee D, Zhu Y, Colson L, Wang X, Chen S, Tkacik E, Huang L, Ouyang Q, Goldberg AL, Lu Y. Mol Cell 83 2959-2975.e7 (2023)
  78. Proteasome Inhibition Is an Effective Treatment Strategy for Microsporidia Infection in Honey Bees. Huntsman EM, Cho RM, Kogan HV, McNamara-Bordewick NK, Tomko RJ, Snow JW. Biomolecules 11 1600 (2021)
  79. Proteasome activator 28γ (PA28γ) allosterically activates trypsin-like proteolysis by binding to the α-ring of the 20S proteasome. Thomas TA, Smith DM. J Biol Chem 298 102140 (2022)
  80. Proteasome-Bound UCH37/UCHL5 Debranches Ubiquitin Chains to Promote Degradation. Deol KK, Crowe SO, Du J, Bisbee HA, Guenette RG, Strieter ER. Mol Cell 80 796-809.e9 (2020)
  81. Proteomic analysis of affinity-purified 26S proteasomes identifies a suite of assembly chaperones in Arabidopsis. Gemperline DC, Marshall RS, Lee KH, Zhao Q, Hu W, McLoughlin F, Scalf M, Smith LM, Vierstra RD. J. Biol. Chem. 294 17570-17592 (2019)
  82. Rearranging AAA+ architecture to accommodate folded substrates. Shen PS. Nat Struct Mol Biol 27 225-226 (2020)
  83. Simulating the conformational dynamics of the ATPase complex on proteasome using its free-energy landscape. Fang R, Lu Y. STAR Protoc 4 102182 (2023)
  84. Specific lid-base contacts in the 26s proteasome control the conformational switching required for substrate degradation. Greene ER, Goodall EA, de la Peña AH, Matyskiela ME, Lander GC, Martin A. Elife 8 (2019)
  85. Stepping up protein degradation. Maupin-Furlow JA. Proc. Natl. Acad. Sci. U.S.A. 116 350-352 (2019)
  86. Structural basis of prokaryotic ubiquitin-like protein engagement and translocation by the mycobacterial Mpa-proteasome complex. Kavalchuk M, Jomaa A, Jomaa A, Müller AU, Weber-Ban E. Nat Commun 13 276 (2022)
  87. Structural snapshots of the cellular folded protein translocation machinery Bcs1. Xia D. FEBS J 288 2870-2883 (2021)
  88. Structure of the peroxisomal Pex1/Pex6 ATPase complex bound to a substrate. Rüttermann M, Koci M, Lill P, Geladas ED, Kaschani F, Klink BU, Erdmann R, Gatsogiannis C. Nat Commun 14 5942 (2023)
  89. Structure-guided bifunctional molecules hit a DEUBAD-lacking hRpn13 species upregulated in multiple myeloma. Lu X, Sabbasani VR, Osei-Amponsa V, Evans CN, King JC, Tarasov SG, Dyba M, Das S, Chan KC, Schwieters CD, Choudhari S, Fromont C, Zhao Y, Tran B, Chen X, Matsuo H, Andresson T, Chari R, Swenson RE, Tarasova NI, Walters KJ. Nat Commun 12 7318 (2021)
  90. The YΦ motif defines the structure-activity relationships of human 20S proteasome activators. Opoku-Nsiah KA, de la Pena AH, Williams SK, Chopra N, Sali A, Lander GC, Gestwicki JE. Nat Commun 13 1226 (2022)
  91. The penultimate step of proteasomal ATPase assembly is mediated by a switch dependent on the chaperone Nas2. Sekaran S, Park S. J Biol Chem 299 102870 (2023)
  92. USP14-regulated allostery of the human proteasome by time-resolved cryo-EM. Zhang S, Zou S, Yin D, Zhao L, Finley D, Wu Z, Mao Y. Nature 605 567-574 (2022)
  93. Ubiquitin modulates 26S proteasome conformational dynamics and promotes substrate degradation. Jonsson E, Htet ZM, Bard JAM, Dong KC, Martin A. Sci Adv 8 eadd9520 (2022)
  94. Ultrafast pore-loop dynamics in a AAA+ machine point to a Brownian-ratchet mechanism for protein translocation. Mazal H, Iljina M, Riven I, Haran G. Sci Adv 7 eabg4674 (2021)