6c3p Citations

Molecular structure of human KATP in complex with ATP and ADP.

Elife 6 (2017)
Cited: 82 times
EuropePMC logo PMID: 29286281

Abstract

In many excitable cells, KATP channels respond to intracellular adenosine nucleotides: ATP inhibits while ADP activates. We present two structures of the human pancreatic KATP channel, containing the ABC transporter SUR1 and the inward-rectifier K+ channel Kir6.2, in the presence of Mg2+ and nucleotides. These structures, referred to as quatrefoil and propeller forms, were determined by single-particle cryo-EM at 3.9 Å and 5.6 Å, respectively. In both forms, ATP occupies the inhibitory site in Kir6.2. The nucleotide-binding domains of SUR1 are dimerized with Mg2+-ATP in the degenerate site and Mg2+-ADP in the consensus site. A lasso extension forms an interface between SUR1 and Kir6.2 adjacent to the ATP site in the propeller form and is disrupted in the quatrefoil form. These structures support the role of SUR1 as an ADP sensor and highlight the lasso extension as a key regulatory element in ADP's ability to override ATP inhibition.

Reviews - 6c3p mentioned but not cited (6)

Articles - 6c3p mentioned but not cited (14)

  1. Ligand binding and conformational changes of SUR1 subunit in pancreatic ATP-sensitive potassium channels. Wu JX, Ding D, Wang M, Kang Y, Zeng X, Chen L. Protein Cell 9 553-567 (2018)
  2. Molecular structure of an open human KATP channel. Zhao C, MacKinnon R. Proc Natl Acad Sci U S A 118 e2112267118 (2021)
  3. Photo-Switchable Sulfonylureas Binding to ATP-Sensitive Potassium Channel Reveal the Mechanism of Light-Controlled Insulin Release. Walczewska-Szewc K, Nowak W. J Phys Chem B 125 13111-13121 (2021)
  4. Simulating PIP2-Induced Gating Transitions in Kir6.2 Channels. Bründl M, Pellikan S, Stary-Weinzinger A. Front Mol Biosci 8 711975 (2021)
  5. Structure based analysis of KATP channel with a DEND syndrome mutation in murine skeletal muscle. Horita S, Ono T, Gonzalez-Resines S, Ono Y, Yamachi M, Zhao S, Domene C, Maejima Y, Shimomura K. Sci Rep 11 6668 (2021)
  6. Biological and Molecular Docking Evaluation of a Benzylisothiocyanate Semisynthetic Derivative From Moringa oleifera in a Pre-clinical Study of Temporomandibular Joint Pain. Silveira FD, Gomes FIF, do Val DR, Freitas HC, de Assis EL, de Almeida DKC, Braz HLB, Barbosa FG, Mafezoli J, da Silva MR, Jorge RJB, Clemente-Napimoga JT, Costa DVDS, Brito GAC, Pinto VPT, Cristino-Filho G, Bezerra MM, Chaves HV. Front Neurosci 16 742239 (2022)
  7. CL-705G: a novel chemical Kir6.2-specific KATP channel opener. Gando I, Becerra Flores M, Chen IS, Yang HQ, Nakamura TY, Cardozo TJ, Coetzee WA. Front Pharmacol 14 1197257 (2023)
  8. Development of IKATP Ion Channel Blockers Targeting Sulfonylurea Resistant Mutant KIR6.2 Based Channels for Treating DEND Syndrome. Houtman MJC, Friesacher T, Chen X, Zangerl-Plessl EM, van der Heyden MAG, Stary-Weinzinger A. Front Pharmacol 12 814066 (2021)
  9. Genotype-phenotype correlation in Taiwanese children with diazoxide-unresponsive congenital hyperinsulinism. Lee CT, Tsai WH, Chang CC, Chen PC, Fann CS, Chang HK, Liu SY, Wu MZ, Chiu PC, Hsu WM, Yang WS, Lai LP, Tsai WY, Yang SB, Chen PL. Front Endocrinol (Lausanne) 14 1283907 (2023)
  10. Integrative Study of the Structural and Dynamical Properties of a KirBac3.1 Mutant: Functional Implication of a Highly Conserved Tryptophan in the Transmembrane Domain. Fagnen C, Bannwarth L, Oubella I, Zuniga D, Haouz A, Forest E, Scala R, Bendahhou S, De Zorzi R, Perahia D, Vénien-Bryan C. Int J Mol Sci 23 335 (2021)
  11. Kir6.2-D323 and SUR2A-Q1336: an intersubunit interaction pairing for allosteric information transfer in the KATP channel complex. Brennan S, Rubaiy HN, Imanzadeh S, Reid R, Lodwick D, Norman RI, Rainbow RD. Biochem. J. 477 671-689 (2020)
  12. Palmitoylation of the KATP channel Kir6.2 subunit promotes channel opening by regulating PIP2 sensitivity. Yang HQ, Martinez-Ortiz W, Hwang J, Fan X, Cardozo TJ, Coetzee WA. Proc Natl Acad Sci U S A 117 10593-10602 (2020)
  13. Structural Determinants of Insulin Release: Disordered N-Terminal Tail of Kir6.2 Affects Potassium Channel Dynamics through Interactions with Sulfonylurea Binding Region in a SUR1 Partner. Walczewska-Szewc K, Nowak W. J Phys Chem B 124 6198-6211 (2020)
  14. Structural Insights into ATP-Sensitive Potassium Channel Mechanics: A Role of Intrinsically Disordered Regions. Walczewska-Szewc K, Nowak W. J Chem Inf Model 63 1806-1818 (2023)


Reviews citing this publication (21)

  1. Ion channels as lipid sensors: from structures to mechanisms. Thompson MJ, Baenziger JE. Nat Chem Biol 16 1331-1342 (2020)
  2. Ion Channels of the Islets in Type 2 Diabetes. Jacobson DA, Shyng SL. J Mol Biol 432 1326-1346 (2020)
  3. Advanced imaging and labelling methods to decipher brain cell organization and function. Choquet D, Sainlos M, Sibarita JB. Nat Rev Neurosci 22 237-255 (2021)
  4. Functional protection against cardiac diseases depends on ATP-sensitive potassium channels. Ye P, Zhu YR, Gu Y, Zhang DM, Chen SL. J Cell Mol Med 22 5801-5806 (2018)
  5. Multidrug Resistance in Mammals and Fungi-From MDR to PDR: A Rocky Road from Atomic Structures to Transport Mechanisms. Khunweeraphong N, Kuchler K. Int J Mol Sci 22 4806 (2021)
  6. PKC regulation of ion channels: The involvement of PIP2. Gada KD, Logothetis DE. J Biol Chem 298 102035 (2022)
  7. New insights into KATP channel gene mutations and neonatal diabetes mellitus. Pipatpolkai T, Usher S, Stansfeld PJ, Ashcroft FM. Nat Rev Endocrinol 16 378-393 (2020)
  8. Kir6.1 and SUR2B in Cantú syndrome. McClenaghan C, Nichols CG. Am J Physiol Cell Physiol 323 C920-C935 (2022)
  9. Strategies for cystic fibrosis transmembrane conductance regulator inhibition: from molecular mechanisms to treatment for secretory diarrhoeas. de Jonge HR, Ardelean MC, Bijvelds MJC, Vergani P. FEBS Lett 594 4085-4108 (2020)
  10. KATP channels in focus: Progress toward a structural understanding of ligand regulation. Martin GM, Patton BL, Shyng SL. Curr Opin Struct Biol 79 102541 (2023)
  11. Mechanics and pharmacology of substrate selection and transport by eukaryotic ABC exporters. Srikant S, Gaudet R. Nat. Struct. Mol. Biol. 26 792-801 (2019)
  12. Personalized Therapeutics for KATP-Dependent Pathologies. Nichols CG. Annu Rev Pharmacol Toxicol 63 541-563 (2023)
  13. Towards the Idea of Molecular Brains. Timsit Y, Grégoire SP. Int J Mol Sci 22 11868 (2021)
  14. Channelopathy Genes in Pulmonary Arterial Hypertension. Welch CL, Chung WK. Biomolecules 12 265 (2022)
  15. Contribution of Mitochondria to Insulin Secretion by Various Secretagogues. Ježek P, Holendová B, Jabůrek M, Dlasková A, Plecitá-Hlavatá L. Antioxid Redox Signal 36 920-952 (2022)
  16. Implication of Potassium Channels in the Pathophysiology of Pulmonary Arterial Hypertension. Le Ribeuz H, Capuano V, Girerd B, Humbert M, Montani D, Antigny F. Biomolecules 10 (2020)
  17. Ion Transporters, Channelopathies, and Glucose Disorders. Demirbilek H, Galcheva S, Vuralli D, Al-Khawaga S, Hussain K. Int J Mol Sci 20 (2019)
  18. KATP channel mutations in congenital hyperinsulinism: Progress and challenges towards mechanism-based therapies. ElSheikh A, Shyng SL. Front Endocrinol (Lausanne) 14 1161117 (2023)
  19. Potassium Channels as Therapeutic Targets in Pulmonary Arterial Hypertension. Redel-Traub G, Sampson KJ, Kass RS, Bohnen MS. Biomolecules 12 1341 (2022)
  20. Potassium channels in the sinoatrial node and their role in heart rate control. Aziz Q, Li Y, Tinker A. Channels (Austin) 12 356-366 (2018)
  21. Targeting receptor complexes: a new dimension in drug discovery. Rosenbaum MI, Clemmensen LS, Bredt DS, Bettler B, Strømgaard K. Nat Rev Drug Discov 19 884-901 (2020)

Articles citing this publication (41)

  1. Role of the C-terminus of SUR in the differential regulation of β-cell and cardiac KATP channels by MgADP and metabolism. Vedovato N, Rorsman O, Hennis K, Ashcroft FM, Proks P. J Physiol 596 6205-6217 (2018)
  2. Ameliorative Effect of Ocimum forskolei Benth on Diabetic, Apoptotic, and Adipogenic Biomarkers of Diabetic Rats and 3T3-L1 Fibroblasts Assisted by In Silico Approach. Khalil HE, Abdelwahab MF, Emeka PM, Badger-Emeka LI, Thirugnanasambantham K, Ibrahim HM, Naguib SM, Matsunami K, Abdel-Wahab NM. Molecules 27 2800 (2022)
  3. Molecular insights into the human ABCB6 transporter. Song G, Zhang S, Tian M, Zhang L, Guo R, Zhuo W, Yang M. Cell Discov 7 55 (2021)
  4. Systematic Review TRP Channels Interactome as a Novel Therapeutic Target in Breast Cancer. Saldías MP, Maureira D, Orellana-Serradell O, Silva I, Lavanderos B, Cruz P, Torres C, Cáceres M, Cerda O. Front Oncol 11 621614 (2021)
  5. ATP binding without hydrolysis switches sulfonylurea receptor 1 (SUR1) to outward-facing conformations that activate KATP channels. Sikimic J, McMillen TS, Bleile C, Dastvan F, Quast U, Krippeit-Drews P, Drews G, Bryan J. J Biol Chem 294 3707-3719 (2019)
  6. Biogenesis of zinc storage granules in Drosophila melanogaster. Tejeda-Guzmán C, Rosas-Arellano A, Kroll T, Webb SM, Barajas-Aceves M, Osorio B, Missirlis F. J. Exp. Biol. 221 (2018)
  7. Lactate is an energy substrate for rodent cortical neurons and enhances their firing activity. Karagiannis A, Gallopin T, Lacroix A, Plaisier F, Piquet J, Geoffroy H, Hepp R, Naudé J, Le Gac B, Egger R, Lambolez B, Li D, Rossier J, Staiger JF, Imamura H, Seino S, Roeper J, Cauli B. Elife 10 e71424 (2021)
  8. Structure of Ycf1p reveals the transmembrane domain TMD0 and the regulatory region of ABCC transporters. Bickers SC, Benlekbir S, Rubinstein JL, Kanelis V. Proc Natl Acad Sci U S A 118 e2025853118 (2021)
  9. Glibenclamide and HMR1098 normalize Cantú syndrome-associated gain-of-function currents. Houtman MJC, Chen X, Qile M, Duran K, van Haaften G, Stary-Weinzinger A, van der Heyden MAG. J Cell Mol Med 23 4962-4969 (2019)
  10. Structural insights into the mechanism of pancreatic KATP channel regulation by nucleotides. Wang M, Wu JX, Ding D, Chen L. Nat Commun 13 2770 (2022)
  11. The dynamic interplay of PIP2 and ATP in the regulation of the KATP channel. Pipatpolkai T, Usher SG, Vedovato N, Ashcroft FM, Stansfeld PJ. J Physiol 600 4503-4519 (2022)
  12. Vascular KATP channel structural dynamics reveal regulatory mechanism by Mg-nucleotides. Sung MW, Yang Z, Driggers CM, Patton BL, Mostofian B, Russo JD, Zuckerman DM, Shyng SL. Proc Natl Acad Sci U S A 118 e2109441118 (2021)
  13. A constricted opening in Kir channels does not impede potassium conduction. Black KA, He S, Jin R, Miller DM, Bolla JR, Clarke OB, Johnson P, Windley M, Burns CJ, Hill AP, Laver D, Robinson CV, Smith BJ, Gulbis JM. Nat Commun 11 3024 (2020)
  14. A novel high-affinity inhibitor against the human ATP-sensitive Kir6.2 channel. Ramu Y, Xu Y, Lu Z. J. Gen. Physiol. 150 969-976 (2018)
  15. Activation mechanism of ATP-sensitive K+ channels explored with real-time nucleotide binding. Puljung M, Vedovato N, Usher S, Ashcroft F. Elife 8 (2019)
  16. Characterization of rare ABCC8 variants identified in Spanish pulmonary arterial hypertension patients. Lago-Docampo M, Tenorio J, Hernández-González I, Pérez-Olivares C, Escribano-Subías P, Pousada G, Baloira A, Arenas M, Lapunzina P, Valverde D. Sci Rep 10 15135 (2020)
  17. Conduction through a narrow inward-rectifier K+ channel pore. Bernsteiner H, Zangerl-Plessl EM, Chen X, Stary-Weinzinger A. J. Gen. Physiol. 151 1231-1246 (2019)
  18. Insights on the structure-function relationship of human multidrug resistance protein 7 (MRP7/ABCC10) from molecular dynamics simulations and docking studies. Wang JQ, Cui Q, Lei ZN, Teng QX, Ji N, Lin L, Liu Z, Chen ZS. MedComm (2020) 2 221-235 (2021)
  19. K+ -independent Kir blockade by external Cs+ and Ba2. Gilles O. Physiol Rep 10 e15200 (2022)
  20. Ligand-mediated Structural Dynamics of a Mammalian Pancreatic KATP Channel. Sung MW, Driggers CM, Mostofian B, Russo JD, Patton BL, Zuckerman DM, Shyng SL. J Mol Biol 434 167789 (2022)
  21. Placing steroid hormones within the human ABCC3 transporter reveals a compatible amphiphilic substrate-binding pocket. Wang J, Li X, Wang FF, Cheng MT, Mao YX, Fang SC, Wang L, Zhou CZ, Hou WT, Chen Y. EMBO J 42 e113415 (2023)
  22. Production and purification of ATP-sensitive potassium channel particles for cryo-electron microscopy. Driggers CM, Shyng SL. Methods Enzymol 653 121-150 (2021)
  23. Structural identification of vasodilator binding sites on the SUR2 subunit. Ding D, Wu JX, Duan X, Ma S, Lai L, Chen L. Nat Commun 13 2675 (2022)
  24. Sulfonylurea-Insensitive Permanent Neonatal Diabetes Caused by a Severe Gain-of-Function Tyr330His Substitution in Kir6.2. McClenaghan C, Rapini N, De Rose DU, Gao J, Roeglin J, Bizzarri C, Schiaffini R, Tiberi E, Mucciolo M, Deodati A, Perri A, Vento G, Barbetti F, Nichols CG, Cianfarani S. Horm Res Paediatr 95 215-223 (2022)
  25. Temporal Lobe Epilepsy, Stroke, and Traumatic Brain Injury: Mechanisms of Hyperpolarized, Depolarized, and Flow-Through Ion Channels Utilized as Tri-Coordinate Biomarkers of Electrophysiologic Dysfunction. Sizemore G, Lucke-Wold B, Rosen C, Simpkins JW, Bhatia S, Sun D. OBM Neurobiol 2 (2018)
  26. A family of orthologous proteins from centipede venoms inhibit the hKir6.2 channel. Ramu Y, Lu Z. Sci Rep 9 14088 (2019)
  27. A molecular switch controls the impact of cholesterol on a Kir channel. Corradi V, Bukiya AN, Miranda WE, Cui M, Plant LD, Logothetis DE, Tieleman DP, Noskov SY, Rosenhouse-Dantsker A. Proc Natl Acad Sci U S A 119 e2109431119 (2022)
  28. Blocking Kir6.2 channels with SpTx1 potentiates glucose-stimulated insulin secretion from murine pancreatic β cells and lowers blood glucose in diabetic mice. Ramu Y, Yamakaze J, Zhou Y, Hoshi T, Lu Z. Elife 11 e77026 (2022)
  29. Computational Identification of Novel Kir6 Channel Inhibitors. Chen X, Garon A, Wieder M, Houtman MJC, Zangerl-Plessl EM, Langer T, van der Heyden MAG, Stary-Weinzinger A. Front Pharmacol 10 549 (2019)
  30. Distinct classes of potassium channels fused to GPCRs as electrical signaling biosensors. García-Fernández MD, Chatelain FC, Nury H, Moroni A, Moreau CJ. Cell Rep Methods 1 None (2021)
  31. Electro-metabolic signaling. Longden TA, Lederer WJ. J Gen Physiol 156 e202313451 (2024)
  32. Functional characterization of the transient receptor potential melastatin 2 (TRPM2) cation channel from Nematostella vectensis reconstituted into lipid bilayer. Szollosi A, Almássy J. Sci Rep 13 11471 (2023)
  33. High-Resolution Structures of K+ Channels. Jiang QX. Handb Exp Pharmacol 267 51-81 (2021)
  34. Interfacial Binding Sites for Cholesterol on Kir, Kv, K2P, and Related Potassium Channels. Lee AG. Biophys J 119 35-47 (2020)
  35. Mechanism of pharmacochaperoning in a mammalian KATP channel revealed by cryo-EM. Martin GM, Sung MW, Yang Z, Innes LM, Kandasamy B, David LL, Yoshioka C, Shyng SL. Elife 8 (2019)
  36. On the interplay between lipids and asymmetric dynamics of an NBS degenerate ABC transporter. Tóth Á, Janaszkiewicz A, Crespi V, Di Meo F. Commun Biol 6 149 (2023)
  37. Structural analysis reveals pathomechanisms associated with pseudoxanthoma elasticum-causing mutations in the ABCC6 transporter. Ran Y, Zheng A, Thibodeau PH. J. Biol. Chem. 293 15855-15866 (2018)
  38. Structural basis of prostaglandin efflux by MRP4. Pourmal S, Green E, Bajaj R, Chemmama IE, Knudsen GM, Gupta M, Sali A, Cheng Y, Craik CS, Kroetz DL, Stroud RM. Nat Struct Mol Biol (2024)
  39. The inhibition mechanism of the SUR2A-containing KATP channel by a regulatory helix. Ding D, Hou T, Wei M, Wu JX, Chen L. Nat Commun 14 3608 (2023)
  40. Therapeutic Antibodies Targeting Potassium Ion Channels. Bednenko J, Colussi P, Hussain S, Zhang Y, Clark T. Handb Exp Pharmacol 267 507-545 (2021)
  41. Uncoupling a unique couple by chopping off one of its tails: insights into the KATP channels of the heart and pancreas. Luppi P, Drain P. J. Physiol. (Lond.) 596 6135-6136 (2018)