6anv Citations

Cryo-EM Structures Reveal Mechanism and Inhibition of DNA Targeting by a CRISPR-Cas Surveillance Complex.

Abstract

Prokaryotic cells possess CRISPR-mediated adaptive immune systems that protect them from foreign genetic elements, such as invading viruses. A central element of this immune system is an RNA-guided surveillance complex capable of targeting non-self DNA or RNA for degradation in a sequence- and site-specific manner analogous to RNA interference. Although the complexes display considerable diversity in their composition and architecture, many basic mechanisms underlying target recognition and cleavage are highly conserved. Using cryoelectron microscopy (cryo-EM), we show that the binding of target double-stranded DNA (dsDNA) to a type I-F CRISPR system yersinia (Csy) surveillance complex leads to large quaternary and tertiary structural changes in the complex that are likely necessary in the pathway leading to target dsDNA degradation by a trans-acting helicase-nuclease. Comparison of the structure of the surveillance complex before and after dsDNA binding, or in complex with three virally encoded anti-CRISPR suppressors that inhibit dsDNA binding, reveals mechanistic details underlying target recognition and inhibition.

Reviews - 6anv mentioned but not cited (3)

  1. Keeping crispr in check: diverse mechanisms of phage-encoded anti-crisprs. Trasanidou D, Gerós AS, Mohanraju P, Nieuwenweg AC, Nobrega FL, Staals RHJ. FEMS Microbiol Lett 366 fnz098 (2019)
  2. Structural insights into the inactivation of CRISPR-Cas systems by diverse anti-CRISPR proteins. Zhu Y, Zhang F, Huang Z. BMC Biol 16 32 (2018)
  3. Structural insights into the inactivation of the type I-F CRISPR-Cas system by anti-CRISPR proteins. Yang L, Zhang Y, Yin P, Feng Y. RNA Biol 18 562-573 (2021)

Articles - 6anv mentioned but not cited (1)

  1. Cryo-EM Structures Reveal Mechanism and Inhibition of DNA Targeting by a CRISPR-Cas Surveillance Complex. Guo TW, Bartesaghi A, Yang H, Falconieri V, Rao P, Merk A, Eng ET, Raczkowski AM, Fox T, Earl LA, Patel DJ, Subramaniam S. Cell 171 414-426.e12 (2017)


Reviews citing this publication (26)

  1. Cryo-EM in drug discovery: achievements, limitations and prospects. Renaud JP, Chari A, Ciferri C, Liu WT, Rémigy HW, Stark H, Wiesmann C. Nat Rev Drug Discov 17 471-492 (2018)
  2. Anti-CRISPR protein applications: natural brakes for CRISPR-Cas technologies. Marino ND, Pinilla-Redondo R, Csörgő B, Bondy-Denomy J. Nat Methods 17 471-479 (2020)
  3. Phage-Encoded Anti-CRISPR Defenses. Stanley SY, Maxwell KL. Annu Rev Genet 52 445-464 (2018)
  4. Anti-CRISPRs: Protein Inhibitors of CRISPR-Cas Systems. Davidson AR, Lu WT, Stanley SY, Wang J, Mejdani M, Trost CN, Hicks BT, Lee J, Sontheimer EJ. Annu Rev Biochem 89 309-332 (2020)
  5. Structures and Strategies of Anti-CRISPR-Mediated Immune Suppression. Wiegand T, Karambelkar S, Bondy-Denomy J, Wiedenheft B. Annu Rev Microbiol 74 21-37 (2020)
  6. Meet the Anti-CRISPRs: Widespread Protein Inhibitors of CRISPR-Cas Systems. Hwang S, Maxwell KL. CRISPR J 2 23-30 (2019)
  7. Controlling and enhancing CRISPR systems. Shivram H, Cress BF, Knott GJ, Doudna JA. Nat Chem Biol 17 10-19 (2021)
  8. Cryo-EM for Small Molecules Discovery, Design, Understanding, and Application. Scapin G, Potter CS, Carragher B. Cell Chem Biol 25 1318-1325 (2018)
  9. Protein Inhibitors of CRISPR-Cas9. Bondy-Denomy J. ACS Chem Biol 13 417-423 (2018)
  10. Chemistry of Class 1 CRISPR-Cas effectors: Binding, editing, and regulation. Liu TY, Doudna JA. J Biol Chem 295 14473-14487 (2020)
  11. Structure-based functional mechanisms and biotechnology applications of anti-CRISPR proteins. Jia N, Patel DJ. Nat Rev Mol Cell Biol 22 563-579 (2021)
  12. Structural biology of CRISPR-Cas immunity and genome editing enzymes. Wang JY, Pausch P, Doudna JA. Nat Rev Microbiol 20 641-656 (2022)
  13. Anti-CRISPRs: The natural inhibitors for CRISPR-Cas systems. Zhang F, Song G, Tian Y. Animal Model Exp Med 2 69-75 (2019)
  14. Three New Cs for CRISPR: Collateral, Communicate, Cooperate. Varble A, Marraffini LA. Trends Genet 35 446-456 (2019)
  15. Mechanisms of Type I-E and I-F CRISPR-Cas Systems in Enterobacteriaceae. Xue C, Sashital DG. EcoSal Plus 8 (2019)
  16. New paradigm of functional regulation by DNA mimic proteins: Recent updates. Wang HC, Chou CC, Hsu KC, Lee CH, Wang AH. IUBMB Life 71 539-548 (2019)
  17. Digging into the lesser-known aspects of CRISPR biology. Guzmán NM, Esquerra-Ruvira B, Mojica FJM. Int Microbiol 24 473-498 (2021)
  18. Types I and V Anti-CRISPR Proteins: From Phage Defense to Eukaryotic Synthetic Gene Circuits. Yu L, Marchisio MA. Front Bioeng Biotechnol 8 575393 (2020)
  19. The Application of the CRISPR-Cas System in Antibiotic Resistance. Tao S, Chen H, Li N, Liang W. Infect Drug Resist 15 4155-4168 (2022)
  20. In Silico Approaches for Prediction of Anti-CRISPR Proteins. Makarova KS, Wolf YI, Koonin EV. J Mol Biol 435 168036 (2023)
  21. Mechanisms regulating the CRISPR-Cas systems. Zakrzewska M, Burmistrz M. Front Microbiol 14 1060337 (2023)
  22. Microbiology catches the cryo-EM bug. Earl LA, Falconieri V, Subramaniam S. Curr Opin Microbiol 43 199-207 (2018)
  23. CRISPR-Cas adaptation in Escherichia coli. Mitić D, Bolt EL, Ivančić-Baće I. Biosci Rep 43 BSR20221198 (2023)
  24. The Many (Inter)faces of Anti-CRISPRs: Modulation of CRISPR-Cas Structure and Dynamics by Mechanistically Diverse Inhibitors. Belato HB, Lisi GP. Biomolecules 13 264 (2023)
  25. The Post-Antibiotic Era: A New Dawn for Bacteriophages. Jin Y, Li W, Zhang H, Ba X, Li Z, Zhou J. Biology (Basel) 12 681 (2023)
  26. The biology and type I/III hybrid nature of type I-D CRISPR-Cas systems. McBride TM, Cameron SC, Fineran PC, Fagerlund RD. Biochem J 480 471-488 (2023)

Articles citing this publication (62)

  1. Anti-CRISPR Phages Cooperate to Overcome CRISPR-Cas Immunity. Landsberger M, Gandon S, Meaden S, Rollie C, Chevallereau A, Chabas H, Buckling A, Westra ER, van Houte S. Cell 174 908-916.e12 (2018)
  2. Widespread anti-CRISPR proteins in virulent bacteriophages inhibit a range of Cas9 proteins. Hynes AP, Rousseau GM, Agudelo D, Goulet A, Amigues B, Loehr J, Romero DA, Fremaux C, Horvath P, Doyon Y, Cambillau C, Moineau S. Nat Commun 9 2919 (2018)
  3. PAM identification by CRISPR-Cas effector complexes: diversified mechanisms and structures. Gleditzsch D, Pausch P, Müller-Esparza H, Özcan A, Guo X, Bange G, Randau L. RNA Biol 16 504-517 (2019)
  4. Bacteriophage Cooperation Suppresses CRISPR-Cas3 and Cas9 Immunity. Borges AL, Zhang JY, Rollins MF, Osuna BA, Wiedenheft B, Bondy-Denomy J. Cell 174 917-925.e10 (2018)
  5. Anti-CRISPR-Associated Proteins Are Crucial Repressors of Anti-CRISPR Transcription. Stanley SY, Borges AL, Chen KH, Swaney DL, Krogan NJ, Bondy-Denomy J, Davidson AR. Cell 178 1452-1464.e13 (2019)
  6. Type III-A CRISPR-Cas Csm Complexes: Assembly, Periodic RNA Cleavage, DNase Activity Regulation, and Autoimmunity. Jia N, Mo CY, Wang C, Eng ET, Marraffini LA, Patel DJ. Mol Cell 73 264-277.e5 (2019)
  7. Discovery of multiple anti-CRISPRs highlights anti-defense gene clustering in mobile genetic elements. Pinilla-Redondo R, Shehreen S, Marino ND, Fagerlund RD, Brown CM, Sørensen SJ, Fineran PC, Bondy-Denomy J. Nat Commun 11 5652 (2020)
  8. Diverse Mechanisms of CRISPR-Cas9 Inhibition by Type IIC Anti-CRISPR Proteins. Zhu Y, Gao A, Zhan Q, Wang Y, Feng H, Liu S, Gao G, Serganov A, Gao P. Mol Cell 74 296-309.e7 (2019)
  9. Structure Reveals a Mechanism of CRISPR-RNA-Guided Nuclease Recruitment and Anti-CRISPR Viral Mimicry. Rollins MF, Chowdhury S, Carter J, Golden SM, Miettinen HM, Santiago-Frangos A, Faith D, Lawrence CM, Lander GC, Wiedenheft B. Mol Cell 74 132-142.e5 (2019)
  10. Machine-learning approach expands the repertoire of anti-CRISPR protein families. Gussow AB, Park AE, Borges AL, Shmakov SA, Makarova KS, Wolf YI, Bondy-Denomy J, Koonin EV. Nat Commun 11 3784 (2020)
  11. Mobile element warfare via CRISPR and anti-CRISPR in Pseudomonas aeruginosa. León LM, Park AE, Borges AL, Zhang JY, Bondy-Denomy J. Nucleic Acids Res 49 2114-2125 (2021)
  12. Inhibition of CRISPR-Cas9 ribonucleoprotein complex assembly by anti-CRISPR AcrIIC2. Thavalingam A, Cheng Z, Garcia B, Huang X, Shah M, Sun W, Wang M, Harrington L, Hwang S, Hidalgo-Reyes Y, Sontheimer EJ, Doudna J, Davidson AR, Moraes TF, Wang Y, Maxwell KL. Nat Commun 10 2806 (2019)
  13. Real-Time Observation of Target Search by the CRISPR Surveillance Complex Cascade. Xue C, Zhu Y, Zhang X, Shin YK, Sashital DG. Cell Rep 21 3717-3727 (2017)
  14. Target preference of Type III-A CRISPR-Cas complexes at the transcription bubble. Liu TY, Liu JJ, Aditham AJ, Nogales E, Doudna JA. Nat Commun 10 3001 (2019)
  15. Inhibition mechanisms of AcrF9, AcrF8, and AcrF6 against type I-F CRISPR-Cas complex revealed by cryo-EM. Zhang K, Wang S, Li S, Zhu Y, Pintilie GD, Mou TC, Schmid MF, Huang Z, Chiu W. Proc Natl Acad Sci U S A 117 7176-7182 (2020)
  16. Repurposing type I-F CRISPR-Cas system as a transcriptional activation tool in human cells. Chen Y, Liu J, Zhi S, Zheng Q, Ma W, Huang J, Liu Y, Liu D, Liang P, Songyang Z. Nat Commun 11 3136 (2020)
  17. Single-particle cryo-electron microscopy: Mathematical theory, computational challenges, and opportunities. Bendory T, Bartesaghi A, Singer A. IEEE Signal Process Mag 37 58-76 (2020)
  18. Bio-Layer Interferometry Analysis of the Target Binding Activity of CRISPR-Cas Effector Complexes. Müller-Esparza H, Osorio-Valeriano M, Steube N, Thanbichler M, Randau L. Front Mol Biosci 7 98 (2020)
  19. Expanding the mass range for UVPD-based native top-down mass spectrometry. Greisch JF, Tamara S, Scheltema RA, Maxwell HWR, Fagerlund RD, Fineran PC, Tetter S, Hilvert D, Heck AJR. Chem Sci 10 7163-7171 (2019)
  20. Genome editing in mammalian cells using the CRISPR type I-D nuclease. Osakabe K, Wada N, Murakami E, Miyashita N, Osakabe Y. Nucleic Acids Res 49 6347-6363 (2021)
  21. Structural basis for inhibition of the type I-F CRISPR-Cas surveillance complex by AcrIF4, AcrIF7 and AcrIF14. Gabel C, Li Z, Zhang H, Chang L. Nucleic Acids Res 49 584-594 (2021)
  22. Anti-CRISPR AcrIF9 functions by inducing the CRISPR-Cas complex to bind DNA non-specifically. Lu WT, Trost CN, Müller-Esparza H, Randau L, Davidson AR. Nucleic Acids Res 49 3381-3393 (2021)
  23. Letter Structure-function insights into the initial step of DNA integration by a CRISPR-Cas-Transposon complex. Jia N, Xie W, de la Cruz MJ, Eng ET, Patel DJ. Cell Res 30 182-184 (2020)
  24. CRISPR-Cas3-based diagnostics for SARS-CoV-2 and influenza virus. Yoshimi K, Takeshita K, Yamayoshi S, Shibumura S, Yamauchi Y, Yamamoto M, Yotsuyanagi H, Kawaoka Y, Mashimo T. iScience 25 103830 (2022)
  25. Letter Cryo-EM structure of a type I-F CRISPR RNA guided surveillance complex bound to transposition protein TniQ. Li Z, Zhang H, Xiao R, Chang L. Cell Res 30 179-181 (2020)
  26. DNA interference is controlled by R-loop length in a type I-F1 CRISPR-Cas system. Tuminauskaite D, Norkunaite D, Fiodorovaite M, Tumas S, Songailiene I, Tamulaitiene G, Sinkunas T. BMC Biol 18 65 (2020)
  27. Structural and mechanistic insights into the CRISPR inhibition of AcrIF7. Kim I, Koo J, An SY, Hong S, Ka D, Kim EH, Bae E, Suh JY. Nucleic Acids Res 48 9959-9968 (2020)
  28. Structural insight into multistage inhibition of CRISPR-Cas12a by AcrVA4. Peng R, Li Z, Xu Y, He S, Peng Q, Wu LA, Wu Y, Qi J, Wang P, Shi Y, Gao GF. Proc Natl Acad Sci U S A 116 18928-18936 (2019)
  29. Allosteric control of type I-A CRISPR-Cas3 complexes and establishment as effective nucleic acid detection and human genome editing tools. Hu C, Ni D, Nam KH, Majumdar S, McLean J, Stahlberg H, Terns MP, Ke A. Mol Cell 82 2754-2768.e5 (2022)
  30. CRISPR RNA and anti-CRISPR protein binding to the Xanthomonas albilineans Csy1-Csy2 heterodimer in the type I-F CRISPR-Cas system. Hong S, Ka D, Yoon SJ, Suh N, Jeong M, Suh JY, Bae E. J Biol Chem 293 2744-2754 (2018)
  31. Insights into the inhibition of type I-F CRISPR-Cas system by a multifunctional anti-CRISPR protein AcrIF24. Yang L, Zhang L, Yin P, Ding H, Xiao Y, Zeng J, Wang W, Zhou H, Wang Q, Zhang Y, Chen Z, Yang M, Feng Y. Nat Commun 13 1931 (2022)
  32. Structural basis for inhibition of an archaeal CRISPR-Cas type I-D large subunit by an anti-CRISPR protein. Manav MC, Van LB, Lin J, Fuglsang A, Peng X, Brodersen DE. Nat Commun 11 5993 (2020)
  33. Recent advances in structural studies of the CRISPR-Cas-mediated genome editing tools. Zhu Y, Huang Z. Natl Sci Rev 6 438-451 (2019)
  34. Letter Structural basis of a Tn7-like transposase recruitment and DNA loading to CRISPR-Cas surveillance complex. Wang B, Xu W, Yang H. Cell Res 30 185-187 (2020)
  35. High-Resolution Mapping of Amino Acid Residues in DNA-Protein Cross-Links Enabled by Ribonucleotide-Containing DNA. Tang J, Zhao W, Hendricks NG, Zhao L. Anal Chem 93 13398-13406 (2021)
  36. Insights into the dual functions of AcrIF14 during the inhibition of type I-F CRISPR-Cas surveillance complex. Liu X, Zhang L, Xiu Y, Gao T, Huang L, Xie Y, Yang L, Wang W, Wang P, Zhang Y, Yang M, Feng Y. Nucleic Acids Res 49 10178-10191 (2021)
  37. Type I-F CRISPR-Cas provides protection from DNA, but not RNA phages. Buyukyoruk M, Wiedenheft B. Cell Discov 5 54 (2019)
  38. A high-resolution (1.2 Å) crystal structure of the anti-CRISPR protein AcrIF9. Kim GE, Lee SY, Park HH. FEBS Open Bio 10 2532-2540 (2020)
  39. Dynamic mechanisms of CRISPR interference by Escherichia coli CRISPR-Cas3. Yoshimi K, Takeshita K, Kodera N, Shibumura S, Yamauchi Y, Omatsu M, Umeda K, Kunihiro Y, Yamamoto M, Mashimo T. Nat Commun 13 4917 (2022)
  40. Structural organization of a Type III-A CRISPR effector subcomplex determined by X-ray crystallography and cryo-EM. Dorsey BW, Huang L, Mondragón A. Nucleic Acids Res 47 3765-3783 (2019)
  41. A CRISPR RNA Is Closely Related With the Size of the Cascade Nucleoprotein Complex. Gu DH, Ha SC, Kim JS. Front Microbiol 10 2458 (2019)
  42. Distinct Subcellular Localization of a Type I CRISPR Complex and the Cas3 Nuclease in Bacteria. Govindarajan S, Borges A, Karambelkar S, Bondy-Denomy J. J Bacteriol 204 e0010522 (2022)
  43. Mechanistic insights into the inhibition of the CRISPR-Cas surveillance complex by anti-CRISPR protein AcrIF13. Wang H, Gao T, Zhou Y, Ren J, Guo J, Zeng J, Xiao Y, Zhang Y, Feng Y. J Biol Chem 298 101636 (2022)
  44. Structural basis of AcrIF24 as an anti-CRISPR protein and transcriptional suppressor. Mukherjee IA, Gabel C, Noinaj N, Bondy-Denomy J, Chang L. Nat Chem Biol 18 1417-1424 (2022)
  45. Structure and mechanism of the type I-G CRISPR effector. Shangguan Q, Graham S, Sundaramoorthy R, White MF. Nucleic Acids Res 50 11214-11228 (2022)
  46. The development of cryo-EM and how it has advanced microbiology. Oikonomou CM, Jensen GJ. Nat Microbiol 2 1577-1579 (2017)
  47. Anti-CRISPR AcrIIC5 is a dsDNA mimic that inhibits type II-C Cas9 effectors by blocking PAM recognition. Sun W, Zhao X, Wang J, Yang X, Cheng Z, Liu S, Wang J, Sheng G, Wang Y. Nucleic Acids Res 51 1984-1995 (2023)
  48. CRISPR Surveillance Turns Transposon Taxi. Wiegand T, Wiedenheft B. CRISPR J 3 10-12 (2020)
  49. Discovery and characterization of novel type I-D CRISPR-guided transposons identified among diverse Tn7-like elements in cyanobacteria. Hsieh SC, Peters JE. Nucleic Acids Res 51 765-782 (2023)
  50. Molecular basis of dual anti-CRISPR and auto-regulatory functions of AcrIF24. Kim GE, Lee SY, Birkholz N, Kamata K, Jeong JH, Kim YG, Fineran PC, Park HH. Nucleic Acids Res 50 11344-11358 (2022)
  51. The structure of AcrIE4-F7 reveals a common strategy for dual CRISPR inhibition by targeting PAM recognition sites. Hong SH, Lee G, Park C, Koo J, Kim EH, Bae E, Suh JY. Nucleic Acids Res 50 2363-2376 (2022)
  52. Anti-CRISPR protein AcrIF4 inhibits the type I-F CRISPR-Cas surveillance complex by blocking nuclease recruitment and DNA cleavage. Gao Z, Zhang L, Ge Z, Wang H, Yue Y, Jiang Z, Wang X, Xu C, Zhang Y, Yang M, Feng Y. J Biol Chem 298 102575 (2022)
  53. Anti-CRISPR proteins function through thermodynamic tuning and allosteric regulation of CRISPR RNA-guided surveillance complex. Patterson A, White A, Waymire E, Fleck S, Golden S, Wilkinson RA, Wiedenheft B, Bothner B. Nucleic Acids Res 50 11243-11254 (2022)
  54. Data-driven determination of number of discrete conformations in single-particle cryo-EM. Zhou Y, Moscovich A, Bartesaghi A. Comput Methods Programs Biomed 221 106892 (2022)
  55. Structural insights into the regulation of Cas7-11 by TPR-CHAT. Ekundayo B, Torre D, Beckert B, Nazarov S, Myasnikov A, Stahlberg H, Ni D. Nat Struct Mol Biol 30 135-139 (2023)
  56. Bacteriophages suppress CRISPR-Cas immunity using RNA-based anti-CRISPRs. Camara-Wilpert S, Mayo-Muñoz D, Russel J, Fagerlund RD, Madsen JS, Fineran PC, Sørensen SJ, Pinilla-Redondo R. Nature 623 601-607 (2023)
  57. Disarming of type I-F CRISPR-Cas surveillance complex by anti-CRISPR proteins AcrIF6 and AcrIF9. Kupcinskaite E, Tutkus M, Kopūstas A, Ašmontas S, Jankunec M, Zaremba M, Tamulaitiene G, Sinkunas T. Sci Rep 12 15548 (2022)
  58. Distribution and molecular evolution of the anti-CRISPR family AcrIF7. Figueroa W, Cazares A, Cazares D, Wu Y, de la Cruz A, Welch M, Kameyama L, Nobrega FL, Guarneros G. PLoS Biol 21 e3002072 (2023)
  59. Mechanistic insights into DNA binding and cleavage by a compact type I-F CRISPR-Cas system in bacteriophage. Zhang M, Peng R, Peng Q, Liu S, Li Z, Zhang Y, Song H, Yang J, Xing X, Wang P, Qi J, Gao GF. Proc Natl Acad Sci U S A 120 e2215098120 (2023)
  60. Regulation of CRISPR-Associated Genes by Rv1776c (CasR) in Mycobacterium tuberculosis. Wei W, Jiang X, Zhang L, Yan Y, Yan J, Xu L, Gao CH, Yang M. Biomolecules 13 400 (2023)
  61. Structural snapshots of R-loop formation by a type I-C CRISPR Cascade. O'Brien RE, Bravo JPK, Ramos D, Hibshman GN, Wright JT, Taylor DW. Mol Cell 83 746-758.e5 (2023)
  62. Widespread CRISPR-derived RNA regulatory elements in CRISPR-Cas systems. Shmakov SA, Barth ZK, Makarova KS, Wolf YI, Brover V, Peters JE, Koonin EV. Nucleic Acids Res 51 8150-8168 (2023)