5zni Citations

Identifying purine nucleoside phosphorylase as the target of quinine using cellular thermal shift assay.

Abstract

Mechanisms of action (MoAs) have been elusive for most antimalarial drugs in clinical use. Decreasing responsiveness to antimalarial treatments stresses the need for a better resolved understanding of their MoAs and associated resistance mechanisms. In the present work, we implemented the cellular thermal shift assay coupled with mass spectrometry (MS-CETSA) for drug target identification in Plasmodium falciparum, the main causative agent of human malaria. We validated the efficacy of this approach for pyrimethamine, a folic acid antagonist, and E64d, a broad-spectrum cysteine proteinase inhibitor. Subsequently, we applied MS-CETSA to quinine and mefloquine, two important antimalarial drugs with poorly characterized MoAs. Combining studies in the P. falciparum parasite lysate and intact infected red blood cells, we found P. falciparum purine nucleoside phosphorylase (PfPNP) as a common binding target for these two quinoline drugs. Biophysical and structural studies with a recombinant protein further established that both compounds bind within the enzyme's active site. Quinine binds to PfPNP at low nanomolar affinity, suggesting a substantial contribution to its therapeutic effect. Overall, we demonstrated that implementation of MS-CETSA for P. falciparum constitutes a promising strategy to elucidate the MoAs of existing and candidate antimalarial drugs.

Reviews - 5zni mentioned but not cited (1)



Reviews citing this publication (17)

  1. Thermal proteome profiling for interrogating protein interactions. Mateus A, Kurzawa N, Becher I, Sridharan S, Helm D, Stein F, Typas A, Savitski MM. Mol Syst Biol 16 e9232 (2020)
  2. MalDA, Accelerating Malaria Drug Discovery. Yang T, Ottilie S, Istvan ES, Godinez-Macias KP, Lukens AK, Baragaña B, Campo B, Walpole C, Niles JC, Chibale K, Dechering KJ, Llinás M, Lee MCS, Kato N, Wyllie S, McNamara CW, Gamo FJ, Burrows J, Fidock DA, Goldberg DE, Gilbert IH, Wirth DF, Winzeler EA, Malaria Drug Accelerator Consortium. Trends Parasitol 37 493-507 (2021)
  3. The antimalarial resistome - finding new drug targets and their modes of action. Carolino K, Winzeler EA. Curr Opin Microbiol 57 49-55 (2020)
  4. Treatment of Human Babesiosis: Then and Now. Renard I, Ben Mamoun C. Pathogens 10 1120 (2021)
  5. Photoaffinity labelling strategies for mapping the small molecule-protein interactome. Burton NR, Kim P, Backus KM. Org Biomol Chem 19 7792-7809 (2021)
  6. From Phenotypic Hit to Chemical Probe: Chemical Biology Approaches to Elucidate Small Molecule Action in Complex Biological Systems. Pasquer QTL, Tsakoumagkos IA, Hoogendoorn S. Molecules 25 E5702 (2020)
  7. Recent advances in isobaric labeling and applications in quantitative proteomics. Sivanich MK, Gu TJ, Tabang DN, Li L. Proteomics 22 e2100256 (2022)
  8. Currently Available Strategies for Target Identification of Bioactive Natural Products. Li G, Peng X, Guo Y, Gong S, Cao S, Qiu F. Front Chem 9 761609 (2021)
  9. Adapt or Die: Targeting Unique Transmission-Stage Biology for Malaria Elimination. van der Watt ME, Reader J, Birkholtz LM. Front Cell Infect Microbiol 12 901971 (2022)
  10. Sources of Antifungal Drugs. Vanreppelen G, Wuyts J, Van Dijck P, Vandecruys P. J Fungi (Basel) 9 171 (2023)
  11. An update of label-free protein target identification methods for natural active products. Cui Z, Li C, Chen P, Yang H. Theranostics 12 1829-1854 (2022)
  12. Chemoproteomics for Plasmodium Parasite Drug Target Discovery. Lu KY, Mansfield CR, Fitzgerald MC, Derbyshire ER. Chembiochem 22 2591-2599 (2021)
  13. Current and emerging target identification methods for novel antimalarials. Challis MP, Devine SM, Creek DJ. Int J Parasitol Drugs Drug Resist 20 135-144 (2022)
  14. Interaction profiling methods to map protein and pathway targets of bioactive ligands. Huang JX, Coukos JS, Moellering RE. Curr Opin Chem Biol 54 76-84 (2020)
  15. Plant Extracts as a Source of Natural Products with Potential Antimalarial Effects: An Update from 2018 to 2022. Ribeiro GJG, Rei Yan SL, Palmisano G, Wrenger C. Pharmaceutics 15 1638 (2023)
  16. Protecting future antimalarials from the trap of resistance: Lessons from artemisinin-based combination therapy (ACT) failures. Erhunse N, Sahal D. J Pharm Anal 11 541-554 (2021)
  17. The Knowns and Unknowns in Protein-Metabolite Interactions. Kurbatov I, Dolgalev G, Arzumanian V, Kiseleva O, Poverennaya E. Int J Mol Sci 24 4155 (2023)

Articles citing this publication (41)

  1. Emergence of artemisinin-resistant Plasmodium falciparum with kelch13 C580Y mutations on the island of New Guinea. Miotto O, Sekihara M, Tachibana SI, Yamauchi M, Pearson RD, Amato R, Gonçalves S, Mehra S, Noviyanti R, Marfurt J, Auburn S, Price RN, Mueller I, Ikeda M, Mori T, Hirai M, Tavul L, Hetzel MW, Laman M, Barry AE, Ringwald P, Ohashi J, Hombhanje F, Kwiatkowski DP, Mita T. PLoS Pathog 16 e1009133 (2020)
  2. Dual Plasmepsin-Targeting Antimalarial Agents Disrupt Multiple Stages of the Malaria Parasite Life Cycle. Favuzza P, de Lera Ruiz M, Thompson JK, Triglia T, Ngo A, Steel RWJ, Vavrek M, Christensen J, Healer J, Boyce C, Guo Z, Hu M, Khan T, Murgolo N, Zhao L, Penington JS, Reaksudsan K, Jarman K, Dietrich MH, Richardson L, Guo KY, Lopaticki S, Tham WH, Rottmann M, Papenfuss T, Robbins JA, Boddey JA, Sleebs BE, Sabroux HJ, McCauley JA, Olsen DB, Cowman AF. Cell Host Microbe 27 642-658.e12 (2020)
  3. Cellular thermal shift assay for the identification of drug-target interactions in the Plasmodium falciparum proteome. Dziekan JM, Wirjanata G, Dai L, Go KD, Yu H, Lim YT, Chen L, Wang LC, Puspita B, Prabhu N, Sobota RM, Nordlund P, Bozdech Z. Nat Protoc 15 1881-1921 (2020)
  4. Plasmodium chaperonin TRiC/CCT identified as a target of the antihistamine clemastine using parallel chemoproteomic strategy. Lu KY, Quan B, Sylvester K, Srivastava T, Fitzgerald MC, Derbyshire ER. Proc Natl Acad Sci U S A 117 5810-5817 (2020)
  5. Plasmodium falciparum resistance to ACTs: Emergence, mechanisms, and outlook. Siddiqui FA, Liang X, Cui L. Int J Parasitol Drugs Drug Resist 16 102-118 (2021)
  6. Identifying the Target of an Antiparasitic Compound in Toxoplasma Using Thermal Proteome Profiling. Herneisen AL, Sidik SM, Markus BM, Drewry DH, Zuercher WJ, Lourido S. ACS Chem Biol 15 1801-1807 (2020)
  7. Drug screens of NGLY1 deficiency in worm and fly models reveal catecholamine, NRF2 and anti-inflammatory-pathway activation as potential clinical approaches. Iyer S, Mast JD, Tsang H, Rodriguez TP, DiPrimio N, Prangley M, Sam FS, Parton Z, Perlstein EO. Dis Model Mech 12 dmm040576 (2019)
  8. Derivatives of the Antimalarial Drug Mefloquine Are Broad-Spectrum Antifungal Molecules with Activity against Drug-Resistant Clinical Isolates. Montoya MC, Beattie S, Alden KM, Krysan DJ. Antimicrob Agents Chemother 64 e02331-19 (2020)
  9. Mutant thermal proteome profiling for characterization of missense protein variants and their associated phenotypes within the proteome. Peck Justice SA, Barron MP, Qi GD, Wijeratne HRS, Victorino JF, Simpson ER, Vilseck JZ, Wijeratne AB, Mosley AL. J Biol Chem 295 16219-16238 (2020)
  10. Pyronaridine tetraphosphate efficacy against Ebola virus infection in guinea pig. Lane TR, Massey C, Comer JE, Freiberg AN, Zhou H, Dyall J, Holbrook MR, Anantpadma M, Davey RA, Madrid PB, Ekins S. Antiviral Res 181 104863 (2020)
  11. Multi-omic Characterization of the Mode of Action of a Potent New Antimalarial Compound, JPC-3210, Against Plasmodium falciparum. Birrell GW, Challis MP, De Paoli A, Anderson D, Devine SM, Heffernan GD, Jacobus DP, Edstein MD, Siddiqui G, Creek DJ. Mol Cell Proteomics 19 308-325 (2020)
  12. A Probe for NLRP3 Inflammasome Inhibitor MCC950 Identifies Carbonic Anhydrase 2 as a Novel Target. Kennedy CR, Goya Grocin A, Kovačič T, Singh R, Ward JA, Shenoy AR, Tate EW. ACS Chem Biol 16 982-990 (2021)
  13. Preclinical characterization and target validation of the antimalarial pantothenamide MMV693183. de Vries LE, Jansen PAM, Barcelo C, Munro J, Verhoef JMJ, Pasaje CFA, Rubiano K, Striepen J, Abla N, Berning L, Bolscher JM, Demarta-Gatsi C, Henderson RWM, Huijs T, Koolen KMJ, Tumwebaze PK, Yeo T, Aguiar ACC, Angulo-Barturen I, Churchyard A, Baum J, Fernández BC, Fuchs A, Gamo FJ, Guido RVC, Jiménez-Diaz MB, Pereira DB, Rochford R, Roesch C, Sanz LM, Trevitt G, Witkowski B, Wittlin S, Cooper RA, Rosenthal PJ, Sauerwein RW, Schalkwijk J, Hermkens PHH, Bonnert RV, Campo B, Fidock DA, Llinás M, Niles JC, Kooij TWA, Dechering KJ. Nat Commun 13 2158 (2022)
  14. Gentiopicroside targets PAQR3 to activate the PI3K/AKT signaling pathway and ameliorate disordered glucose and lipid metabolism. Xiao H, Sun X, Lin Z, Yang Y, Zhang M, Xu Z, Liu P, Liu Z, Huang H. Acta Pharm Sin B 12 2887-2904 (2022)
  15. Proteome-wide cellular thermal shift assay reveals unexpected cross-talk between brassinosteroid and auxin signaling. Lu Q, Zhang Y, Hellner J, Giannini C, Xu X, Pauwels J, Ma Q, Dejonghe W, Han H, Van de Cotte B, Impens F, Gevaert K, De Smet I, Friml J, Molina DM, Russinova E. Proc Natl Acad Sci U S A 119 e2118220119 (2022)
  16. CETSA MS Profiling for a Comparative Assessment of FDA-Approved Antivirals Repurposed for COVID-19 Therapy Identifies TRIP13 as a Remdesivir Off-Target. Friman T, Chernobrovkin A, Martinez Molina D, Arnold L. SLAS Discov 26 336-344 (2021)
  17. Editorial Focusing on Relevance: CETSA-Guided Medicinal Chemistry and Lead Generation. Lundgren S. ACS Med Chem Lett 10 690-693 (2019)
  18. The Knock-Down of the Chloroquine Resistance Transporter PfCRT Is Linked to Oligopeptide Handling in Plasmodium falciparum. Sanchez CP, Manson EDT, Moliner Cubel S, Mandel L, Weidt SK, Barrett MP, Lanzer M. Microbiol Spectr 10 e0110122 (2022)
  19. The pink salmon genome: Uncovering the genomic consequences of a two-year life cycle. Christensen KA, Rondeau EB, Sakhrani D, Biagi CA, Johnson H, Joshi J, Flores AM, Leelakumari S, Moore R, Pandoh PK, Withler RE, Beacham TD, Leggatt RA, Tarpey CM, Seeb LW, Seeb JE, Jones SJM, Devlin RH, Koop BF. PLoS One 16 e0255752 (2021)
  20. Vitexin inhibits APEX1 to counteract the flow-induced endothelial inflammation. Zhao CR, Yang FF, Cui Q, Wang D, Zhou Y, Li YS, Zhang YP, Tang RZ, Yao WJ, Wang X, Pang W, Zhao JN, Jiang ZT, Zhu JJ, Chien S, Zhou J. Proc Natl Acad Sci U S A 118 e2115158118 (2021)
  21. Discovery and Characterization of Potent, Efficacious, Orally Available Antimalarial Plasmepsin X Inhibitors and Preclinical Safety Assessment of UCB7362. Lowe MA, Cardenas A, Valentin JP, Zhu Z, Abendroth J, Castro JL, Class R, Delaunois A, Fleurance R, Gerets H, Gryshkova V, King L, Lorimer DD, MacCoss M, Rowley JH, Rosseels ML, Royer L, Taylor RD, Wong M, Zaccheo O, Chavan VP, Ghule GA, Tapkir BK, Burrows JN, Duffey M, Rottmann M, Wittlin S, Angulo-Barturen I, Jiménez-Díaz MB, Striepen J, Fairhurst KJ, Yeo T, Fidock DA, Cowman AF, Favuzza P, Crespo-Fernandez B, Gamo FJ, Goldberg DE, Soldati-Favre D, Laleu B, de Haro T. J Med Chem 65 14121-14143 (2022)
  22. Toolkit of Approaches To Support Target-Focused Drug Discovery for Plasmodium falciparum Lysyl tRNA Synthetase. Milne R, Wiedemar N, Corpas-Lopez V, Moynihan E, Wall RJ, Dawson A, Robinson DA, Shepherd SM, Smith RJ, Hallyburton I, Post JM, Dowers K, Torrie LS, Gilbert IH, Baragaña B, Patterson S, Wyllie S. ACS Infect Dis 8 1962-1974 (2022)
  23. Cellular Target Deconvolution of Small Molecules Using a Selection-Based Genetic Screening Platform. Zhao J, Tang Z, Selvaraju M, Johnson KA, Douglas JT, Gao PF, Petrassi HM, Wang MZ, Wang J. ACS Cent Sci 8 1424-1434 (2022)
  24. How Physiologic Targets Can Be Distinguished from Drug-Binding Proteins. Mensa-Wilmot K. Mol Pharmacol 100 1-6 (2021)
  25. Resistance to Antimalarial Monotherapy Is Cyclic. Weitzman R, Calfon-Peretz O, Saha T, Bloch N, Ben Zaken K, Rosenfeld A, Amitay M, Samson AO. J Clin Med 11 781 (2022)
  26. A Bayesian semi-parametric model for thermal proteome profiling. Fang S, Kirk PDW, Bantscheff M, Lilley KS, Crook OM. Commun Biol 4 810 (2021)
  27. A resistant mutant of Plasmodium falciparum purine nucleoside phosphorylase uses wild-type neighbors to maintain parasite survival. Minnow YVT, Harijan RK, Schramm VL. J Biol Chem 296 100342 (2021)
  28. Identification of antimalarial targets of chloroquine by a combined deconvolution strategy of ABPP and MS-CETSA. Gao P, Liu YQ, Xiao W, Xia F, Chen JY, Gu LW, Yang F, Zheng LH, Zhang JZ, Zhang Q, Li ZJ, Meng YQ, Zhu YP, Tang H, Shi QL, Guo QY, Zhang Y, Xu CC, Dai LY, Wang JG. Mil Med Res 9 30 (2022)
  29. Potent acyl-CoA synthetase 10 inhibitors kill Plasmodium falciparum by disrupting triglyceride formation. Bopp S, Pasaje CFA, Summers RL, Magistrado-Coxen P, Schindler KA, Corpas-Lopez V, Yeo T, Mok S, Dey S, Smick S, Nasamu AS, Demas AR, Milne R, Wiedemar N, Corey V, Gomez-Lorenzo MG, Franco V, Early AM, Lukens AK, Milner D, Furtado J, Gamo FJ, Winzeler EA, Volkman SK, Duffey M, Laleu B, Fidock DA, Wyllie S, Niles JC, Wirth DF. Nat Commun 14 1455 (2023)
  30. Thermal Proteome Profiling to Identify Protein-ligand Interactions in the Apicomplexan Parasite Toxoplasma gondii. Herneisen AL, Lourido S. Bio Protoc 11 e4207 (2021)
  31. Single-cell quantitative bioimaging of P. berghei liver stage translation. McLellan JL, Sausman W, Reers AB, Bunnik EM, Hanson KK. mSphere 8 e0054423 (2023)
  32. Plasmodium falciparum Eukaryotic Translation Initiation Factor 3 is Stabilized by Quinazoline-Quinoline Bisubstrate Inhibitors. Dobrescu I, Hammam E, Dziekan JM, Claës A, Halby L, Preiser P, Bozdech Z, Arimondo PB, Scherf A, Nardella F. ACS Infect Dis 9 1257-1266 (2023)
  33. A comprehensive method for determining cellular uptake of purine nucleoside phosphorylase and adenylosuccinate synthetase inhibitors by H. pylori. Wojtyś MI, Jaźwiec R, Kazazić S, Leščić Ašler I, Knežević P, Aleksić Sabo V, Luić M, Jagusztyn-Krynicka EK, Bzowska A. Appl Microbiol Biotechnol 105 7949-7967 (2021)
  34. A novel dammarane triterpenoid alleviates atherosclerosis by activating the LXRα pathway. Huang Y, Ran X, Liu H, Luo M, Qin Y, Yan J, Li X, Jia Y. Chin Med 18 72 (2023)
  35. An inhibitory effect of schisandrone on α-hemolysin expression to combat methicillin-resistant staphylococcus aureus infections. Qi Y, Hou J, Zhao Y, Song W, Wang L, Chen H, Chen G. World J Microbiol Biotechnol 39 3 (2022)
  36. Decrypting the complexity of the human malaria parasite biology through systems biology approaches. Chahine Z, Le Roch KG. Front Syst Biol 2 940321 (2022)
  37. Genetic validation of PfFKBP35 as an antimalarial drug target. Thommen BT, Dziekan JM, Achcar F, Tjia S, Passecker A, Buczak K, Gumpp C, Schmidt A, Rottmann M, Grüring C, Marti M, Bozdech Z, Brancucci NMB. Elife 12 RP86975 (2023)
  38. Identification of a Difluorinated Alkoxy Sulfonyl Chloride as a Novel Antitumor Agent for Hepatocellular Carcinoma through Activating Fumarate Hydratase Activity. Jin J, Liang X, Bi W, Liu R, Zhang S, He Y, Xie Q, Liu S, Xiao JC, Zhang P. Pharmaceuticals (Basel) 16 1705 (2023)
  39. News Identifying antimalarial drug targets. Crunkhorn S. Nat Rev Drug Discov 18 98 (2019)
  40. Mode of action studies confirm on-target engagement of lysyl-tRNA synthetase inhibitor and lead to new selection marker for Cryptosporidium. Hanna JC, Corpas-Lopez V, Seizova S, Colon BL, Bacchetti R, Hall GMJ, Sands EM, Robinson L, Baragaña B, Wyllie S, Pawlowic MC. Front Cell Infect Microbiol 13 1236814 (2023)
  41. Nonclassical mechanisms to irreversibly suppress β-hematin crystal growth. Ma W, Balta VA, Pan W, Rimer JD, Sullivan DJ, Vekilov PG. Commun Biol 6 783 (2023)