5ykf Citations

Ligand binding and conformational changes of SUR1 subunit in pancreatic ATP-sensitive potassium channels.

Protein Cell 9 553-567 (2018)
Related entries: 5yke, 5ykg, 5yw7, 5yw8, 5yw9, 5ywa, 5ywb, 5ywc, 5ywd

Cited: 45 times
EuropePMC logo PMID: 29594720

Abstract

ATP-sensitive potassium channels (KATP) are energy sensors on the plasma membrane. By sensing the intracellular ADP/ATP ratio of β-cells, pancreatic KATP channels control insulin release and regulate metabolism at the whole body level. They are implicated in many metabolic disorders and diseases and are therefore important drug targets. Here, we present three structures of pancreatic KATP channels solved by cryo-electron microscopy (cryo-EM), at resolutions ranging from 4.1 to 4.5 Å. These structures depict the binding site of the antidiabetic drug glibenclamide, indicate how Kir6.2 (inward-rectifying potassium channel 6.2) N-terminus participates in the coupling between the peripheral SUR1 (sulfonylurea receptor 1) subunit and the central Kir6.2 channel, reveal the binding mode of activating nucleotides, and suggest the mechanism of how Mg-ADP binding on nucleotide binding domains (NBDs) drives a conformational change of the SUR1 subunit.

Reviews - 5ykf mentioned but not cited (3)

  1. Structural and functional diversity calls for a new classification of ABC transporters. Thomas C, Aller SG, Beis K, Carpenter EP, Chang G, Chen L, Dassa E, Dean M, Duong Van Hoa F, Ekiert D, Ford R, Gaudet R, Gong X, Holland IB, Huang Y, Kahne DK, Kato H, Koronakis V, Koth CM, Lee Y, Lewinson O, Lill R, Martinoia E, Murakami S, Pinkett HW, Poolman B, Rosenbaum D, Sarkadi B, Schmitt L, Schneider E, Shi Y, Shyng SL, Slotboom DJ, Tajkhorshid E, Tieleman DP, Ueda K, Váradi A, Wen PC, Yan N, Zhang P, Zheng H, Zimmer J, Tampé R. FEBS Lett 594 3767-3775 (2020)
  2. The role of the degenerate nucleotide binding site in type I ABC exporters. Stockner T, Gradisch R, Schmitt L. FEBS Lett 594 3815-3838 (2020)
  3. Mechanistic insights on KATP channel regulation from cryo-EM structures. Driggers CM, Shyng SL. J Gen Physiol 155 e202113046 (2023)

Articles - 5ykf mentioned but not cited (6)

  1. Ligand binding and conformational changes of SUR1 subunit in pancreatic ATP-sensitive potassium channels. Wu JX, Ding D, Wang M, Kang Y, Zeng X, Chen L. Protein Cell 9 553-567 (2018)
  2. Structural determinants of peptide-dependent TAP1-TAP2 transit passage targeted by viral proteins and altered by cancer-associated mutations. Padariya M, Kote S, Mayordomo M, Dapic I, Alfaro J, Hupp T, Fahraeus R, Kalathiya U. Comput Struct Biotechnol J 19 5072-5091 (2021)
  3. Zoledronic Acid as a Novel Dual Blocker of KIR6.1/2-SUR2 Subunits of ATP-Sensitive K+ Channels: Role in the Adverse Drug Reactions. Maqoud F, Scala R, Tragni V, Pierri CL, Perrone MG, Scilimati A, Tricarico D. Pharmaceutics 13 1350 (2021)
  4. Simulating PIP2-Induced Gating Transitions in Kir6.2 Channels. Bründl M, Pellikan S, Stary-Weinzinger A. Front Mol Biosci 8 711975 (2021)
  5. Structure based analysis of KATP channel with a DEND syndrome mutation in murine skeletal muscle. Horita S, Ono T, Gonzalez-Resines S, Ono Y, Yamachi M, Zhao S, Domene C, Maejima Y, Shimomura K. Sci Rep 11 6668 (2021)
  6. Structural Insights into ATP-Sensitive Potassium Channel Mechanics: A Role of Intrinsically Disordered Regions. Walczewska-Szewc K, Nowak W. J Chem Inf Model 63 1806-1818 (2023)


Reviews citing this publication (10)

  1. Ion Channels of the Islets in Type 2 Diabetes. Jacobson DA, Shyng SL. J Mol Biol 432 1326-1346 (2020)
  2. Multidrug Resistance in Mammals and Fungi-From MDR to PDR: A Rocky Road from Atomic Structures to Transport Mechanisms. Khunweeraphong N, Kuchler K. Int J Mol Sci 22 4806 (2021)
  3. New insights into KATP channel gene mutations and neonatal diabetes mellitus. Pipatpolkai T, Usher S, Stansfeld PJ, Ashcroft FM. Nat Rev Endocrinol 16 378-393 (2020)
  4. Kir6.1 and SUR2B in Cantú syndrome. McClenaghan C, Nichols CG. Am J Physiol Cell Physiol 323 C920-C935 (2022)
  5. Pharmacological chaperones of ATP-sensitive potassium channels: Mechanistic insight from cryoEM structures. Martin GM, Sung MW, Shyng SL. Mol Cell Endocrinol 502 110667 (2020)
  6. KATP channels in focus: Progress toward a structural understanding of ligand regulation. Martin GM, Patton BL, Shyng SL. Curr Opin Struct Biol 79 102541 (2023)
  7. Kir Channel Molecular Physiology, Pharmacology, and Therapeutic Implications. Cui M, Cantwell L, Zorn A, Logothetis DE. Handb Exp Pharmacol 267 277-356 (2021)
  8. Personalized Therapeutics for KATP-Dependent Pathologies. Nichols CG. Annu Rev Pharmacol Toxicol 63 541-563 (2023)
  9. KATP channel mutations in congenital hyperinsulinism: Progress and challenges towards mechanism-based therapies. ElSheikh A, Shyng SL. Front Endocrinol (Lausanne) 14 1161117 (2023)
  10. Targeting receptor complexes: a new dimension in drug discovery. Rosenbaum MI, Clemmensen LS, Bredt DS, Bettler B, Strømgaard K. Nat Rev Drug Discov 19 884-901 (2020)

Articles citing this publication (26)

  1. Molecular insights into the human ABCB6 transporter. Song G, Zhang S, Tian M, Zhang L, Guo R, Zhuo W, Yang M. Cell Discov 7 55 (2021)
  2. ATP binding without hydrolysis switches sulfonylurea receptor 1 (SUR1) to outward-facing conformations that activate KATP channels. Sikimic J, McMillen TS, Bleile C, Dastvan F, Quast U, Krippeit-Drews P, Drews G, Bryan J. J Biol Chem 294 3707-3719 (2019)
  3. CRISPR/Cas9-mediated gene knockout reveals a guardian role of NF-κB/RelA in maintaining the homeostasis of human vascular cells. Wang P, Liu Z, Zhang X, Li J, Sun L, Ju Z, Li J, Chan P, Liu GH, Zhang W, Song M, Qu J. Protein Cell 9 945-965 (2018)
  4. Comprehensive Collection and Prediction of ABC Transmembrane Protein Structures in the AI Era of Structural Biology. Tordai H, Suhajda E, Sillitoe I, Nair S, Varadi M, Hegedus T. Int J Mol Sci 23 8877 (2022)
  5. Structure of Ycf1p reveals the transmembrane domain TMD0 and the regulatory region of ABCC transporters. Bickers SC, Benlekbir S, Rubinstein JL, Kanelis V. Proc Natl Acad Sci U S A 118 e2025853118 (2021)
  6. Structural insights into the mechanism of pancreatic KATP channel regulation by nucleotides. Wang M, Wu JX, Ding D, Chen L. Nat Commun 13 2770 (2022)
  7. The dynamic interplay of PIP2 and ATP in the regulation of the KATP channel. Pipatpolkai T, Usher SG, Vedovato N, Ashcroft FM, Stansfeld PJ. J Physiol 600 4503-4519 (2022)
  8. Vascular KATP channel structural dynamics reveal regulatory mechanism by Mg-nucleotides. Sung MW, Yang Z, Driggers CM, Patton BL, Mostofian B, Russo JD, Zuckerman DM, Shyng SL. Proc Natl Acad Sci U S A 118 e2109441118 (2021)
  9. Activation mechanism of ATP-sensitive K+ channels explored with real-time nucleotide binding. Puljung M, Vedovato N, Usher S, Ashcroft F. Elife 8 (2019)
  10. Conduction through a narrow inward-rectifier K+ channel pore. Bernsteiner H, Zangerl-Plessl EM, Chen X, Stary-Weinzinger A. J. Gen. Physiol. 151 1231-1246 (2019)
  11. Ligand-mediated Structural Dynamics of a Mammalian Pancreatic KATP Channel. Sung MW, Driggers CM, Mostofian B, Russo JD, Patton BL, Zuckerman DM, Shyng SL. J Mol Biol 434 167789 (2022)
  12. Molecular structure of an open human KATP channel. Zhao C, MacKinnon R. Proc Natl Acad Sci U S A 118 e2112267118 (2021)
  13. Photo-Switchable Sulfonylureas Binding to ATP-Sensitive Potassium Channel Reveal the Mechanism of Light-Controlled Insulin Release. Walczewska-Szewc K, Nowak W. J Phys Chem B 125 13111-13121 (2021)
  14. Placing steroid hormones within the human ABCC3 transporter reveals a compatible amphiphilic substrate-binding pocket. Wang J, Li X, Wang FF, Cheng MT, Mao YX, Fang SC, Wang L, Zhou CZ, Hou WT, Chen Y. EMBO J 42 e113415 (2023)
  15. Production and purification of ATP-sensitive potassium channel particles for cryo-electron microscopy. Driggers CM, Shyng SL. Methods Enzymol 653 121-150 (2021)
  16. Structural identification of vasodilator binding sites on the SUR2 subunit. Ding D, Wu JX, Duan X, Ma S, Lai L, Chen L. Nat Commun 13 2675 (2022)
  17. Blocking Kir6.2 channels with SpTx1 potentiates glucose-stimulated insulin secretion from murine pancreatic β cells and lowers blood glucose in diabetic mice. Ramu Y, Yamakaze J, Zhou Y, Hoshi T, Lu Z. Elife 11 e77026 (2022)
  18. Computational Identification of Novel Kir6 Channel Inhibitors. Chen X, Garon A, Wieder M, Houtman MJC, Zangerl-Plessl EM, Langer T, van der Heyden MAG, Stary-Weinzinger A. Front Pharmacol 10 549 (2019)
  19. Electro-metabolic signaling. Longden TA, Lederer WJ. J Gen Physiol 156 e202313451 (2024)
  20. Mechanism of pharmacochaperoning in a mammalian KATP channel revealed by cryo-EM. Martin GM, Sung MW, Yang Z, Innes LM, Kandasamy B, David LL, Yoshioka C, Shyng SL. Elife 8 (2019)
  21. Relationship between conformation shift and disease related variation sites in ATP-binding cassette transporter proteins. Sakamoto M, Suzuki H, Yura K. Biophys Physicobiol 16 68-79 (2019)
  22. Structural Determinants of Insulin Release: Disordered N-Terminal Tail of Kir6.2 Affects Potassium Channel Dynamics through Interactions with Sulfonylurea Binding Region in a SUR1 Partner. Walczewska-Szewc K, Nowak W. J Phys Chem B 124 6198-6211 (2020)
  23. Structural Insights Into the High Selectivity of the Anti-Diabetic Drug Mitiglinide. Wang M, Wu JX, Chen L. Front Pharmacol 13 929684 (2022)
  24. The Anti-diabetic Drug Gliquidone Modulates Lipopolysaccharide-Mediated Microglial Neuroinflammatory Responses by Inhibiting the NLRP3 Inflammasome. Kim J, Park JH, Shah K, Mitchell SJ, Cho K, Hoe HS. Front Aging Neurosci 13 754123 (2021)
  25. The inhibition mechanism of the SUR2A-containing KATP channel by a regulatory helix. Ding D, Hou T, Wei M, Wu JX, Chen L. Nat Commun 14 3608 (2023)
  26. Therapeutic Antibodies Targeting Potassium Ion Channels. Bednenko J, Colussi P, Hussain S, Zhang Y, Clark T. Handb Exp Pharmacol 267 507-545 (2021)