5x4s Citations

Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains.

Nat Commun 8 15092 (2017)
Related entries: 5x4r, 5x58, 5x59, 5x5b, 5x5c, 5x5f

Cited: 445 times
EuropePMC logo PMID: 28393837

Abstract

The envelope spike (S) proteins of MERS-CoV and SARS-CoV determine the virus host tropism and entry into host cells, and constitute a promising target for the development of prophylactics and therapeutics. Here, we present high-resolution structures of the trimeric MERS-CoV and SARS-CoV S proteins in its pre-fusion conformation by single particle cryo-electron microscopy. The overall structures resemble that from other coronaviruses including HKU1, MHV and NL63 reported recently, with the exception of the receptor binding domain (RBD). We captured two states of the RBD with receptor binding region either buried (lying state) or exposed (standing state), demonstrating an inherently flexible RBD readily recognized by the receptor. Further sequence conservation analysis of six human-infecting coronaviruses revealed that the fusion peptide, HR1 region and the central helix are potential targets for eliciting broadly neutralizing antibodies.

Reviews - 5x4s mentioned but not cited (3)

  1. Emerging strategies on in silico drug development against COVID-19: challenges and opportunities. Yadav M, Dhagat S, Eswari JS. Eur J Pharm Sci 155 105522 (2020)
  2. Structural Basis of SARS-CoV-2 and SARS-CoV Antibody Interactions. Gavor E, Choong YK, Er SY, Sivaraman H, Sivaraman J. Trends Immunol 41 1006-1022 (2020)
  3. Neutralizing monoclonal antibodies against highly pathogenic coronaviruses. Xiang R, Wang Y, Wang L, Deng X, Huo S, Jiang S, Yu F. Curr Opin Virol 53 101199 (2022)

Articles - 5x4s mentioned but not cited (9)

  1. Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains. Yuan Y, Cao D, Zhang Y, Ma J, Qi J, Wang Q, Lu G, Wu Y, Yan J, Shi Y, Zhang X, Gao GF. Nat Commun 8 15092 (2017)
  2. Developing a Fully Glycosylated Full-Length SARS-CoV-2 Spike Protein Model in a Viral Membrane. Woo H, Park SJ, Choi YK, Park T, Tanveer M, Cao Y, Kern NR, Lee J, Yeom MS, Croll TI, Seok C, Im W. J Phys Chem B 124 7128-7137 (2020)
  3. The landscape of antibody binding in SARS-CoV-2 infection. Heffron AS, McIlwain SJ, Amjadi MF, Baker DA, Khullar S, Armbrust T, Halfmann PJ, Kawaoka Y, Sethi AK, Palmenberg AC, Shelef MA, O'Connor DH, Ong IM. PLoS Biol 19 e3001265 (2021)
  4. Dromedary camel nanobodies broadly neutralize SARS-CoV-2 variants. Hong J, Kwon HJ, Cachau R, Chen CZ, Butay KJ, Duan Z, Li D, Ren H, Liang T, Zhu J, Dandey VP, Martin NP, Esposito D, Ortega-Rodriguez U, Xu M, Borgnia MJ, Xie H, Ho M. Proc Natl Acad Sci U S A 119 e2201433119 (2022)
  5. Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2. Song W, Gui M, Wang X, Xiang Y. PLoS Pathog. 14 e1007236 (2018)
  6. N-terminal domain mutations of the spike protein are structurally implicated in epitope recognition in emerging SARS-CoV-2 strains. Klinakis A, Cournia Z, Rampias T. Comput Struct Biotechnol J (2021)
  7. Crystal structure of the S1 subunit N-terminal domain from DcCoV UAE-HKU23 spike protein. Cheng Y, He B, Yang J, Ye F, Lin S, Yang F, Chen Z, Chen Z, Cao Y, Lu G. Virology 535 74-82 (2019)
  8. Stabilized coronavirus spikes are resistant to conformational changes induced by receptor recognition or proteolysis. Kirchdoerfer RN, Wang N, Pallesen J, Wrapp D, Turner HL, Cottrell CA, Corbett KS, Graham BS, McLellan JS, Ward AB. Sci Rep 8 15701 (2018)
  9. research-article Developing a Fully-glycosylated Full-length SARS-CoV-2 Spike Protein Model in a Viral Membrane. Woo H, Park SJ, Choi YK, Park T, Tanveer M, Cao Y, Kern NR, Lee J, Yeom MS, Croll TI, Seok C, Im W. bioRxiv 2020.05.20.103325 (2020)


Reviews citing this publication (149)

  1. Origin and evolution of pathogenic coronaviruses. Cui J, Li F, Shi ZL. Nat Rev Microbiol 17 181-192 (2019)
  2. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. Li YC, Bai WZ, Hashikawa T. J Med Virol 92 552-555 (2020)
  3. Subunit Vaccines Against Emerging Pathogenic Human Coronaviruses. Wang N, Shang J, Jiang S, Du L. Front Microbiol 11 298 (2020)
  4. The SARS-CoV-2 Spike Glycoprotein Biosynthesis, Structure, Function, and Antigenicity: Implications for the Design of Spike-Based Vaccine Immunogens. Duan L, Zheng Q, Zhang H, Niu Y, Lou Y, Wang H. Front Immunol 11 576622 (2020)
  5. Measures for diagnosing and treating infections by a novel coronavirus responsible for a pneumonia outbreak originating in Wuhan, China. Yu F, Du L, Ojcius DM, Pan C, Jiang S. Microbes Infect 22 74-79 (2020)
  6. Coronaviruses: An Updated Overview of Their Replication and Pathogenesis. Wang Y, Grunewald M, Perlman S. Methods Mol Biol 2203 1-29 (2020)
  7. Middle East respiratory syndrome. Memish ZA, Perlman S, Van Kerkhove MD, Zumla A. Lancet 395 1063-1077 (2020)
  8. Current Prevention of COVID-19: Natural Products and Herbal Medicine. Huang J, Tao G, Liu J, Cai J, Huang Z, Chen JX. Front Pharmacol 11 588508 (2020)
  9. Coronavirus membrane fusion mechanism offers a potential target for antiviral development. Tang T, Bidon M, Jaimes JA, Whittaker GR, Daniel S. Antiviral Res 178 104792 (2020)
  10. Physiological and molecular triggers for SARS-CoV membrane fusion and entry into host cells. Millet JK, Whittaker GR. Virology 517 3-8 (2018)
  11. Membrane binding proteins of coronaviruses. J Alsaadi EA, Jones IM. Future Virol 14 275-286 (2019)
  12. Common Features of Enveloped Viruses and Implications for Immunogen Design for Next-Generation Vaccines. Rey FA, Lok SM. Cell 172 1319-1334 (2018)
  13. Molecular diversity of coronavirus host cell entry receptors. Millet JK, Jaimes JA, Whittaker GR. FEMS Microbiol Rev 45 fuaa057 (2021)
  14. Characteristics of SARS-CoV-2 and COVID-19. Hu B, Guo H, Zhou P, Shi ZL. Nat Rev Microbiol 19 141-154 (2021)
  15. Blocking of the High-Affinity Interaction-Synapse Between SARS-CoV-2 Spike and Human ACE2 Proteins Likely Requires Multiple High-Affinity Antibodies: An Immune Perspective. Khatri I, Staal FJT, van Dongen JJM. Front Immunol 11 570018 (2020)
  16. Identification of Novel Candidate Epitopes on SARS-CoV-2 Proteins for South America: A Review of HLA Frequencies by Country. Requena D, Médico A, Chacón RD, Ramírez M, Marín-Sánchez O. Front Immunol 11 2008 (2020)
  17. Cell entry by SARS-CoV-2. Peng R, Wu LA, Wang Q, Qi J, Gao GF. Trends Biochem Sci 46 848-860 (2021)
  18. Clinical, molecular, and epidemiological characterization of the SARS-CoV-2 virus and the Coronavirus Disease 2019 (COVID-19), a comprehensive literature review. Ortiz-Prado E, Simbaña-Rivera K, Gómez-Barreno L, Rubio-Neira M, Guaman LP, Kyriakidis NC, Muslin C, Jaramillo AMG, Barba-Ostria C, Cevallos-Robalino D, Sanches-SanMiguel H, Unigarro L, Zalakeviciute R, Gadian N, López-Cortés A. Diagn Microbiol Infect Dis 98 115094 (2020)
  19. Immune-mediated approaches against COVID-19. Florindo HF, Kleiner R, Vaskovich-Koubi D, Acúrcio RC, Carreira B, Yeini E, Tiram G, Liubomirski Y, Satchi-Fainaro R. Nat Nanotechnol 15 630-645 (2020)
  20. The Current and Future State of Vaccines, Antivirals and Gene Therapies Against Emerging Coronaviruses. Tse LV, Meganck RM, Graham RL, Baric RS. Front Microbiol 11 658 (2020)
  21. Minireview of progress in the structural study of SARS-CoV-2 proteins. Zhu G, Zhu C, Zhu Y, Sun F. Curr Res Microb Sci 1 53-61 (2020)
  22. SARS-CoV-2, Early Entry Events. Chambers JP, Yu J, Valdes JJ, Arulanandam BP. J Pathog 2020 9238696 (2020)
  23. Virus-Mediated Cell-Cell Fusion. Leroy H, Han M, Woottum M, Bracq L, Bouchet J, Xie M, Benichou S. Int J Mol Sci 21 E9644 (2020)
  24. Mucin signature as a potential tool to predict susceptibility to COVID-19. Bose M, Mitra B, Mukherjee P. Physiol Rep 9 e14701 (2021)
  25. Role of host factors in SARS-CoV-2 entry. Evans JP, Liu SL. J Biol Chem 297 100847 (2021)
  26. Why Is COVID-19 More Severe in Patients With Diabetes? The Role of Angiotensin-Converting Enzyme 2, Endothelial Dysfunction and the Immunoinflammatory System. Roberts J, Pritchard AL, Treweeke AT, Rossi AG, Brace N, Cahill P, MacRury SM, Wei J, Megson IL. Front Cardiovasc Med 7 629933 (2020)
  27. Potential Role of Antioxidant and Anti-Inflammatory Therapies to Prevent Severe SARS-Cov-2 Complications. Fratta Pasini AM, Stranieri C, Cominacini L, Mozzini C. Antioxidants (Basel) 10 272 (2021)
  28. Glycans of SARS-CoV-2 Spike Protein in Virus Infection and Antibody Production. Zhao X, Chen H, Wang H. Front Mol Biosci 8 629873 (2021)
  29. Spike Glycoprotein-Mediated Entry of SARS Coronaviruses. Wang L, Xiang Y. Viruses 12 E1289 (2020)
  30. Impact of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in the Nervous System: Implications of COVID-19 in Neurodegeneration. Rodriguez M, Soler Y, Perry M, Reynolds JL, El-Hage N. Front Neurol 11 583459 (2020)
  31. Optimizing use of theranostic nanoparticles as a life-saving strategy for treating COVID-19 patients. Itani R, Tobaiqy M, Al Faraj A. Theranostics 10 5932-5942 (2020)
  32. COVID-19: Molecular and Cellular Response. Alipoor SD, Mortaz E, Jamaati H, Tabarsi P, Bayram H, Varahram M, Adcock IM. Front Cell Infect Microbiol 11 563085 (2021)
  33. Glycosylation of SARS-CoV-2: structural and functional insights. Shajahan A, Pepi LE, Rouhani DS, Heiss C, Azadi P. Anal Bioanal Chem 413 7179-7193 (2021)
  34. SARS-CoV-2 Delta (B.1.617.2) Variant: A Unique T478K Mutation in Receptor Binding Motif (RBM) of Spike Gene. Jhun H, Park HY, Hisham Y, Song CS, Kim S. Immune Netw 21 e32 (2021)
  35. Coronavirus in human diseases: Mechanisms and advances in clinical treatment. Lin P, Wang M, Wei Y, Kim T, Wei X. MedComm (2020) 1 270-301 (2020)
  36. Cryo-EM Studies of Virus-Antibody Immune Complexes. Li N, Li Z, Fu Y, Cao S. Virol Sin 35 1-13 (2020)
  37. Epigenetic Lens to Visualize the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) Infection in COVID-19 Pandemic. Saksena N, Bonam SR, Miranda-Saksena M. Front Genet 12 581726 (2021)
  38. Neurological manifestations of COVID-19 and other coronaviruses: A systematic review. Correia AO, Feitosa PWG, Moreira JLS, Nogueira SÁR, Fonseca RB, Nobre MEP. Neurol Psychiatry Brain Res 37 27-32 (2020)
  39. SARS-CoV-2 and the Nervous System: From Clinical Features to Molecular Mechanisms. Pennisi M, Lanza G, Falzone L, Fisicaro F, Ferri R, Bella R. Int J Mol Sci 21 (2020)
  40. A Comprehensive Review about the Molecular Structure of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): Insights into Natural Products against COVID-19. Saied EM, El-Maradny YA, Osman AA, Darwish AMG, Abo Nahas HH, Niedbała G, Piekutowska M, Abdel-Rahman MA, Balbool BA, Abdel-Azeem AM. Pharmaceutics 13 1759 (2021)
  41. Advances in the treatment of novel coronavirus disease (COVID-19) with Western medicine and traditional Chinese medicine: a narrative review. Al-Romaima A, Liao Y, Feng J, Qin X, Qin G. J Thorac Dis 12 6054-6069 (2020)
  42. Human cell receptors: potential drug targets to combat COVID-19. Raghav PK, Kalyanaraman K, Kumar D. Amino Acids 53 813-842 (2021)
  43. Role of SARS-CoV-2 and ACE2 variations in COVID-19. Antony P, Vijayan R. Biomed J 44 235-244 (2021)
  44. Inflammation Triggered by SARS-CoV-2 and ACE2 Augment Drives Multiple Organ Failure of Severe COVID-19: Molecular Mechanisms and Implications. Iwasaki M, Saito J, Zhao H, Sakamoto A, Hirota K, Ma D, Ma D. Inflammation 44 13-34 (2021)
  45. Overview of the current promising approaches for the development of an effective severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine. Mirzaei R, Mohammadzadeh R, Mahdavi F, Badrzadeh F, Kazemi S, Ebrahimi M, Soltani F, Kazemi S, Jeda AS, Darvishmotevalli M, Yousefimashouf R, Keyvani H, Karampoor S. Int Immunopharmacol 88 106928 (2020)
  46. Structure of SARS-CoV-2 spike protein. Zhang J, Xiao T, Cai Y, Chen B. Curr Opin Virol 50 173-182 (2021)
  47. Study of combining virtual screening and antiviral treatments of the Sars-CoV-2 (Covid-19). Khodadadi E, Maroufi P, Khodadadi E, Esposito I, Ganbarov K, Espsoito S, Yousefi M, Zeinalzadeh E, Kafil HS. Microb Pathog 146 104241 (2020)
  48. A Biochemical Perspective of the Nonstructural Proteins (NSPs) and the Spike Protein of SARS CoV-2. Yoshimoto FK. Protein J 40 260-295 (2021)
  49. Host Serine Proteases: A Potential Targeted Therapy for COVID-19 and Influenza. Rahbar Saadat Y, Hosseiniyan Khatibi SM, Zununi Vahed S, Ardalan M. Front Mol Biosci 8 725528 (2021)
  50. Molecular biology of the SARs-CoV-2 spike protein: A review of current knowledge. Zhu C, He G, Yin Q, Zeng L, Ye X, Shi Y, Xu W. J Med Virol 93 5729-5741 (2021)
  51. Molecular targets for COVID-19 drug development: Enlightening Nigerians about the pandemic and future treatment. Muhammed Y. Biosaf Health 2 210-216 (2020)
  52. The spike glycoprotein of highly pathogenic human coronaviruses: structural insights for understanding infection, evolution and inhibition. Qiao S, Zhang S, Ge J, Wang X. FEBS Open Bio 12 1602-1622 (2022)
  53. Which ones, when and why should renin-angiotensin system inhibitors work against COVID-19? Montanari M, Canonico B, Nordi E, Vandini D, Barocci S, Benedetti S, Carlotti E, Zamai L. Adv Biol Regul 81 100820 (2021)
  54. An overview of Middle East respiratory syndrome coronavirus vaccines in preclinical studies. Zhang N, Shang J, Li C, Zhou K, Du L. Expert Rev Vaccines 19 817-829 (2020)
  55. Coronaviruses and Central Nervous System Manifestations. Khateb M, Bosak N, Muqary M. Front Neurol 11 715 (2020)
  56. Mechanistic insights of host cell fusion of SARS-CoV-1 and SARS-CoV-2 from atomic resolution structure and membrane dynamics. Chakraborty H, Bhattacharjya S. Biophys Chem 265 106438 (2020)
  57. SARS-CoV-2 Omicron Mutation Is Faster than the Chase: Multiple Mutations on Spike/ACE2 Interaction Residues. Kim S, Nguyen TT, Taitt AS, Jhun H, Park HY, Kim SH, Kim YG, Song EY, Lee Y, Yum H, Shin KC, Choi YK, Song CS, Yeom SC, Kim B, Netea M, Kim S. Immune Netw 21 e38 (2021)
  58. SARS-CoV-2: An Overview of Virus Genetics, Transmission, and Immunopathogenesis. Farrag MA, Amer HM, Bhat R, Hamed ME, Aziz IM, Mubarak A, Dawoud TM, Almalki SG, Alghofaili F, Alnemare AK, Al-Baradi RS, Alosaimi B, Alturaiki W. Int J Environ Res Public Health 18 6312 (2021)
  59. The potential use of microRNAs as a therapeutic strategy for SARS-CoV-2 infection. Hu J, Stojanović J, Yasamineh S, Yasamineh P, Karuppannan SK, Hussain Dowlath MJ, Serati-Nouri H. Arch Virol 166 2649-2672 (2021)
  60. Viral targets for vaccines against COVID-19. Dai L, Gao GF. Nat Rev Immunol 21 73-82 (2021)
  61. 50 Years of structural immunology. Wilson IA, Stanfield RL. J Biol Chem 296 100745 (2021)
  62. Anti-SARS-CoV-1 and -2 nanobody engineering towards avidity-inspired therapeutics. Obeng EM, Dzuvor CKO, Danquah MK. Nano Today 42 101350 (2022)
  63. Central Nervous System Targets and Routes for SARS-CoV-2: Current Views and New Hypotheses. Barrantes FJ. ACS Chem Neurosci 11 2793-2803 (2020)
  64. Current Status of Laboratory Diagnosis for COVID-19: A Narrative Review. Russo A, Minichini C, Starace M, Astorri R, Calò F, Coppola N, Vanvitelli COVID-19 group. Infect Drug Resist 13 2657-2665 (2020)
  65. Developments, applications, and prospects of cryo-electron microscopy. Benjin X, Ling L. Protein Sci 29 872-882 (2020)
  66. Differences and similarities between SARS-CoV and SARS-CoV-2: spike receptor-binding domain recognition and host cell infection with support of cellular serine proteases. Rossi GA, Sacco O, Mancino E, Cristiani L, Midulla F. Infection 48 665-669 (2020)
  67. Host Receptors of Influenza Viruses and Coronaviruses-Molecular Mechanisms of Recognition. Sriwilaijaroen N, Suzuki Y. Vaccines (Basel) 8 E587 (2020)
  68. Implications of testicular ACE2 and the renin-angiotensin system for SARS-CoV-2 on testis function. Edenfield RC, Easley CA. Nat Rev Urol 19 116-127 (2022)
  69. Involvement of sialoglycans in SARS-COV-2 infection: Opportunities and challenges for glyco-based inhibitors. Kuhaudomlarp S, Imberty A. IUBMB Life 74 1253-1263 (2022)
  70. Leveraging deep learning to improve vaccine design. Hederman AP, Ackerman ME. Trends Immunol 44 333-344 (2023)
  71. SARS-CoV-2 Entry Inhibitors: Small Molecules and Peptides Targeting Virus or Host Cells. Cannalire R, Stefanelli I, Cerchia C, Beccari AR, Pelliccia S, Summa V. Int J Mol Sci 21 (2020)
  72. Screening for natural and derived bio-active compounds in preclinical and clinical studies: One of the frontlines of fighting the coronaviruses pandemic. Khalifa SAM, Yosri N, El-Mallah MF, Ghonaim R, Guo Z, Musharraf SG, Du M, Khatib A, Xiao J, Saeed A, El-Seedi HHR, Zhao C, Efferth T, El-Seedi HR. Phytomedicine 153311 (2020)
  73. Structure of SARS-CoV-2 Spike Glycoprotein for Therapeutic and Preventive Target. Hong J, Jhun H, Choi YO, Taitt AS, Bae S, Lee Y, Song CS, Yeom SC, Kim S. Immune Netw 21 e8 (2021)
  74. Structures of the SARS-CoV-2 spike glycoprotein and applications for novel drug development. Liu XH, Cheng T, Liu BY, Chi J, Shu T, Wang T. Front Pharmacol 13 955648 (2022)
  75. The broad-spectrum antiviral recommendations for drug discovery against COVID-19. Hazafa A, Ur-Rahman K, Haq IU, Jahan N, Mumtaz M, Farman M, Naeem H, Abbas F, Naeem M, Sadiqa S, Bano S. Drug Metab Rev 52 408-424 (2020)
  76. Vaccines against SARS-CoV-2 variants and future pandemics. Park T, Hwang H, Moon S, Kang SG, Song S, Kim YH, Kim H, Ko EJ, Yoon SD, Kang SM, Hwang HS. Expert Rev Vaccines 21 1363-1376 (2022)
  77. Advances in MERS-CoV Vaccines and Therapeutics Based on the Receptor-Binding Domain. Zhou Y, Yang Y, Huang J, Jiang S, Du L. Viruses 11 (2019)
  78. An exhaustive comprehension of the role of herbal medicines in Pre- and Post-COVID manifestations. Prajapati SK, Malaiya A, Mishra G, Jain D, Kesharwani P, Mody N, Ahmadi A, Paliwal R, Jain A. J Ethnopharmacol 296 115420 (2022)
  79. Angiotensin-converting enzyme 2: The old door for new severe acute respiratory syndrome coronavirus 2 infection. Tan HW, Xu YM, Lau ATY. Rev Med Virol 30 e2122 (2020)
  80. Contributions of single-particle cryoelectron microscopy toward fighting COVID-19. Rapp M, Shapiro L, Frank J. Trends Biochem Sci 47 117-123 (2022)
  81. Development of Middle East Respiratory Syndrome Coronavirus vaccines - advances and challenges. Cho H, Excler JL, Kim JH, Yoon IK. Hum Vaccin Immunother 14 304-313 (2018)
  82. Global Epidemiology of Bat Coronaviruses. Wong ACP, Li X, Lau SKP, Woo PCY. Viruses 11 (2019)
  83. How Antibodies Recognize Pathogenic Viruses: Structural Correlates of Antibody Neutralization of HIV-1, SARS-CoV-2, and Zika. Abernathy ME, Dam KA, Esswein SR, Jette CA, Bjorkman PJ. Viruses 13 2106 (2021)
  84. Molecular and Clinical Investigation of COVID-19: From Pathogenesis and Immune Responses to Novel Diagnosis and Treatment. Kashani NR, Azadbakht J, Ehteram H, Kashani HH, Rajabi-Moghadam H, Ahmad E, Nikzad H, Hosseini ES. Front Mol Biosci 9 770775 (2022)
  85. Molecular biology of coronaviruses: current knowledge. Artika IM, Dewantari AK, Wiyatno A. Heliyon 6 e04743 (2020)
  86. Molecular mechanisms involved in pathogenicity of SARS-CoV-2: Immune evasion and implications for therapeutic strategies. Latifi-Pupovci H. Biomed Pharmacother 153 113368 (2022)
  87. Neuroinvasive potential of a primary respiratory pathogen SARS- CoV2: Summarizing the evidences. Lahiri D, Mondal R, Deb S, Bandyopadhyay D, Shome G, Sarkar S, Biswas SC. Diabetes Metab Syndr 14 1053-1060 (2020)
  88. Neurological damages in COVID-19 patients: Mechanisms and preventive interventions. Sarkar S, Karmakar S, Basu M, Ghosh P, Ghosh MK. MedComm (2020) 4 e247 (2023)
  89. Priming of SARS-CoV-2 S protein by several membrane-bound serine proteinases could explain enhanced viral infectivity and systemic COVID-19 infection. Fuentes-Prior P. J Biol Chem (2020)
  90. Proteomics-based mass spectrometry profiling of SARS-CoV-2 infection from human nasopharyngeal samples. Chatterjee S, Zaia J. Mass Spectrom Rev e21813 (2022)
  91. Pseudotyped Vesicular Stomatitis Virus-Severe Acute Respiratory Syndrome-Coronavirus-2 Spike for the Study of Variants, Vaccines, and Therapeutics Against Coronavirus Disease 2019. Salazar-García M, Acosta-Contreras S, Rodríguez-Martínez G, Cruz-Rangel A, Flores-Alanis A, Patiño-López G, Luna-Pineda VM. Front Microbiol 12 817200 (2021)
  92. SARS-CoV-2 Variants, Current Vaccines and Therapeutic Implications for COVID-19. Liang HY, Wu Y, Yau V, Yin HX, Lowe S, Bentley R, Ahmed MA, Zhao W, Sun C. Vaccines (Basel) 10 1538 (2022)
  93. Structure-Based Vaccine Antigen Design. Graham BS, Gilman MSA, McLellan JS. Annu. Rev. Med. 70 91-104 (2019)
  94. Targeting the glycans: A paradigm for host-targeted and COVID-19 drug design. Pourrajab F. J Cell Mol Med (2021)
  95. The atomic portrait of SARS-CoV-2 as captured by cryo-electron microscopy. Fertig TE, Chitoiu L, Terinte-Balcan G, Peteu VE, Marta D, Gherghiceanu M. J Cell Mol Med 26 25-34 (2022)
  96. The impact of high-resolution structural data on stemming the COVID-19 pandemic. Cox RM, Plemper RK. Curr Opin Virol 49 127-138 (2021)
  97. The origins of COVID-19 pandemic: A brief overview. Hao YJ, Wang YL, Wang MY, Zhou L, Shi JY, Cao JM, Wang DP. Transbound Emerg Dis 69 3181-3197 (2022)
  98. Third Tofo Advanced Study Week on Emerging and Re-emerging Viruses, 2018. Badolo A, Burt F, Daniel S, Fearns R, Gudo ES, Kielian M, Lescar J, Shi Y, von Brunn A, Weiss SR, Hilgenfeld R. Antiviral Res 162 142-150 (2019)
  99. Understanding COVID-19 Pandemic: Molecular Mechanisms and Potential Therapeutic Strategies. An Evidence-Based Review. Hanna R, Dalvi S, Sălăgean T, Pop ID, Bordea IR, Benedicenti S. J Inflamm Res 14 13-56 (2021)
  100. Vaccines for COVID-19: perspectives from nucleic acid vaccines to BCG as delivery vector system. de Queiroz NMGP, Marinho FV, Chagas MA, Leite LCC, Homan EJ, de Magalhães MTQ, Oliveira SC. Microbes Infect 22 515-524 (2020)
  101. 2020 update on human coronaviruses: One health, one world. Zhao X, Ding Y, Du J, Fan Y. Med Nov Technol Devices 8 100043 (2020)
  102. A Review on Novel Drug Targets and Future Directions for COVID-19 Treatment. Wondmkun YT, Mohammed OA. Biologics 14 77-82 (2020)
  103. A comparative study of human betacoronavirus spike proteins: structure, function and therapeutics. Verma J, Subbarao N. Arch Virol 166 697-714 (2021)
  104. An outlook on potential protein targets of COVID-19 as a druggable site. Noori R, Sardar M. Mol Biol Rep 49 10729-10748 (2022)
  105. Analysis of the molecular mechanism of SARS-CoV-2 antibodies. Jin D, Wei J, Sun J. Biochem Biophys Res Commun 566 45-52 (2021)
  106. Antibodies and vaccines against Middle East respiratory syndrome coronavirus. Xu J, Jia W, Wang P, Zhang S, Shi X, Wang X, Zhang L. Emerg Microbes Infect 8 841-856 (2019)
  107. Antiviral Potential of Plants against COVID-19 during Outbreaks-An Update. Jamal QMS. Int J Mol Sci 23 13564 (2022)
  108. Biological and Exploitable Crossroads for the Immune Response in Cancer and COVID-19. Vitali L, Merlini A, Galvagno F, Proment A, Sangiolo D. Biomedicines 10 2628 (2022)
  109. COVID-19 and SARS-Cov-2 Infection: Pathophysiology and Clinical Effects on the Nervous System. Abboud H, Abboud FZ, Kharbouch H, Arkha Y, El Abbadi N, El Ouahabi A. World Neurosurg 140 49-53 (2020)
  110. COVID-19 virus may have neuroinvasive potential and cause neurological complications: a perspective review. Sepehrinezhad A, Shahbazi A, Negah SS. J. Neurovirol. 26 324-329 (2020)
  111. Characterization of the angiotensin-converting enzyme 2 (ACE2), the main receptor for the SARS-CoV-2 virus. Jami G, Ataee M, Esmaeili V, Chamani S, Rezaei A, Naghizadeh A. Am J Clin Exp Immunol 12 24-44 (2023)
  112. Clinical and Genetic Characteristics of Coronaviruses with Particular Emphasis on SARS-CoV-2 Virus. Iwanicka J, Iwanicki T, Kaczmarczyk M, Mazur W. Pol J Microbiol 71 141-159 (2022)
  113. Cryo-electron microscopy in the fight against COVID-19-mechanism of virus entry. Bodakuntla S, Kuhn CC, Biertümpfel C, Mizuno N. Front Mol Biosci 10 1252529 (2023)
  114. Current diagnostic and therapeutic strategies for COVID-19. Chen BB, Liu ML, Huang CZ. J Pharm Anal (2021)
  115. Current vaccine technology with an emphasis on recombinant measles virus as a new perspective for vaccination against SARS-CoV-2. Jbeli R, Jelassi A. EuroMediterr J Environ Integr 6 61 (2021)
  116. Demystifying mRNA vaccines: an emerging platform at the forefront of cryptic diseases. Rouf NZ, Biswas S, Tarannum N, Oishee LM, Muna MM. RNA Biol 19 386-410 (2022)
  117. Domains and Functions of Spike Protein in Sars-Cov-2 in the Context of Vaccine Design. Xia X. Viruses 13 (2021)
  118. Emerging diagnostic tools for detection of COVID-19 and perspective. Verma N, Patel D, Pandya A. Biomed Microdevices 22 83 (2020)
  119. Future prospects of MXenes: synthesis, functionalization, properties, and application in field effect transistors. Rahman M, Al Mamun MS. Nanoscale Adv 6 367-385 (2024)
  120. Human Stem Cell Models of SARS-CoV-2 Infection in the Cardiovascular System. Ernzen K, Trask AJ, Peeples ME, Garg V, Zhao MT. Stem Cell Rev Rep 17 2107-2119 (2021)
  121. Human coronavirus spike protein-host receptor recognition. Guruprasad L. Prog Biophys Mol Biol (2020)
  122. Insights into COVID-19 Vaccine Development Based on Immunogenic Structural Proteins of SARS-CoV-2, Host Immune Responses, and Herd Immunity. Chaudhary JK, Yadav R, Chaudhary PK, Maurya A, Kant N, Rugaie OA, Haokip HR, Yadav D, Roshan R, Prasad R, Chatrath A, Singh D, Jain N, Dhamija P. Cells 10 2949 (2021)
  123. Insights of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) pandemic: a current review. Choudhary J, Dheeman S, Sharma V, Katiyar P, Karn SK, Sarangi MK, Chauhan AK, Verma G, Baliyan N. Biol Proced Online 23 5 (2021)
  124. Known Cellular and Receptor Interactions of Animal and Human Coronaviruses: A Review. Everest H, Stevenson-Leggett P, Bailey D, Bickerton E, Keep S. Viruses 14 351 (2022)
  125. Metabolic alterations upon SARS-CoV-2 infection and potential therapeutic targets against coronavirus infection. Chen P, Wu M, He Y, Jiang B, He ML. Signal Transduct Target Ther 8 237 (2023)
  126. Modeling pathogenesis of emergent and pre-emergent human coronaviruses in mice. Cockrell AS, Leist SR, Douglas MG, Baric RS. Mamm. Genome 29 367-383 (2018)
  127. Multifactorial Traits of SARS-CoV-2 Cell Entry Related to Diverse Host Proteases and Proteins. You J, Seok JH, Joo M, Bae JY, Kim JI, Park MS, Kim K. Biomol Ther (Seoul) 29 249-262 (2021)
  128. Novel coronavirus disease (COVID-19): origin, transmission through the environment, health effects, and mitigation strategies-a review. Singh A, Haq I. Environ Sustain (Singap) 4 515-526 (2021)
  129. PEDV: Insights and Advances into Types, Function, Structure, and Receptor Recognition. Lin F, Zhang H, Li L, Yang Y, Zou X, Chen J, Tang X. Viruses 14 1744 (2022)
  130. Peptide-Based Inhibitors for SARS-CoV-2 and SARS-CoV. Panchal D, Kataria J, Patel K, Crowe K, Pai V, Azizogli AR, Kadian N, Sanyal S, Roy A, Dodd-O J, Acevedo-Jake AM, Kumar VA. Adv Ther (Weinh) 4 2100104 (2021)
  131. Potential drug targets of SARS-CoV-2: From genomics to therapeutics. Shamsi A, Mohammad T, Anwar S, Amani S, Khan MS, Husain FM, Rehman MT, Islam A, Hassan MI. Int J Biol Macromol 177 1-9 (2021)
  132. Recent advances in "universal" influenza virus antibodies: the rise of a hidden trimeric interface in hemagglutinin globular head. Wang Y, Hu D, Wu Y, Ying T. Front Med 14 149-159 (2020)
  133. Recent applications and strategies in nanotechnology for lung diseases. Zhong W, Zhang X, Zeng Y, Lin D, Wu J. Nano Res 1-23 (2021)
  134. Recent progress of surface plasmon resonance in the development of coronavirus disease-2019 drug candidates. Wang Q, Liu Z. Eur J Med Chem Rep 1 100003 (2021)
  135. Roles of Sialyl Glycans in HCoV-OC43, HCoV-HKU1, MERS-CoV and SARS-CoV-2 Infections. Sriwilaijaroen N, Suzuki Y. Methods Mol Biol 2556 243-271 (2022)
  136. Roles of host proteases in the entry of SARS-CoV-2. Zabiegala A, Kim Y, Chang KO. Anim Dis 3 12 (2023)
  137. SARS-CoV-2 S Glycoprotein Stabilization Strategies. Pedenko B, Sulbaran G, Guilligay D, Effantin G, Weissenhorn W. Viruses 15 558 (2023)
  138. SARS-CoV-2 Vaccines, Vaccine Development Technologies, and Significant Efforts in Vaccine Development during the Pandemic: The Lessons Learned Might Help to Fight against the Next Pandemic. Chakraborty C, Bhattacharya M, Dhama K. Vaccines (Basel) 11 682 (2023)
  139. Spike glycoproteins: Their significance for corona viruses and receptor binding activities for pathogenesis and viral survival. Noman A, Aqeel M, Khalid N, Hashem M, Alamari S, Zafar S, Qasim M, Irshad MK, Qari SH. Microb Pathog 150 104719 (2021)
  140. Structural Analysis of Neutralizing Epitopes of the SARS-CoV-2 Spike to Guide Therapy and Vaccine Design Strategies. Finkelstein MT, Mermelstein AG, Parker Miller E, Seth PC, Stancofski ED, Fera D. Viruses 13 (2021)
  141. Structural Dynamics and Molecular Evolution of the SARS-CoV-2 Spike Protein. Wolf KA, Kwan JC, Kamil JP. mBio 13 e0203021 (2022)
  142. Structural Requirements and Plasticity of Receptor-Binding Domain in Human Coronavirus Spike. Li Y, Zheng P, Liu T, Shi C, Wang B, Xu Y, Jin T. Front Mol Biosci 9 930931 (2022)
  143. Targetable elements in SARS-CoV-2 S2 subunit for the design of pan-coronavirus fusion inhibitors and vaccines. Guo L, Lin S, Chen Z, Cao Y, He B, Lu G. Signal Transduct Target Ther 8 197 (2023)
  144. The Potential of Probiotics as Ingestible Adjuvants and Immune Modulators for Antiviral Immunity and Management of SARS-CoV-2 Infection and COVID-19. Tomkinson S, Triscott C, Schenk E, Foey A. Pathogens 12 928 (2023)
  145. Toll-like Receptor Mediation in SARS-CoV-2: A Therapeutic Approach. Manan A, Pirzada RH, Haseeb M, Choi S. Int J Mol Sci 23 10716 (2022)
  146. Towards Quantum-Chemical Level Calculations of SARS-CoV-2 Spike Protein Variants of Concern by First Principles Density Functional Theory. Ching WY, Adhikari P, Jawad B, Podgornik R. Biomedicines 11 517 (2023)
  147. Unraveling Muscle Impairment Associated With COVID-19 and the Role of 3D Culture in Its Investigation. Seixas MLGA, Mitre LP, Shams S, Lanzuolo GB, Bartolomeo CS, Silva EA, Prado CM, Ureshino R, Stilhano RS. Front Nutr 9 825629 (2022)
  148. Viral metagenomics, protein structure, and reverse genetics: Key strategies for investigating coronaviruses. Johnson BA, Graham RL, Menachery VD. Virology 517 30-37 (2018)
  149. Viral, host and environmental factors that favor anthropozoonotic spillover of coronaviruses: An opinionated review, focusing on SARS-CoV, MERS-CoV and SARS-CoV-2. da Silva PG, Mesquita JR, de São José Nascimento M, Ferreira VAM. Sci Total Environ 750 141483 (2021)

Articles citing this publication (284)

  1. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Cell 181 281-292.e6 (2020)
  2. SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies. Barnes CO, Jette CA, Abernathy ME, Dam KA, Esswein SR, Gristick HB, Malyutin AG, Sharaf NG, Huey-Tubman KE, Lee YE, Robbiani DF, Nussenzweig MC, West AP, Bjorkman PJ. Nature 588 682-687 (2020)
  3. Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2. Wang Q, Zhang Y, Wu L, Niu S, Song C, Zhang Z, Lu G, Qiao C, Hu Y, Yuen KY, Wang Q, Zhou H, Yan J, Qi J. Cell 181 894-904.e9 (2020)
  4. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Coutard B, Valle C, de Lamballerie X, Canard B, Seidah NG, Decroly E. Antiviral Res 176 104742 (2020)
  5. Cell entry mechanisms of SARS-CoV-2. Shang J, Wan Y, Luo C, Ye G, Geng Q, Auerbach A, Li F. Proc Natl Acad Sci U S A 117 11727-11734 (2020)
  6. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, Graham BS, McLellan JS. Science 367 1260-1263 (2020)
  7. A Multibasic Cleavage Site in the Spike Protein of SARS-CoV-2 Is Essential for Infection of Human Lung Cells. Hoffmann M, Kleine-Weber H, Pöhlmann S. Mol Cell 78 779-784.e5 (2020)
  8. Unexpected Receptor Functional Mimicry Elucidates Activation of Coronavirus Fusion. Walls AC, Xiong X, Park YJ, Tortorici MA, Snijder J, Quispe J, Cameroni E, Gopal R, Dai M, Lanzavecchia A, Zambon M, Rey FA, Corti D, Veesler D. Cell 176 1026-1039.e15 (2019)
  9. Controlling the SARS-CoV-2 spike glycoprotein conformation. Henderson R, Edwards RJ, Mansouri K, Janowska K, Stalls V, Gobeil SMC, Kopp M, Li D, Parks R, Hsu AL, Borgnia MJ, Haynes BF, Acharya P. Nat Struct Mol Biol 27 925-933 (2020)
  10. Molecular Mechanism for Antibody-Dependent Enhancement of Coronavirus Entry. Wan Y, Shang J, Sun S, Tai W, Chen J, Geng Q, He L, Chen Y, Wu J, Shi Z, Zhou Y, Du L, Li F. J Virol 94 (2020)
  11. Composition and divergence of coronavirus spike proteins and host ACE2 receptors predict potential intermediate hosts of SARS-CoV-2. Liu Z, Xiao X, Wei X, Li J, Yang J, Tan H, Zhu J, Zhang Q, Wu J, Liu L. J Med Virol 92 595-601 (2020)
  12. Free fatty acid binding pocket in the locked structure of SARS-CoV-2 spike protein. Toelzer C, Gupta K, Yadav SKN, Borucu U, Davidson AD, Kavanagh Williamson M, Shoemark DK, Garzoni F, Staufer O, Milligan R, Capin J, Mulholland AJ, Spatz J, Fitzgerald D, Berger I, Schaffitzel C. Science 370 725-730 (2020)
  13. Structural insights into coronavirus entry. Tortorici MA, Veesler D. Adv Virus Res 105 93-116 (2019)
  14. Broad betacoronavirus neutralization by a stem helix-specific human antibody. Pinto D, Sauer MM, Czudnochowski N, Low JS, Tortorici MA, Housley MP, Noack J, Walls AC, Bowen JE, Guarino B, Rosen LE, di Iulio J, Jerak J, Kaiser H, Islam S, Jaconi S, Sprugasci N, Culap K, Abdelnabi R, Foo C, Coelmont L, Bartha I, Bianchi S, Silacci-Fregni C, Bassi J, Marzi R, Vetti E, Cassotta A, Ceschi A, Ferrari P, Cippà PE, Giannini O, Ceruti S, Garzoni C, Riva A, Benigni F, Cameroni E, Piccoli L, Pizzuto MS, Smithey M, Hong D, Telenti A, Lempp FA, Neyts J, Havenar-Daughton C, Lanzavecchia A, Sallusto F, Snell G, Virgin HW, Beltramello M, Corti D, Veesler D. Science 373 1109-1116 (2021)
  15. The antigenic anatomy of SARS-CoV-2 receptor binding domain. Dejnirattisai W, Zhou D, Ginn HM, Duyvesteyn HME, Supasa P, Case JB, Zhao Y, Walter TS, Mentzer AJ, Liu C, Wang B, Paesen GC, Slon-Campos J, López-Camacho C, Kafai NM, Bailey AL, Chen RE, Ying B, Thompson C, Bolton J, Fyfe A, Gupta S, Tan TK, Gilbert-Jaramillo J, James W, Knight M, Carroll MW, Skelly D, Dold C, Peng Y, Levin R, Dong T, Pollard AJ, Knight JC, Klenerman P, Temperton N, Hall DR, Williams MA, Paterson NG, Bertram FKR, Siebert CA, Clare DK, Howe A, Radecke J, Song Y, Townsend AR, Huang KA, Fry EE, Mongkolsapaya J, Diamond MS, Ren J, Stuart DI, Screaton GR. Cell 184 2183-2200.e22 (2021)
  16. Coronavirus disease 2019 (COVID-19): current status and future perspectives. Li H, Liu SM, Yu XH, Tang SL, Tang CK. Int J Antimicrob Agents 55 105951 (2020)
  17. Effect of natural mutations of SARS-CoV-2 on spike structure, conformation, and antigenicity. Gobeil SM, Janowska K, McDowell S, Mansouri K, Parks R, Stalls V, Kopp MF, Manne K, Li D, Wiehe K, Saunders KO, Edwards RJ, Korber B, Haynes BF, Henderson R, Acharya P. Science 373 eabi6226 (2021)
  18. Selection, biophysical and structural analysis of synthetic nanobodies that effectively neutralize SARS-CoV-2. Custódio TF, Das H, Sheward DJ, Hanke L, Pazicky S, Pieprzyk J, Sorgenfrei M, Schroer MA, Gruzinov AY, Jeffries CM, Graewert MA, Svergun DI, Dobrev N, Remans K, Seeger MA, McInerney GM, Murrell B, Hällberg BM, Löw C. Nat Commun 11 5588 (2020)
  19. Structures of Human Antibodies Bound to SARS-CoV-2 Spike Reveal Common Epitopes and Recurrent Features of Antibodies. Barnes CO, West AP, Huey-Tubman KE, Hoffmann MAG, Sharaf NG, Hoffman PR, Koranda N, Gristick HB, Gaebler C, Muecksch F, Lorenzi JCC, Finkin S, Hägglöf T, Hurley A, Millard KG, Weisblum Y, Schmidt F, Hatziioannou T, Bieniasz PD, Caskey M, Robbiani DF, Nussenzweig MC, Bjorkman PJ. Cell 182 828-842.e16 (2020)
  20. Drug targets for corona virus: A systematic review. Prajapat M, Sarma P, Shekhar N, Avti P, Sinha S, Kaur H, Kumar S, Bhattacharyya A, Kumar H, Bansal S, Medhi B. Indian J Pharmacol 52 56-65 (2020)
  21. FDA-Approved Drugs with Potent In Vitro Antiviral Activity against Severe Acute Respiratory Syndrome Coronavirus 2. Mostafa A, Kandeil A, A M M Elshaier Y, Kutkat O, Moatasim Y, Rashad AA, Shehata M, Gomaa MR, Mahrous N, Mahmoud SH, GabAllah M, Abbas H, Taweel AE, Kayed AE, Kamel MN, Sayes ME, Mahmoud DB, El-Shesheny R, Kayali G, Ali MA. Pharmaceuticals (Basel) 13 E443 (2020)
  22. Analysis of a SARS-CoV-2-Infected Individual Reveals Development of Potent Neutralizing Antibodies with Limited Somatic Mutation. Seydoux E, Homad LJ, MacCamy AJ, Parks KR, Hurlburt NK, Jennewein MF, Akins NR, Stuart AB, Wan YH, Feng J, Whaley RE, Singh S, Boeckh M, Cohen KW, McElrath MJ, Englund JA, Chu HY, Pancera M, McGuire AT, Stamatatos L. Immunity 53 98-105.e5 (2020)
  23. Phylogenetic Analysis and Structural Modeling of SARS-CoV-2 Spike Protein Reveals an Evolutionary Distinct and Proteolytically Sensitive Activation Loop. Jaimes JA, André NM, Chappie JS, Millet JK, Whittaker GR. J Mol Biol 432 3309-3325 (2020)
  24. Hijacking SARS-CoV-2/ACE2 Receptor Interaction by Natural and Semi-synthetic Steroidal Agents Acting on Functional Pockets on the Receptor Binding Domain. Carino A, Moraca F, Fiorillo B, Marchianò S, Sepe V, Biagioli M, Finamore C, Bozza S, Francisci D, Distrutti E, Catalanotti B, Zampella A, Fiorucci S. Front Chem 8 572885 (2020)
  25. Structures and distributions of SARS-CoV-2 spike proteins on intact virions. Ke Z, Oton J, Qu K, Cortese M, Zila V, McKeane L, Nakane T, Zivanov J, Neufeldt CJ, Cerikan B, Lu JM, Peukes J, Xiong X, Kräusslich HG, Scheres SHW, Bartenschlager R, Briggs JAG. Nature 588 498-502 (2020)
  26. SARS-CoV-2 simulations go exascale to predict dramatic spike opening and cryptic pockets across the proteome. Zimmerman MI, Porter JR, Ward MD, Singh S, Vithani N, Meller A, Mallimadugula UL, Kuhn CE, Borowsky JH, Wiewiora RP, Hurley MFD, Harbison AM, Fogarty CA, Coffland JE, Fadda E, Voelz VA, Chodera JD, Bowman GR. Nat Chem 13 651-659 (2021)
  27. A conserved immunogenic and vulnerable site on the coronavirus spike protein delineated by cross-reactive monoclonal antibodies. Wang C, van Haperen R, Gutiérrez-Álvarez J, Li W, Okba NMA, Albulescu I, Widjaja I, van Dieren B, Fernandez-Delgado R, Sola I, Hurdiss DL, Daramola O, Grosveld F, van Kuppeveld FJM, Haagmans BL, Enjuanes L, Drabek D, Bosch BJ. Nat Commun 12 1715 (2021)
  28. Structural and Functional Analysis of the D614G SARS-CoV-2 Spike Protein Variant. Yurkovetskiy L, Wang X, Pascal KE, Tomkins-Tinch C, Nyalile TP, Wang Y, Baum A, Diehl WE, Dauphin A, Carbone C, Veinotte K, Egri SB, Schaffner SF, Lemieux JE, Munro JB, Rafique A, Barve A, Sabeti PC, Kyratsous CA, Dudkina NV, Shen K, Luban J. Cell 183 739-751.e8 (2020)
  29. Structural basis for broad coronavirus neutralization. Sauer MM, Tortorici MA, Park YJ, Walls AC, Homad L, Acton OJ, Bowen JE, Wang C, Xiong X, de van der Schueren W, Quispe J, Hoffstrom BG, Bosch BJ, McGuire AT, Veesler D. Nat Struct Mol Biol 28 478-486 (2021)
  30. Investigation of the Effect of Temperature on the Structure of SARS-CoV-2 Spike Protein by Molecular Dynamics Simulations. Rath SL, Kumar K. Front Mol Biosci 7 583523 (2020)
  31. N501Y mutation of spike protein in SARS-CoV-2 strengthens its binding to receptor ACE2. Tian F, Tong B, Sun L, Shi S, Zheng B, Wang Z, Dong X, Zheng P. Elife 10 e69091 (2021)
  32. Two Different Antibody-Dependent Enhancement (ADE) Risks for SARS-CoV-2 Antibodies. Ricke DO. Front Immunol 12 640093 (2021)
  33. SARS-CoV-2 spike protein binds to bacterial lipopolysaccharide and boosts proinflammatory activity. Petruk G, Puthia M, Petrlova J, Samsudin F, Strömdahl AC, Cerps S, Uller L, Kjellström S, Bond PJ, Schmidtchen AA. J Mol Cell Biol 12 916-932 (2020)
  34. Structural Genomics of SARS-CoV-2 Indicates Evolutionary Conserved Functional Regions of Viral Proteins. Srinivasan S, Cui H, Gao Z, Liu M, Lu S, Mkandawire W, Narykov O, Sun M, Korkin D. Viruses 12 (2020)
  35. Identification of novel compounds against three targets of SARS CoV-2 coronavirus by combined virtual screening and supervised machine learning. Kadioglu O, Saeed M, Greten HJ, Efferth T. Comput Biol Med 133 104359 (2021)
  36. Glycyrrhizic acid exerts inhibitory activity against the spike protein of SARS-CoV-2. Yu S, Zhu Y, Xu J, Yao G, Zhang P, Wang M, Zhao Y, Lin G, Chen H, Chen L, Zhang J. Phytomedicine 85 153364 (2021)
  37. Structural basis for neutralization of SARS-CoV-2 and SARS-CoV by a potent therapeutic antibody. Lv Z, Deng YQ, Ye Q, Cao L, Sun CY, Fan C, Huang W, Sun S, Sun Y, Zhu L, Chen Q, Wang N, Nie J, Cui Z, Zhu D, Shaw N, Li XF, Li Q, Xie L, Wang Y, Rao Z, Qin CF, Wang X. Science 369 1505-1509 (2020)
  38. Molecular Simulations suggest Vitamins, Retinoids and Steroids as Ligands of the Free Fatty Acid Pocket of the SARS-CoV-2 Spike Protein*. Shoemark DK, Colenso CK, Toelzer C, Gupta K, Sessions RB, Davidson AD, Berger I, Schaffitzel C, Spencer J, Mulholland AJ. Angew Chem Int Ed Engl 60 7098-7110 (2021)
  39. Mapping Neutralizing and Immunodominant Sites on the SARS-CoV-2 Spike Receptor-Binding Domain by Structure-Guided High-Resolution Serology. Piccoli L, Park YJ, Tortorici MA, Czudnochowski N, Walls AC, Beltramello M, Silacci-Fregni C, Pinto D, Rosen LE, Bowen JE, Acton OJ, Jaconi S, Guarino B, Minola A, Zatta F, Sprugasci N, Bassi J, Peter A, De Marco A, Nix JC, Mele F, Jovic S, Rodriguez BF, Gupta SV, Jin F, Piumatti G, Lo Presti G, Pellanda AF, Biggiogero M, Tarkowski M, Pizzuto MS, Cameroni E, Havenar-Daughton C, Smithey M, Hong D, Lepori V, Albanese E, Ceschi A, Bernasconi E, Elzi L, Ferrari P, Garzoni C, Riva A, Snell G, Sallusto F, Fink K, Virgin HW, Lanzavecchia A, Corti D, Veesler D. Cell 183 1024-1042.e21 (2020)
  40. Structure of mouse coronavirus spike protein complexed with receptor reveals mechanism for viral entry. Shang J, Wan Y, Liu C, Yount B, Gully K, Yang Y, Auerbach A, Peng G, Baric R, Li F. PLoS Pathog 16 e1008392 (2020)
  41. A Universal Design of Betacoronavirus Vaccines against COVID-19, MERS, and SARS. Dai L, Zheng T, Xu K, Han Y, Xu L, Huang E, An Y, Cheng Y, Li S, Liu M, Yang M, Li Y, Cheng H, Yuan Y, Zhang W, Ke C, Wong G, Qi J, Qin C, Yan J, Gao GF. Cell 182 722-733.e11 (2020)
  42. Single-component, self-assembling, protein nanoparticles presenting the receptor binding domain and stabilized spike as SARS-CoV-2 vaccine candidates. He L, Lin X, Wang Y, Abraham C, Sou C, Ngo T, Zhang Y, Wilson IA, Zhu J. Sci Adv 7 eabf1591 (2021)
  43. SARS-CoV-2 spike produced in insect cells elicits high neutralization titres in non-human primates. Li T, Zheng Q, Yu H, Wu D, Xue W, Xiong H, Huang X, Nie M, Yue M, Rong R, Zhang S, Zhang Y, Wu Y, Wang S, Zha Z, Chen T, Deng T, Wang Y, Zhang T, Chen Y, Yuan Q, Zhao Q, Zhang J, Gu Y, Li S, Xia N. Emerg Microbes Infect 9 2076-2090 (2020)
  44. A natural mutation between SARS-CoV-2 and SARS-CoV determines neutralization by a cross-reactive antibody. Wu NC, Yuan M, Bangaru S, Huang D, Zhu X, Lee CD, Turner HL, Peng L, Yang L, Burton DR, Nemazee D, Ward AB, Wilson IA. PLoS Pathog 16 e1009089 (2020)
  45. Human-IgG-Neutralizing Monoclonal Antibodies Block the SARS-CoV-2 Infection. Wan J, Xing S, Ding L, Wang Y, Gu C, Wu Y, Rong B, Li C, Wang S, Chen K, He C, Zhu D, Yuan S, Qiu C, Zhao C, Nie L, Gao Z, Jiao J, Zhang X, Wang X, Ying T, Wang H, Xie Y, Lu Y, Xu J, Lan F. Cell Rep 32 107918 (2020)
  46. Modelling conformational state dynamics and its role on infection for SARS-CoV-2 Spike protein variants. Teruel N, Mailhot O, Najmanovich RJ. PLoS Comput Biol 17 e1009286 (2021)
  47. A thermostable, closed SARS-CoV-2 spike protein trimer. Xiong X, Qu K, Ciazynska KA, Hosmillo M, Carter AP, Ebrahimi S, Ke Z, Scheres SHW, Bergamaschi L, Grice GL, Zhang Y, CITIID-NIHR COVID-19 BioResource Collaboration, Nathan JA, Baker S, James LC, Baxendale HE, Goodfellow I, Doffinger R, Briggs JAG. Nat Struct Mol Biol 27 934-941 (2020)
  48. Prior and novel coronaviruses, Coronavirus Disease 2019 (COVID-19), and human reproduction: what is known? Segars J, Katler Q, McQueen DB, Kotlyar A, Glenn T, Knight Z, Feinberg EC, Taylor HS, Toner JP, Kawwass JF, American Society for Reproductive Medicine Coronavirus/COVID-19 Task Force. Fertil Steril 113 1140-1149 (2020)
  49. Interaction of Human ACE2 to Membrane-Bound SARS-CoV-1 and SARS-CoV-2 S Glycoproteins. Anand SP, Chen Y, Prévost J, Gasser R, Beaudoin-Bussières G, Abrams CF, Pazgier M, Finzi A. Viruses 12 E1104 (2020)
  50. Letter Detection of serum IgM and IgG for COVID-19 diagnosis. Zhong L, Chuan J, Gong B, Shuai P, Zhou Y, Zhang Y, Jiang Z, Zhang D, Liu X, Ma S, Huang Y, Lin H, Wang Q, Huang L, Jiang D, Hao F, Tang J, Zheng C, Yu H, Wang Z, Jiang Q, Zeng T, Luo M, Zeng F, Zeng F, Liu J, Tian J, Xu Y, Long T, Xu K, Yang X, Liu Y, Shi Y, Jiang L, Yang Z. Sci China Life Sci 63 777-780 (2020)
  51. The Progression of SARS Coronavirus 2 (SARS-CoV2): Mutation in the Receptor Binding Domain of Spike Gene. Kim S, Lee JH, Lee S, Shim S, Nguyen TT, Hwang J, Kim H, Choi YO, Hong J, Bae S, Jhun H, Yum H, Lee Y, Chan ED, Yu L, Azam T, Kim YD, Yeom SC, Yoo KH, Kang LW, Shin KC, Kim S. Immune Netw 20 e41 (2020)
  52. Evidence for mutations in SARS-CoV-2 Italian isolates potentially affecting virus transmission. Benvenuto D, Demir AB, Giovanetti M, Bianchi M, Angeletti S, Pascarella S, Cauda R, Ciccozzi M, Cassone A. J Med Virol 92 2232-2237 (2020)
  53. Overcoming Culture Restriction for SARS-CoV-2 in Human Cells Facilitates the Screening of Compounds Inhibiting Viral Replication. Ramirez S, Fernandez-Antunez C, Galli A, Underwood A, Pham LV, Ryberg LA, Feng S, Pedersen MS, Mikkelsen LS, Belouzard S, Dubuisson J, Sølund C, Weis N, Gottwein JM, Fahnøe U, Bukh J. Antimicrob Agents Chemother 65 e0009721 (2021)
  54. Receptor binding and priming of the spike protein of SARS-CoV-2 for membrane fusion. Benton DJ, Wrobel AG, Xu P, Roustan C, Martin SR, Rosenthal PB, Skehel JJ, Gamblin SJ. Nature 588 327-330 (2020)
  55. A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV. Yuan M, Wu NC, Zhu X, Lee CD, So RTY, Lv H, Mok CKP, Wilson IA. Science 368 630-633 (2020)
  56. Ca2+-dependent mechanism of membrane insertion and destabilization by the SARS-CoV-2 fusion peptide. Khelashvili G, Plante A, Doktorova M, Weinstein H. Biophys J 120 1105-1119 (2021)
  57. Coevolution, Dynamics and Allostery Conspire in Shaping Cooperative Binding and Signal Transmission of the SARS-CoV-2 Spike Protein with Human Angiotensin-Converting Enzyme 2. Verkhivker G. Int J Mol Sci 21 E8268 (2020)
  58. Feline coronavirus: Insights into viral pathogenesis based on the spike protein structure and function. Jaimes JA, Whittaker GR. Virology 517 108-121 (2018)
  59. Identification of sialic acid-binding function for the Middle East respiratory syndrome coronavirus spike glycoprotein. Li W, Hulswit RJG, Widjaja I, Raj VS, McBride R, Peng W, Widagdo W, Tortorici MA, van Dieren B, Lang Y, van Lent JWM, Paulson JC, de Haan CAM, de Groot RJ, van Kuppeveld FJM, Haagmans BL, Bosch BJ. Proc. Natl. Acad. Sci. U.S.A. 114 E8508-E8517 (2017)
  60. Broad cross-reactivity across sarbecoviruses exhibited by a subset of COVID-19 donor-derived neutralizing antibodies. Jette CA, Cohen AA, Gnanapragasam PNP, Muecksch F, Lee YE, Huey-Tubman KE, Schmidt F, Hatziioannou T, Bieniasz PD, Nussenzweig MC, West AP, Keeffe JR, Bjorkman PJ, Barnes CO. Cell Rep 36 109760 (2021)
  61. Comparative Perturbation-Based Modeling of the SARS-CoV-2 Spike Protein Binding with Host Receptor and Neutralizing Antibodies: Structurally Adaptable Allosteric Communication Hotspots Define Spike Sites Targeted by Global Circulating Mutations. Verkhivker GM, Agajanian S, Oztas DY, Gupta G. Biochemistry 60 1459-1484 (2021)
  62. Prevention of SARS-CoV-2 cell entry: insight from in silico interaction of drug-like alkaloids with spike glycoprotein, human ACE2, and TMPRSS2. Gyebi GA, Adegunloye AP, Ibrahim IM, Ogunyemi OM, Afolabi SO, Ogunro OB. J Biomol Struct Dyn 40 2121-2145 (2022)
  63. Structural dynamics of SARS-CoV-2 variants: A health monitoring strategy for anticipating Covid-19 outbreaks. Fantini J, Yahi N, Azzaz F, Chahinian H. J Infect 83 197-206 (2021)
  64. Structures of MERS-CoV spike glycoprotein in complex with sialoside attachment receptors. Park YJ, Walls AC, Wang Z, Sauer MM, Li W, Tortorici MA, Bosch BJ, DiMaio F, Veesler D. Nat. Struct. Mol. Biol. 26 1151-1157 (2019)
  65. Dependence of SARS-CoV-2 infection on cholesterol-rich lipid raft and endosomal acidification. Li X, Zhu W, Fan M, Zhang J, Peng Y, Huang F, Wang N, He L, Zhang L, Holmdahl R, Meng L, Lu S. Comput Struct Biotechnol J 19 1933-1943 (2021)
  66. Exploring the genomic and proteomic variations of SARS-CoV-2 spike glycoprotein: A computational biology approach. Lokman SM, Rasheduzzaman M, Salauddin A, Barua R, Tanzina AY, Rumi MH, Hossain MI, Siddiki AMAMZ, Mannan A, Hasan MM. Infect Genet Evol 84 104389 (2020)
  67. Integrated Biophysical Modeling of the SARS-CoV-2 Spike Protein Binding and Allosteric Interactions with Antibodies. Verkhivker GM, Di Paola L. J Phys Chem B 125 4596-4619 (2021)
  68. Structural insights into the cross-neutralization of SARS-CoV and SARS-CoV-2 by the human monoclonal antibody 47D11. Fedry J, Hurdiss DL, Wang C, Li W, Obal G, Drulyte I, Du W, Howes SC, van Kuppeveld FJM, Förster F, Bosch BJ. Sci Adv 7 eabf5632 (2021)
  69. The ACE2 expression in Sertoli cells and germ cells may cause male reproductive disorder after SARS-CoV-2 infection. Shen Q, Xiao X, Aierken A, Yue W, Wu X, Liao M, Hua J. J Cell Mol Med 24 9472-9477 (2020)
  70. Structural Definition of a Unique Neutralization Epitope on the Receptor-Binding Domain of MERS-CoV Spike Glycoprotein. Zhang S, Zhou P, Wang P, Li Y, Jiang L, Jia W, Wang H, Fan A, Wang D, Shi X, Fang X, Hammel M, Wang S, Wang X, Zhang L. Cell Rep 24 441-452 (2018)
  71. Binding of SARS-CoV-2 to Cell Receptors: A Tale of Molecular Evolution. Gómez SA, Rojas-Valencia N, Gómez S, Egidi F, Cappelli C, Restrepo A. Chembiochem 22 724-732 (2021)
  72. Cryo-EM analysis of the post-fusion structure of the SARS-CoV spike glycoprotein. Fan X, Cao D, Kong L, Zhang X. Nat Commun 11 3618 (2020)
  73. Distinct Roles for Sialoside and Protein Receptors in Coronavirus Infection. Qing E, Hantak M, Perlman S, Gallagher T. mBio 11 (2020)
  74. Fusion mechanism of 2019-nCoV and fusion inhibitors targeting HR1 domain in spike protein. Xia S, Zhu Y, Liu M, Lan Q, Xu W, Wu Y, Ying T, Liu S, Shi Z, Jiang S, Lu L. Cell. Mol. Immunol. 17 765-767 (2020)
  75. Nano-Enabled COVID-19 Vaccines: Meeting the Challenges of Durable Antibody Plus Cellular Immunity and Immune Escape. Nel AE, Miller JF. ACS Nano 15 5793-5818 (2021)
  76. Structure-guided covalent stabilization of coronavirus spike glycoprotein trimers in the closed conformation. McCallum M, Walls AC, Bowen JE, Corti D, Veesler D. Nat Struct Mol Biol 27 942-949 (2020)
  77. The tetraspanin CD9 facilitates MERS-coronavirus entry by scaffolding host cell receptors and proteases. Earnest JT, Hantak MP, Li K, McCray PB, Perlman S, Gallagher T. PLoS Pathog. 13 e1006546 (2017)
  78. Analysis of the SARS-CoV-2 spike protein glycan shield reveals implications for immune recognition. Grant OC, Montgomery D, Ito K, Woods RJ. Sci Rep 10 14991 (2020)
  79. Importance of Neutralizing Monoclonal Antibodies Targeting Multiple Antigenic Sites on the Middle East Respiratory Syndrome Coronavirus Spike Glycoprotein To Avoid Neutralization Escape. Wang L, Shi W, Chappell JD, Joyce MG, Zhang Y, Kanekiyo M, Becker MM, van Doremalen N, Fischer R, Wang N, Corbett KS, Choe M, Mason RD, Van Galen JG, Zhou T, Saunders KO, Tatti KM, Haynes LM, Kwong PD, Modjarrad K, Kong WP, McLellan JS, Denison MR, Munster VJ, Mascola JR, Graham BS. J. Virol. 92 (2018)
  80. Structure and immune recognition of the porcine epidemic diarrhea virus spike protein. Kirchdoerfer RN, Bhandari M, Martini O, Sewall LM, Bangaru S, Yoon KJ, Ward AB. Structure 29 385-392.e5 (2021)
  81. The impact of spike N501Y mutation on neutralizing activity and RBD binding of SARS-CoV-2 convalescent serum. Lu L, Chu AW, Zhang RR, Chan WM, Ip JD, Tsoi HW, Chen LL, Cai JP, Lung DC, Tam AR, Yau YS, Kwan MY, To WK, Tsang OT, Lee LL, Yi H, Ip TC, Poon RW, Siu GK, Mok BW, Cheng VC, Chan KH, Yuen KY, Hung IF, To KK. EBioMedicine 71 103544 (2021)
  82. A Novel Nanobody Targeting Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Receptor-Binding Domain Has Potent Cross-Neutralizing Activity and Protective Efficacy against MERS-CoV. Zhao G, He L, Sun S, Qiu H, Tai W, Chen J, Li J, Chen Y, Guo Y, Wang Y, Shang J, Ji K, Fan R, Du E, Jiang S, Li F, Du L, Zhou Y. J. Virol. 92 (2018)
  83. Evaluation of traditional ayurvedic Kadha for prevention and management of the novel Coronavirus (SARS-CoV-2) using in silico approach. Maurya DK, Sharma D. J Biomol Struct Dyn 40 3949-3964 (2022)
  84. Prepare for the Future: Dissecting the Spike to Seek Broadly Neutralizing Antibodies and Universal Vaccine for Pandemic Coronaviruses. Vangelista L, Secchi M. Front Mol Biosci 7 226 (2020)
  85. Temperature effect on the SARS-CoV-2: A molecular dynamics study of the spike homotrimeric glycoprotein. Martí D, Torras J, Bertran O, Turon P, Alemán C. Comput Struct Biotechnol J 19 1848-1862 (2021)
  86. The SARS-unique domain (SUD) of SARS-CoV and SARS-CoV-2 interacts with human Paip1 to enhance viral RNA translation. Lei J, Ma-Lauer Y, Han Y, Thoms M, Buschauer R, Jores J, Thiel V, Beckmann R, Deng W, Leonhardt H, Hilgenfeld R, von Brunn A. EMBO J 40 e102277 (2021)
  87. Docking and in silico toxicity assessment of Arthrospira compounds as potential antiviral agents against SARS-CoV-2. Petit L, Vernès L, Cadoret JP. J Appl Phycol 33 1579-1602 (2021)
  88. Identification and functional analysis of the SARS-COV-2 nucleocapsid protein. Gao T, Gao Y, Liu X, Nie Z, Sun H, Lin K, Peng H, Wang S. BMC Microbiol 21 58 (2021)
  89. Lactoferrin Against SARS-CoV-2: In Vitro and In Silico Evidences. Campione E, Lanna C, Cosio T, Rosa L, Conte MP, Iacovelli F, Romeo A, Falconi M, Del Vecchio C, Franchin E, Lia MS, Minieri M, Chiaramonte C, Ciotti M, Nuccetelli M, Terrinoni A, Iannuzzi I, Coppeda L, Magrini A, Bernardini S, Sabatini S, Rosapepe F, Bartoletti PL, Moricca N, Di Lorenzo A, Andreoni M, Sarmati L, Miani A, Piscitelli P, Valenti P, Bianchi L. Front Pharmacol 12 666600 (2021)
  90. Neutrophil Elastase and Proteinase 3 Cleavage Sites Are Adjacent to the Polybasic Sequence within the Proteolytic Sensitive Activation Loop of the SARS-CoV-2 Spike Protein. Mustafa Z, Zhanapiya A, Kalbacher H, Burster T. ACS Omega 6 7181-7185 (2021)
  91. Plant-Produced Receptor-Binding Domain of SARS-CoV-2 Elicits Potent Neutralizing Responses in Mice and Non-human Primates. Siriwattananon K, Manopwisedjaroen S, Shanmugaraj B, Rattanapisit K, Phumiamorn S, Sapsutthipas S, Trisiriwanich S, Prompetchara E, Ketloy C, Buranapraditkun S, Wijagkanalan W, Tharakhet K, Kaewpang P, Leetanasaksakul K, Kemthong T, Suttisan N, Malaivijitnond S, Ruxrungtham K, Thitithanyanont A, Phoolcharoen W. Front Plant Sci 12 682953 (2021)
  92. Structural Basis for Potent Neutralization of Betacoronaviruses by Single-Domain Camelid Antibodies. Wrapp D, De Vlieger D, Corbett KS, Torres GM, Wang N, Van Breedam W, Roose K, van Schie L, VIB-CMB COVID-19 Response Team, Hoffmann M, Pöhlmann S, Graham BS, Callewaert N, Schepens B, Saelens X, McLellan JS. Cell 181 1004-1015.e15 (2020)
  93. Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion. Walls AC, Tortorici MA, Snijder J, Xiong X, Bosch BJ, Rey FA, Veesler D. Proc. Natl. Acad. Sci. U.S.A. 114 11157-11162 (2017)
  94. In silico Analyses of Immune System Protein Interactome Network, Single-Cell RNA Sequencing of Human Tissues, and Artificial Neural Networks Reveal Potential Therapeutic Targets for Drug Repurposing Against COVID-19. López-Cortés A, Guevara-Ramírez P, Kyriakidis NC, Barba-Ostria C, León Cáceres Á, Guerrero S, Ortiz-Prado E, Munteanu CR, Tejera E, Cevallos-Robalino D, Gómez-Jaramillo AM, Simbaña-Rivera K, Granizo-Martínez A, Pérez-M G, Moreno S, García-Cárdenas JM, Zambrano AK, Pérez-Castillo Y, Cabrera-Andrade A, Puig San Andrés L, Proaño-Castro C, Bautista J, Quevedo A, Varela N, Quiñones LA, Paz-Y-Miño C. Front Pharmacol 12 598925 (2021)
  95. In silico study of natural compounds from sesame against COVID-19 by targeting Mpro, PLpro and RdRp. Allam AE, Amen Y, Ashour A, Assaf HK, Hassan HA, Abdel-Rahman IM, Sayed AM, Shimizu K. RSC Adv 11 22398-22408 (2021)
  96. Aptamer BC 007 - Efficient binder of spreading-crucial SARS-CoV-2 proteins. Weisshoff H, Krylova O, Nikolenko H, Düngen HD, Dallmann A, Becker S, Göttel P, Müller J, Haberland A. Heliyon 6 e05421 (2020)
  97. Conformational dynamics of SARS-CoV-2 trimeric spike glycoprotein in complex with receptor ACE2 revealed by cryo-EM. Xu C, Wang Y, Liu C, Zhang C, Han W, Hong X, Wang Y, Hong Q, Wang S, Zhao Q, Wang Y, Yang Y, Chen K, Zheng W, Kong L, Wang F, Zuo Q, Huang Z, Cong Y. Sci Adv 7 (2021)
  98. Cryo-EM Structures of SARS-CoV-2 Spike without and with ACE2 Reveal a pH-Dependent Switch to Mediate Endosomal Positioning of Receptor-Binding Domains. Zhou T, Tsybovsky Y, Gorman J, Rapp M, Cerutti G, Chuang GY, Katsamba PS, Sampson JM, Schön A, Bimela J, Boyington JC, Nazzari A, Olia AS, Shi W, Sastry M, Stephens T, Stuckey J, Teng IT, Wang P, Wang S, Zhang B, Friesner RA, Ho DD, Mascola JR, Shapiro L, Kwong PD. Cell Host Microbe 28 867-879.e5 (2020)
  99. Cryo-EM structure of infectious bronchitis coronavirus spike protein reveals structural and functional evolution of coronavirus spike proteins. Shang J, Zheng Y, Yang Y, Liu C, Geng Q, Luo C, Zhang W, Li F. PLoS Pathog. 14 e1007009 (2018)
  100. Distant residues modulate conformational opening in SARS-CoV-2 spike protein. Ray D, Le L, Andricioaei I. Proc Natl Acad Sci U S A 118 e2100943118 (2021)
  101. Dynamics of SARS-CoV-2 Spike Proteins in Cell Entry: Control Elements in the Amino-Terminal Domains. Qing E, Kicmal T, Kumar B, Hawkins GM, Timm E, Perlman S, Gallagher T. mBio 12 e0159021 (2021)
  102. Shedding Light on the Inhibitory Mechanisms of SARS-CoV-1/CoV-2 Spike Proteins by ACE2-Designed Peptides. Freitas FC, Ferreira PHB, Favaro DC, Oliveira RJ. J Chem Inf Model 61 1226-1243 (2021)
  103. Ultra-large-scale ab initio quantum chemical computation of bio-molecular systems: The case of spike protein of SARS-CoV-2 virus. Ching WY, Adhikari P, Jawad B, Podgornik R. Comput Struct Biotechnol J 19 1288-1301 (2021)
  104. A cross-neutralizing antibody between HIV-1 and influenza virus. Lee CD, Watanabe Y, Wu NC, Han J, Kumar S, Pholcharee T, Seabright GE, Allen JD, Lin CW, Yang JR, Liu MT, Wu CY, Ward AB, Crispin M, Wilson IA. PLoS Pathog 17 e1009407 (2021)
  105. Biochemical Analysis of Coronavirus Spike Glycoprotein Conformational Intermediates during Membrane Fusion. Kawase M, Kataoka M, Shirato K, Matsuyama S. J Virol 93 (2019)
  106. Conformational flexibility and structural variability of SARS-CoV2 S protein. Pramanick I, Sengupta N, Mishra S, Pandey S, Girish N, Das A, Dutta S. Structure 29 834-845.e5 (2021)
  107. Deciphering the protein motion of S1 subunit in SARS-CoV-2 spike glycoprotein through integrated computational methods. Tian H, Tao P. J Biomol Struct Dyn 39 6705-6712 (2021)
  108. Broadly neutralizing antibodies target the coronavirus fusion peptide. Dacon C, Tucker C, Peng L, Lee CD, Lin TH, Yuan M, Cong Y, Wang L, Purser L, Williams JK, Pyo CW, Kosik I, Hu Z, Zhao M, Mohan D, Cooper AJR, Peterson M, Skinner J, Dixit S, Kollins E, Huzella L, Perry D, Byrum R, Lembirik S, Drawbaugh D, Eaton B, Zhang Y, Yang ES, Chen M, Leung K, Weinberg RS, Pegu A, Geraghty DE, Davidson E, Douagi I, Moir S, Yewdell JW, Schmaljohn C, Crompton PD, Holbrook MR, Nemazee D, Mascola JR, Wilson IA, Tan J. Science 377 728-735 (2022)
  109. Cryo-Electron Microscopy Structure of Porcine Deltacoronavirus Spike Protein in the Prefusion State Shang J, Zheng Y, Yang Y, Liu C, Geng Q, Tai W, Du L, Zhou Y, Zhang W, Li F. J. Virol. 92 (2018)
  110. Double lock of a potent human therapeutic monoclonal antibody against SARS-CoV-2. Zhu L, Deng YQ, Zhang RR, Cui Z, Sun CY, Fan CF, Xing X, Huang W, Chen Q, Zhang NN, Ye Q, Cao TS, Wang N, Wang L, Cao L, Wang H, Kong D, Ma J, Luo C, Zhang Y, Nie J, Sun Y, Lv Z, Shaw N, Li Q, Li XF, Hu J, Xie L, Rao Z, Wang Y, Wang X, Qin CF. Natl Sci Rev 8 nwaa297 (2021)
  111. Glycan Shield and Fusion Activation of a Deltacoronavirus Spike Glycoprotein Fine-Tuned for Enteric Infections. Xiong X, Tortorici MA, Snijder J, Yoshioka C, Walls AC, Li W, McGuire AT, Rey FA, Bosch BJ, Veesler D. J. Virol. 92 (2018)
  112. Highly Conserved Homotrimer Cavity Formed by the SARS-CoV-2 Spike Glycoprotein: A Novel Binding Site. Kalathiya U, Padariya M, Mayordomo M, Lisowska M, Nicholson J, Singh A, Baginski M, Fahraeus R, Carragher N, Ball K, Haas J, Daniels A, Hupp TR, Alfaro JA. J Clin Med 9 (2020)
  113. Pharmacophore-Based Virtual Screening, Quantum Mechanics Calculations, and Molecular Dynamics Simulation Approaches Identified Potential Natural Antiviral Drug Candidates against MERS-CoV S1-NTD. Bouback TA, Pokhrel S, Albeshri A, Aljohani AM, Samad A, Alam R, Hossen MS, Al-Ghamdi K, Talukder MEK, Ahammad F, Qadri I, Simal-Gandara J. Molecules 26 4961 (2021)
  114. Posttranslational modifications optimize the ability of SARS-CoV-2 spike for effective interaction with host cell receptors. Kapoor K, Chen T, Tajkhorshid E. Proc Natl Acad Sci U S A 119 e2119761119 (2022)
  115. Roles of Two Major Domains of the Porcine Deltacoronavirus S1 Subunit in Receptor Binding and Neutralization. Liu Y, Wang B, Liang QZ, Shi FS, Ji CM, Yang XL, Yang YL, Qin P, Chen R, Huang YW. J Virol 95 e0111821 (2021)
  116. SARS-CoV-2, an evolutionary perspective of interaction with human ACE2 reveals undiscovered amino acids necessary for complex stability. Armijos-Jaramillo V, Yeager J, Muslin C, Perez-Castillo Y. Evol Appl (2020)
  117. SARS-CoV-2 cell receptor gene ACE2 -mediated immunomodulation in breast cancer subtypes. Bhari VK, Kumar D, Kumar S, Mishra R. Biochem Biophys Rep 24 100844 (2020)
  118. Site-specific N-glycosylation Characterization of Recombinant SARS-CoV-2 Spike Proteins. Zhang Y, Zhao W, Mao Y, Chen Y, Wang S, Zhong Y, Su T, Gong M, Du D, Lu X, Cheng J, Yang H. Mol Cell Proteomics (2020)
  119. Structure and function analysis of a potent human neutralizing antibody CA521FALA against SARS-CoV-2. Song D, Wang W, Dong C, Ning Z, Liu X, Liu C, Du G, Sha C, Wang K, Lu J, Sun B, Zhao Y, Wang Q, Xu H, Li Y, Shen Z, Jiao J, Wang R, Tian J, Liu W, Wang L, Deng YQ, Dou C. Commun Biol 4 500 (2021)
  120. The Discovery of a Putative Allosteric Site in the SARS-CoV-2 Spike Protein Using an Integrated Structural/Dynamic Approach. Di Paola L, Hadi-Alijanvand H, Song X, Hu G, Giuliani A. J Proteome Res 19 4576-4586 (2020)
  121. COVID-19: viral-host interactome analyzed by network based-approach model to study pathogenesis of SARS-CoV-2 infection. Messina F, Giombini E, Agrati C, Vairo F, Ascoli Bartoli T, Al Moghazi S, Piacentini M, Locatelli F, Kobinger G, Maeurer M, Zumla A, Capobianchi MR, Lauria FN, Ippolito G, COVID 19 INMI Network Medicine for IDs Study Group. J Transl Med 18 233 (2020)
  122. Cryo-EM analysis of a feline coronavirus spike protein reveals a unique structure and camouflaging glycans. Yang TJ, Chang YC, Ko TP, Draczkowski P, Chien YC, Chang YC, Wu KP, Khoo KH, Chang HW, Hsu SD. Proc. Natl. Acad. Sci. U.S.A. 117 1438-1446 (2020)
  123. DisCoVering potential candidates of RNAi-based therapy for COVID-19 using computational methods. Rohani N, Ahmadi Moughari F, Eslahchi C. PeerJ 9 e10505 (2021)
  124. Discovery of a AHR pelargonidin agonist that counter-regulates Ace2 expression and attenuates ACE2-SARS-CoV-2 interaction. Biagioli M, Marchianò S, Roselli R, Di Giorgio C, Bellini R, Bordoni M, Gidari A, Sabbatini S, Francisci D, Fiorillo B, Catalanotti B, Distrutti E, Carino A, Zampella A, Costantino G, Fiorucci S. Biochem Pharmacol 188 114564 (2021)
  125. Disulfide Bonds Play a Critical Role in the Structure and Function of the Receptor-binding Domain of the SARS-CoV-2 Spike Antigen. Grishin AM, Dolgova NV, Landreth S, Fisette O, Pickering IJ, George GN, Falzarano D, Cygler M. J Mol Biol 434 167357 (2022)
  126. Lipidation increases antiviral activities of coronavirus fusion-inhibiting peptides. Park JE, Gallagher T. Virology 511 9-18 (2017)
  127. Molecular Basis of Binding between Middle East Respiratory Syndrome Coronavirus and CD26 from Seven Bat Species. Yuan Y, Qi J, Peng R, Li C, Lu G, Yan J, Wang Q, Gao GF. J Virol 94 (2020)
  128. Molecular screening of glycyrrhizin-based inhibitors against ACE2 host receptor of SARS-CoV-2. Ahmad S, Waheed Y, Abro A, Abbasi SW, Ismail S. J Mol Model 27 206 (2021)
  129. Progressive membrane-binding mechanism of SARS-CoV-2 variant spike proteins. Overduin M, Kervin TA, Tran A. iScience 25 104722 (2022)
  130. "Breathing" Hemagglutinin Reveals Cryptic Epitopes for Universal Influenza Vaccine Design. Wu Y, Gao GF. Cell 177 1086-1088 (2019)
  131. In silico screening of known small molecules to bind ACE2 specific RBD on Spike glycoprotein of SARS-CoV-2 for repurposing against COVID-19. Br B, Damle H, Ganju S, Damle L. F1000Res 9 663 (2020)
  132. A human monoclonal antibody blocking SARS-CoV-2 infection. Wang C, Li W, Drabek D, Okba NMA, van Haperen R, Osterhaus ADME, van Kuppeveld FJM, Haagmans BL, Grosveld F, Bosch BJ. Nat Commun 11 2251 (2020)
  133. Cross-neutralization of RBD mutant strains of SARS-CoV-2 by convalescent patient derived antibodies. Lou Y, Zhao W, Wei H, Chu M, Chao R, Yao H, Su J, Li Y, Li X, Cao Y, Feng Y, Wang P, Xia Y, Shang Y, Li F, Ge P, Zhang X, Gao W, Song G, Du B, Liang T, Qiu Y, Liu M. Biotechnol J 16 e2100207 (2021)
  134. Cryo-EM structures of HKU2 and SADS-CoV spike glycoproteins provide insights into coronavirus evolution. Yu J, Qiao S, Guo R, Wang X. Nat Commun 11 3070 (2020)
  135. D614G Mutation Alters SARS-CoV-2 Spike Conformation and Enhances Protease Cleavage at the S1/S2 Junction. Gobeil SM, Janowska K, McDowell S, Mansouri K, Parks R, Manne K, Stalls V, Kopp MF, Henderson R, Edwards RJ, Haynes BF, Acharya P. Cell Rep 34 108630 (2021)
  136. Development of Effective Therapeutic Molecule from Natural Sources against Coronavirus Protease. Fadaka AO, Sibuyi NRS, Martin DR, Klein A, Madiehe A, Meyer M. Int J Mol Sci 22 9431 (2021)
  137. Genetic Variation and Evolution of the 2019 Novel Coronavirus. Dimonte S, Babakir-Mina M, Hama-Soor T, Ali S. Public Health Genomics 24 54-66 (2021)
  138. Glucocorticoids Bind to SARS-CoV-2 S1 at Multiple Sites Causing Cooperative Inhibition of SARS-CoV-2 S1 Interaction With ACE2. Sarker H, Panigrahi R, Hardy E, Glover JNM, Elahi S, Fernandez-Patron C. Front Immunol 13 906687 (2022)
  139. High-throughput identification of prefusion-stabilizing mutations in SARS-CoV-2 spike. Tan TJC, Mou Z, Lei R, Ouyang WO, Yuan M, Song G, Andrabi R, Wilson IA, Kieffer C, Dai X, Matreyek KA, Wu NC. Nat Commun 14 2003 (2023)
  140. Immunoinformatics characterization of SARS-CoV-2 spike glycoprotein for prioritization of epitope based multivalent peptide vaccine. Ismail S, Ahmad S, Azam SS. J Mol Liq 314 113612 (2020)
  141. Interfacial Water in the SARS Spike Protein: Investigating the Interaction with Human ACE2 Receptor and In Vitro Uptake in A549 Cells. Singh AV, Kayal A, Malik A, Maharjan RS, Dietrich P, Thissen A, Siewert K, Curato C, Pande K, Prahlad D, Kulkarni N, Laux P, Luch A. Langmuir 38 7976-7988 (2022)
  142. Molecular dynamics of Middle East Respiratory Syndrome Coronavirus (MERS CoV) fusion heptad repeat trimers. Kandeel M, Al-Taher A, Li H, Schwingenschlogl U, Al-Nazawi M. Comput Biol Chem 75 205-212 (2018)
  143. Omicron SARS-CoV-2 mutations stabilize spike up-RBD conformation and lead to a non-RBM-binding monoclonal antibody escape. Zhao Z, Zhou J, Tian M, Huang M, Liu S, Xie Y, Han P, Bai C, Han P, Zheng A, Fu L, Gao Y, Peng Q, Li Y, Chai Y, Zhang Z, Zhao X, Song H, Qi J, Wang Q, Wang P, Gao GF. Nat Commun 13 4958 (2022)
  144. RCSB Protein Data Bank resources for structure-facilitated design of mRNA vaccines for existing and emerging viral pathogens. Goodsell DS, Burley SK. Structure 30 55-68.e2 (2022)
  145. RCSB Protein Data Bank: Celebrating 50 years of the PDB with new tools for understanding and visualizing biological macromolecules in 3D. Burley SK, Bhikadiya C, Bi C, Bittrich S, Chen L, Crichlow GV, Duarte JM, Dutta S, Fayazi M, Feng Z, Flatt JW, Ganesan SJ, Goodsell DS, Ghosh S, Kramer Green R, Guranovic V, Henry J, Hudson BP, Lawson CL, Liang Y, Lowe R, Peisach E, Persikova I, Piehl DW, Rose Y, Sali A, Segura J, Sekharan M, Shao C, Vallat B, Voigt M, Westbrook JD, Whetstone S, Young JY, Zardecki C. Protein Sci 31 187-208 (2022)
  146. SSSCPreds: Deep Neural Network-Based Software for the Prediction of Conformational Variability and Application to SARS-CoV-2. Izumi H, Nafie LA, Dukor RK. ACS Omega 5 30556-30567 (2020)
  147. Tackling Covid-19 using disordered-to-order transition of residues in the spike protein upon angiotensin-converting enzyme 2 binding. Yesudhas D, Srivastava A, Sekijima M, Gromiha MM. Proteins 89 1158-1166 (2021)
  148. The SARS-CoV Fusion Peptide Forms an Extended Bipartite Fusion Platform that Perturbs Membrane Order in a Calcium-Dependent Manner. Lai AL, Millet JK, Daniel S, Freed JH, Whittaker GR. J. Mol. Biol. 429 3875-3892 (2017)
  149. The free fatty acid-binding pocket is a conserved hallmark in pathogenic β-coronavirus spike proteins from SARS-CoV to Omicron. Toelzer C, Gupta K, Yadav SKN, Hodgson L, Williamson MK, Buzas D, Borucu U, Powers K, Stenner R, Vasileiou K, Garzoni F, Fitzgerald D, Payré C, Gautam G, Lambeau G, Davidson AD, Verkade P, Frank M, Berger I, Schaffitzel C. Sci Adv 8 eadc9179 (2022)
  150. "Just in Time": The Role of Cryo-Electron Microscopy in Combating Recent Pandemics. Frank J. Biochemistry 60 3449-3451 (2021)
  151. A COVID-19 Vaccine for Dogs Prevents Reverse Zoonosis. Ga E, Won Y, Hwang J, Moon S, Yeom M, Lyoo K, Song D, Han J, Na W. Vaccines (Basel) 10 676 (2022)
  152. A bat MERS-like coronavirus circulates in pangolins and utilizes human DPP4 and host proteases for cell entry. Chen J, Yang X, Si H, Gong Q, Que T, Li J, Li Y, Wu C, Zhang W, Chen Y, Luo Y, Zhu Y, Li B, Luo D, Hu B, Lin H, Jiang R, Jiang T, Li Q, Liu M, Xie S, Su J, Zheng X, Li A, Yao Y, Yang Y, Chen P, Wu A, He M, Lin X, Tong Y, Hu Y, Shi ZL, Zhou P. Cell 186 850-863.e16 (2023)
  153. Adaptive evolution influences the infectious dose of MERS-CoV necessary to achieve severe respiratory disease. Douglas MG, Kocher JF, Scobey T, Baric RS, Cockrell AS. Virology 517 98-107 (2018)
  154. Analysis of the avian coronavirus spike protein reveals heterogeneity in the glycans present. Stevenson-Leggett P, Armstrong S, Keep S, Britton P, Bickerton E. J Gen Virol 102 (2021)
  155. Cryo-electron Microscopy Structure of the Swine Acute Diarrhea Syndrome Coronavirus Spike Glycoprotein Provides Insights into Evolution of Unique Coronavirus Spike Proteins. Guan H, Wang Y, Perčulija V, Saeed AFUH, Liu Y, Li J, Jan SS, Li Y, Zhu P, Ouyang S. J Virol 94 e01301-20 (2020)
  156. Dynamic Asymmetry Exposes 2019-nCoV Prefusion Spike. Roy S, Jaiswar A, Sarkar R. J Phys Chem Lett 11 7021-7027 (2020)
  157. Functional binding dynamics relevant to the evolution of zoonotic spillovers in endemic and emergent Betacoronavirus strains. Rynkiewicz P, Lynch ML, Cui F, Hudson AO, Babbitt GA. J Biomol Struct Dyn 1-19 (2021)
  158. Human neutralizing antibodies to cold linear epitopes and subdomain 1 of the SARS-CoV-2 spike glycoprotein. Bianchini F, Crivelli V, Abernathy ME, Guerra C, Palus M, Muri J, Marcotte H, Piralla A, Pedotti M, De Gasparo R, Simonelli L, Matkovic M, Toscano C, Biggiogero M, Calvaruso V, Svoboda P, Cervantes Rincón T, Fava T, Podešvová L, Shanbhag AA, Celoria A, Sgrignani J, Stefanik M, Hönig V, Pranclova V, Michalcikova T, Prochazka J, Guerrini G, Mehn D, Ciabattini A, Abolhassani H, Jarrossay D, Uguccioni M, Medaglini D, Pan-Hammarström Q, Calzolai L, Fernandez D, Baldanti F, Franzetti-Pellanda A, Garzoni C, Sedlacek R, Ruzek D, Varani L, Cavalli A, Barnes CO, Robbiani DF. Sci Immunol 8 eade0958 (2023)
  159. In silico ADMET and molecular docking study on searching potential inhibitors from limonoids and triterpenoids for COVID-19. Vardhan S, Sahoo SK. Comput Biol Med 124 103936 (2020)
  160. Middle East respiratory syndrome coronavirus Spike protein variants exhibit geographic differences in virulence. Wong LR, Zheng J, Sariol A, Lowery S, Meyerholz DK, Gallagher T, Perlman S. Proc Natl Acad Sci U S A 118 e2102983118 (2021)
  161. Mutational Frequencies of SARS-CoV-2 Genome during the Beginning Months of the Outbreak in USA. Kaushal N, Gupta Y, Goyal M, Khaiboullina SF, Baranwal M, Verma SC. Pathogens 9 (2020)
  162. Structural basis for human coronavirus attachment to sialic acid receptors. Tortorici MA, Walls AC, Lang Y, Wang C, Li Z, Koerhuis D, Boons GJ, Bosch BJ, Rey FA, de Groot RJ, Veesler D. Nat. Struct. Mol. Biol. 26 481-489 (2019)
  163. The Potential of Developing Pan-Coronaviral Antibodies to Spike Peptides in Convalescent COVID-19 Patients. Rabets A, Bila G, Grytsko R, Samborskyy M, Rebets Y, Vari SG, Pagneux Q, Barras A, Boukherroub R, Szunerits S, Bilyy R. Arch Immunol Ther Exp (Warsz) 69 5 (2021)
  164. The Role of Spike Protein Mutations in the Infectious Power of SARS-COV-2 Variants: A Molecular Interaction Perspective. Gómez SA, Rojas-Valencia N, Gómez S, Cappelli C, Restrepo A. Chembiochem 23 e202100393 (2022)
  165. Virus database annotations assist in tracing information on patients infected with emerging pathogens. Nakashima A, Takeya M, Kuba K, Takano M, Nakashima N. Inform Med Unlocked 21 100442 (2020)
  166. In vitro generated antibodies guide thermostable ADDomer nanoparticle design for nasal vaccination and passive immunization against SARS-CoV-2. Buzas D, Bunzel AH, Staufer O, Milodowski EJ, Edmunds GL, Bufton JC, Vidana Mateo BV, Yadav SKN, Gupta K, Fletcher C, Williamson MK, Harrison A, Borucu U, Capin J, Francis O, Balchin G, Hall S, Vega MV, Durbesson F, Lingappa S, Vincentelli R, Roe J, Wooldridge L, Burt R, Anderson RJL, Mulholland AJ, Bristol Uncover Group, Hare J, Bailey M, Davidson AD, Finn A, Morgan D, Mann J, Spatz J, Garzoni F, Schaffitzel C, Berger I. Antib Ther 6 277-297 (2023)
  167. A molecular docking study revealed that synthetic peptides induced conformational changes in the structure of SARS-CoV-2 spike glycoprotein, disrupting the interaction with human ACE2 receptor. Souza PFN, Lopes FES, Amaral JL, Freitas CDT, Oliveira JTA. Int J Biol Macromol 164 66-76 (2020)
  168. A multi-pronged approach targeting SARS-CoV-2 proteins using ultra-large virtual screening. Gorgulla C, Padmanabha Das KM, Leigh KE, Cespugli M, Fischer PD, Wang ZF, Tesseyre G, Pandita S, Shnapir A, Calderaio A, Gechev M, Rose A, Lewis N, Hutcheson C, Yaffe E, Luxenburg R, Herce HD, Durmaz V, Halazonetis TD, Fackeldey K, Patten JJ, Chuprina A, Dziuba I, Plekhova A, Moroz Y, Radchenko D, Tarkhanova O, Yavnyuk I, Gruber C, Yust R, Payne D, Näär AM, Namchuk MN, Davey RA, Wagner G, Kinney J, Arthanari H. iScience 24 102021 (2021)
  169. Acute Meningoencephalitis in a Child Secondary to SARS-CoV-2 Virus. Pandey M. Indian Pediatr 58 183-184 (2021)
  170. An insight into the inhibitory mechanism of phytochemicals and FDA-approved drugs on the ACE2-Spike complex of SARS-CoV-2 using computational methods. Jani V, Koulgi S, Uppuladinne VNM, Sonavane U, Joshi R. Chem Zvesti 75 4625-4648 (2021)
  171. Analysis of Clinical Manifestations and Imaging of COVID-19 Patients in Intensive Care. Li L, Yao Y, Feng X, Chen L, Wu R, Chang Y, Lou Q, Pan J, Wang Z. Contrast Media Mol Imaging 2022 9697285 (2022)
  172. Anosmia and Ageusia as Predictive Signs of COVID-19 in Healthcare Workers in Italy: A Prospective Case-Control Study. La Torre G, Massetti AP, Antonelli G, Fimiani C, Fantini M, Marte M, Faticoni A, Previte CM, Turriziani O, Pugliese F, Villari P, Romano F, Mastroianni CM, Covid-Sapienza Collaborative Group. J Clin Med 9 (2020)
  173. Anticoagulants as Potential SARS-CoV-2 Mpro Inhibitors for COVID-19 Patients: In Vitro, Molecular Docking, Molecular Dynamics, DFT, and SAR Studies. Abo Elmaaty A, Eldehna WM, Khattab M, Kutkat O, Alnajjar R, El-Taweel AN, Al-Rashood ST, Abourehab MAS, Binjubair FA, Saleh MA, Belal A, Al-Karmalawy AA. Int J Mol Sci 23 12235 (2022)
  174. COVID-19 and Endocrine System: A Cross-Sectional Study on 60 Patients with Endocrine Abnormality. Hadisi N, Abedi H, Shokoohi M, Tasdemir S, Mamikhani SH, Meshgi SH, Zolfagharzadeh A, Roshangar L. Cell J 24 182-187 (2022)
  175. Characterization of the interaction between recombinant porcine aminopeptidase N and spike glycoprotein of porcine epidemic diarrhea virus. Sun YG, Li R, Jiang L, Qiao S, Zhi Y, Chen XX, Xie S, Wu J, Li X, Deng R, Zhang G. Int. J. Biol. Macromol. 117 704-712 (2018)
  176. Conformational Flexibility in Respiratory Syncytial Virus G Neutralizing Epitopes. Fedechkin SO, George NL, Nuñez Castrejon AM, Dillen JR, Kauvar LM, DuBois RM. J Virol 94 (2020)
  177. Cross-reactive Antibody Response between SARS-CoV-2 and SARS-CoV Infections. Lv H, Wu NC, Tsang OT, Yuan M, Perera RAPM, Leung WS, So RTY, Chan JMC, Yip GK, Chik TSH, Wang Y, Choi CYC, Lin Y, Ng WW, Zhao J, Poon LLM, Peiris JSM, Wilson IA, Mok CKP. Cell Rep 31 107725 (2020)
  178. Engineered disulfide reveals structural dynamics of locked SARS-CoV-2 spike. Qu K, Chen Q, Ciazynska KA, Liu B, Zhang X, Wang J, He Y, Guan J, He J, Liu T, Zhang X, Carter AP, Xiong X, Briggs JAG. PLoS Pathog 18 e1010583 (2022)
  179. Evaluation of Antibody-Dependent Fc-Mediated Viral Entry, as Compared With Neutralization, in SARS-CoV-2 Infection. Wieczorek L, Zemil M, Merbah M, Dussupt V, Kavusak E, Molnar S, Heller J, Beckman B, Wollen-Roberts S, Peachman KK, Darden JM, Krebs S, Rolland M, Peel SA, Polonis VR. Front Immunol 13 901217 (2022)
  180. Exploring the Regulatory Function of the N-terminal Domain of SARS-CoV-2 Spike Protein through Molecular Dynamics Simulation. Li Y, Wang T, Zhang J, Shao B, Gong H, Wang Y, He X, Liu S, Liu TY. Adv Theory Simul 4 2100152 (2021)
  181. Exploring the intrinsic dynamics of SARS-CoV-2, SARS-CoV and MERS-CoV spike glycoprotein through normal mode analysis using anisotropic network model. Majumder S, Chaudhuri D, Datta J, Giri K. J Mol Graph Model 102 107778 (2021)
  182. Featuring ACE2 binding SARS-CoV and SARS-CoV-2 through a conserved evolutionary pattern of amino acid residues. Carvalho PPD, Alves NA. J Biomol Struct Dyn 1-10 (2021)
  183. Full-Length Computational Model of the SARS-CoV-2 Spike Protein and Its Implications for a Viral Membrane Fusion Mechanism. Nishima W, Kulik M. Viruses 13 1126 (2021)
  184. Insight into vaccine development for Alpha-coronaviruses based on structural and immunological analyses of spike proteins. Shi Y, Shi J, Sun L, Tan Y, Wang G, Guo F, Hu G, Fu Y, Fu ZF, Xiao S, Peng G. J Virol JVI.02284-20 (2021)
  185. Intranasal trimeric sherpabody inhibits SARS-CoV-2 including recent immunoevasive Omicron subvariants. Mäkelä AR, Uğurlu H, Hannula L, Kant R, Salminen P, Fagerlund R, Mäki S, Haveri A, Strandin T, Kareinen L, Hepojoki J, Kuivanen S, Levanov L, Pasternack A, Naves RA, Ritvos O, Österlund P, Sironen T, Vapalahti O, Kipar A, Huiskonen JT, Rissanen I, Saksela K. Nat Commun 14 1637 (2023)
  186. Mutations in the SARS-CoV-2 spike RBD are responsible for stronger ACE2 binding and poor anti-SARS-CoV mAbs cross-neutralization. Shah M, Ahmad B, Choi S, Woo HG. Comput Struct Biotechnol J 18 3402-3414 (2020)
  187. Natural derivatives with dual binding potential against SARS-CoV-2 main protease and human ACE2 possess low oral bioavailability: a brief computational analysis. Sharma P, Shanavas A. J Biomol Struct Dyn 1-12 (2020)
  188. Neutralizing Ability of a Single Domain VNAR Antibody: In Vitro Neutralization of SARS-CoV-2 Variants of Concern. Valdovino-Navarro BJ, Dueñas S, Flores-Acosta GI, Gasperin-Bulbarela J, Bernaldez-Sarabia J, Cabanillas-Bernal O, Cervantes-Luevano KE, Licea-Navarro AF. Int J Mol Sci 23 12267 (2022)
  189. Peptidoglycan-Associated Cyclic Lipopeptide Disrupts Viral Infectivity. Johnson BA, Hage A, Kalveram B, Mears M, Plante JA, Rodriguez SE, Ding Z, Luo X, Bente D, Bradrick SS, Freiberg AN, Popov V, Rajsbaum R, Rossi S, Russell WK, Menachery VD. J. Virol. 93 (2019)
  190. Potent MERS-CoV Fusion Inhibitory Peptides Identified from HR2 Domain in Spike Protein of Bat Coronavirus HKU4. Xia S, Lan Q, Pu J, Wang C, Liu Z, Xu W, Wang Q, Liu H, Jiang S, Lu L. Viruses 11 (2019)
  191. Potential neurological manifestations of COVID-19: a narrative review. Pergolizzi JV, Raffa RB, Varrassi G, Magnusson P, LeQuang JA, Paladini A, Taylor R, Wollmuth C, Breve F, Chopra M, Nalamasu R, Christo PJ. Postgrad Med 1-11 (2021)
  192. Prefusion spike protein stabilization through computational mutagenesis. Zhang DY, Wang J, Dokholyan NV. Proteins 89 399-408 (2021)
  193. Product of natural evolution (SARS, MERS, and SARS-CoV-2); deadly diseases, from SARS to SARS-CoV-2. Shahrajabian MH, Sun W, Cheng Q. Hum Vaccin Immunother 17 62-83 (2021)
  194. Receptor-binding loops in alphacoronavirus adaptation and evolution. Wong AHM, Tomlinson ACA, Zhou D, Satkunarajah M, Chen K, Sharon C, Desforges M, Talbot PJ, Rini JM. Nat Commun 8 1735 (2017)
  195. SARS-CoV-2 and other coronaviruses bind to phosphorylated glycans from the human lung. Byrd-Leotis L, Lasanajak Y, Bowen T, Baker K, Song X, Suthar MS, Cummings RD, Steinhauer DA. Virology 562 142-148 (2021)
  196. SARS-CoV-2 tetrameric RBD protein blocks viral infection and induces potent neutralizing antibody response. Liu Z, Yang C, Zhang H, Cao G, Wang S, Yin S, Wang Y. Front Immunol 13 960094 (2022)
  197. SARS-CoV-2 variants impact RBD conformational dynamics and ACE2 accessibility. Valério M, Borges-Araújo L, Melo MN, Lousa D, Soares CM. Front Med Technol 4 1009451 (2022)
  198. Case Reports Sinus Node Dysfunction in a Young Patient With COVID-19. Cimino G, Pascariello G, Bernardi N, Calvi E, Arabia G, Salghetti F, Bontempi L, Vizzardi E, Metra M, Curnis A. JACC Case Rep 2 1240-1244 (2020)
  199. Structural definition of a pan-sarbecovirus neutralizing epitope on the spike S2 subunit. Hurlburt NK, Homad LJ, Sinha I, Jennewein MF, MacCamy AJ, Wan YH, Boonyaratanakornkit J, Sholukh AM, Jackson AM, Zhou P, Burton DR, Andrabi R, Ozorowski G, Ward AB, Stamatatos L, Pancera M, McGuire AT. Commun Biol 5 342 (2022)
  200. Structure and epitope of a neutralizing monoclonal antibody that targets the stem helix of β coronaviruses. Deshpande A, Schormann N, Piepenbrink MS, Martinez Sobrido L, Kobie JJ, Walter MR. FEBS J 290 3422-3435 (2023)
  201. Towards a solution to MERS: protective human monoclonal antibodies targeting different domains and functions of the MERS-coronavirus spike glycoprotein. Widjaja I, Wang C, van Haperen R, Gutiérrez-Álvarez J, van Dieren B, Okba NMA, Raj VS, Li W, Fernandez-Delgado R, Grosveld F, van Kuppeveld FJM, Haagmans BL, Enjuanes L, Drabek D, Bosch BJ. Emerg Microbes Infect 8 516-530 (2019)
  202. Uncovering a conserved vulnerability site in SARS-CoV-2 by a human antibody. Li T, Cai H, Zhao Y, Li Y, Lai Y, Yao H, Liu LD, Sun Z, van Vlissingen MF, Kuiken T, GeurtsvanKessel CH, Zhang N, Zhou B, Lu L, Gong Y, Qin W, Mondal M, Duan B, Xu S, Richard AS, Raoul H, Chen J, Xu C, Wu L, Zhou H, Huang Z, Zhang X, Li J, Wang Y, Bi Y, Rockx B, Chen J, Meng FL, Lavillette D, Li D. EMBO Mol Med 13 e14544 (2021)
  203. In silico analysis of ACE2 orthologues to predict animal host range with high susceptibility to SARS-CoV-2. Bouricha EM, Hakmi M, Akachar J, Belyamani L, Ibrahimi A. 3 Biotech 10 483 (2020)
  204. In-silico study for the identification of potential destabilizers between the spike protein of SARS-CoV-2 and human ACE-2. Medina-Barandica J, Contreras-Puentes N, Tarón-Dunoyer A, Durán-Lengua M, Alviz-Amador A. Inform Med Unlocked 40 101278 (2023)
  205. A Fusion Peptide in the Spike Protein of MERS Coronavirus. Alsaadi EAJ, Neuman BW, Jones IM. Viruses 11 (2019)
  206. A Strategy Based on Loop Analysis to Develop Peptide Epitopes: Application to SARS-CoV-2 Spike Protein. Di Vona ML, Rossolini GM, Sette M. Front Mol Biosci 8 658687 (2021)
  207. A diagnostic genomic signal processing (GSP)-based system for automatic feature analysis and detection of COVID-19. Naeem SM, Mabrouk MS, Marzouk SY, Eldosoky MA. Brief Bioinform (2020)
  208. A highly efficient needle-free-injection delivery system for mRNA-LNP vaccination against SARS-CoV-2. Mao S, Li S, Zhang Y, Long L, Peng J, Cao Y, Mao JZ, Qi X, Xin Q, San G, Ding J, Jiang J, Bai X, Wang Q, Xu P, Xia H, Lu L, Xie L, Kong D, Zhu S, Xu W. Nano Today 48 101730 (2023)
  209. ACE2-derived peptides interact with the RBD domain of SARS-CoV-2 spike glycoprotein, disrupting the interaction with the human ACE2 receptor. Souza PFN, Amaral JL, Bezerra LP, Lopes FES, Freire VN, Oliveira JTA, Freitas CDT. J Biomol Struct Dyn 1-14 (2021)
  210. Alterations in Seizure Frequency in Patients with Epilepsy Following Coronavirus Disease 2019. Seyedhosseinzadeh N, Saeedi N, Hashemi A, Homam SM. J Epilepsy Res 13 7-12 (2023)
  211. Alternative conformations of a major antigenic site on RSV F. Jones HG, Battles MB, Lin CC, Bianchi S, Corti D, McLellan JS. PLoS Pathog. 15 e1007944 (2019)
  212. An integrated understanding of the evolutionary and structural features of the SARS-CoV-2 spike receptor binding domain (RBD). Sanyal D, Banerjee S, Bej A, Chowdhury VR, Uversky VN, Chowdhury S, Chattopadhyay K. Int J Biol Macromol 217 492-505 (2022)
  213. Antibody neutralization of SARS-CoV-2 through ACE2 receptor mimicry. Ge J, Wang R, Ju B, Zhang Q, Sun J, Chen P, Zhang S, Tian Y, Shan S, Cheng L, Zhou B, Song S, Zhao J, Wang H, Shi X, Ding Q, Liu L, Zhao J, Zhang Z, Wang X, Zhang L. Nat Commun 12 250 (2021)
  214. Antigenic mapping reveals sites of vulnerability on α-HCoV spike protein. Xiang J, Su J, Lan Q, Zhao W, Zhou Y, Xu Y, Niu J, Xia S, Qi Q, Sidhu S, Lu L, Miersch S, Yang B. Commun Biol 5 1179 (2022)
  215. COVID-19: CADD to the rescue. Onawole AT, Sulaiman KO, Kolapo TU, Akinde FO, Adegoke RO. Virus Res. 285 198022 (2020)
  216. Editorial COVID-19: Current status, Challenges and Future Perspectives. Prasad R. Indian J Clin Biochem 1-2 (2020)
  217. Capturing a Crucial 'Disorder-to-Order Transition' at the Heart of the Coronavirus Molecular Pathology-Triggered by Highly Persistent, Interchangeable Salt-Bridges. Roy S, Ghosh P, Bandyopadhyay A, Basu S. Vaccines (Basel) 10 301 (2022)
  218. Comparative Analysis of Nanomechanical Features of Coronavirus Spike Proteins and Correlation with Lethality and Infection Rate. Hu Y, Buehler MJ. Matter 4 265-275 (2021)
  219. Comparative Serological Study for the Prevalence of Anti-MERS Coronavirus Antibodies in High- and Low-Risk Groups in Qatar. Al Kahlout RA, Nasrallah GK, Farag EA, Wang L, Lattwein E, Müller MA, El Zowalaty ME, Al Romaihi HE, Graham BS, Al Thani AA, Yassine HM. J Immunol Res 2019 1386740 (2019)
  220. Computational epitope mapping of class I fusion proteins using low complexity supervised learning methods. Fischer MFS, Crowe JE, Meiler J. PLoS Comput Biol 18 e1010230 (2022)
  221. Computational insights into the membrane fusion mechanism of SARS-CoV-2 at the cellular level. Wang J, Maschietto F, Guberman-Pfeffer MJ, Reiss K, Allen B, Xiong Y, Lolis E, Batista VS. Comput Struct Biotechnol J 19 5019-5028 (2021)
  222. Cryo-EM analysis of the HCoV-229E spike glycoprotein reveals dynamic prefusion conformational changes. Song X, Shi Y, Ding W, Niu T, Sun L, Tan Y, Chen Y, Shi J, Xiong Q, Huang X, Xiao S, Zhu Y, Cheng C, Fu ZF, Liu ZJ, Peng G. Nat Commun 12 141 (2021)
  223. Cryo-EM reveals binding of linoleic acid to SARS-CoV-2 spike glycoprotein, suggesting an antiviral treatment strategy. Toelzer C, Gupta K, Berger I, Schaffitzel C. Acta Crystallogr D Struct Biol 79 111-121 (2023)
  224. Cryoelectron microscopy structures of a human neutralizing antibody bound to MERS-CoV spike glycoprotein. Zhang S, Jia W, Zeng J, Li M, Wang Z, Zhou H, Zhang L, Wang X. Front Microbiol 13 988298 (2022)
  225. DNA Mutations via Chern-Simons Currents. Bajardi F, Altucci L, Benedetti R, Capozziello S, Sorbo MRD, Franci G, Altucci C. Eur Phys J Plus 136 1080 (2021)
  226. Distinct in vitro and in vivo neutralization profiles of monoclonal antibodies elicited by the receptor binding domain of the ancestral SARS-CoV-2. Kwon HJ, Zhang J, Kosikova M, Tang W, Ortega-Rodriguez U, Peng H, Meseda CA, Pedro CL, Schmeisser F, Lu J, Kang I, Zhou B, Davis CT, Wentworth DE, Chen WH, Shriver MC, Barnes RS, Pasetti MF, Weir JP, Chen B, Xie H. J Med Virol 95 e28673 (2023)
  227. Disulfide stabilization reveals conserved dynamic features between SARS-CoV-1 and SARS-CoV-2 spikes. Zhang X, Li Z, Zhang Y, Liu Y, Wang J, Liu B, Chen Q, Wang Q, Fu L, Wang P, Zhong X, Jin L, Yan Q, Chen L, He J, Zhao J, Xiong X. Life Sci Alliance 6 e202201796 (2023)
  228. Dynamic Network Modeling of Allosteric Interactions and Communication Pathways in the SARS-CoV-2 Spike Trimer Mutants: Differential Modulation of Conformational Landscapes and Signal Transmission via Cascades of Regulatory Switches. Verkhivker GM, Di Paola L. J Phys Chem B 125 850-873 (2021)
  229. Epitope-based peptide vaccine design and target site depiction against Middle East Respiratory Syndrome Coronavirus: an immune-informatics study. Tahir Ul Qamar M, Saleem S, Ashfaq UA, Bari A, Anwar F, Alqahtani S. J Transl Med 17 362 (2019)
  230. Evaluating the immunogenicity of gold nanoparticles conjugated RBD with Freund's adjuvant as a potential vaccine against SARS-CoV-2. Moshref Javadi M, Taghdisi Hosseinzadeh M, Soleimani N, Rommasi F. Microb Pathog 170 105687 (2022)
  231. Exploring the Targets of Novel Corona Virus and Docking-based Screening of Potential Natural Inhibitors to Combat COVID-19. Dey R, Samadder A, Nandi S. Curr Top Med Chem 22 2410-2434 (2022)
  232. Facile one pot sonochemical synthesis of layered nanostructure of ZnS NPs/rGO nanosheets for simultaneous analysis of daclatasvir and hydroxychloroquine. Alkahtani SA, Mahmoud AM, Mahnashi MH, AlQarni AO, Alqahtani YSA, El-Wekil MM. Microchem J 164 105972 (2021)
  233. Factors Associated With Severity of Delirium Complicating COVID-19 in Intensive Care Units. Madonna D, Enrico P, Ciappolino V, Boscutti A, Colombo E, Turtulici N, Cantù F, Cereda G, Delvecchio G, De Falco S, Chierichetti M, Savioli M, Grasselli G, Brambilla P. Front Neurol 13 774953 (2022)
  234. Glycine 29 Is Critical for Conformational Changes of the Spike Glycoprotein of Mouse Hepatitis Virus A59 Triggered by either Receptor Binding or High pH. Mi D, Ou X, Li P, Peng G, Liu Y, Guo R, Mu Z, Li F, Holmes K, Qian Z. J. Virol. 93 (2019)
  235. Heme binding to the SARS-CoV-2 spike glycoprotein. Freeman SL, Oliveira ASF, Gallio AE, Rosa A, Simitakou MK, Arthur CJ, Mulholland AJ, Cherepanov P, Raven EL. J Biol Chem 299 105014 (2023)
  236. Human coronaviruses OC43 and HKU1 bind to 9-O-acetylated sialic acids via a conserved receptor-binding site in spike protein domain A. Hulswit RJG, Lang Y, Bakkers MJG, Li W, Li Z, Schouten A, Ophorst B, van Kuppeveld FJM, Boons GJ, Bosch BJ, Huizinga EG, de Groot RJ. Proc. Natl. Acad. Sci. U.S.A. 116 2681-2690 (2019)
  237. Identification of Novel Linear Epitopes Located in the Infectious Bronchitis Virus Spike S2 Region. Andoh K, Ashikaga K, Suenaga K, Endo S, Yamazaki K. Avian Dis. 62 210-217 (2018)
  238. Identification of a Novel Neutralizing Epitope on the N-Terminal Domain of the Human Coronavirus 229E Spike Protein. Shi J, Shi Y, Xiu R, Wang G, Liang R, Jiao Y, Shen Z, Zhu C, Peng G. J Virol 96 e0195521 (2022)
  239. In situ structure and dynamics of an alphacoronavirus spike protein by cryo-ET and cryo-EM. Huang CY, Draczkowski P, Wang YS, Chang CY, Chien YC, Cheng YH, Wu YM, Wang CH, Chang YC, Chang YC, Yang TJ, Tsai YX, Khoo KH, Chang HW, Hsu SD. Nat Commun 13 4877 (2022)
  240. Mechanistic Origin of Different Binding Affinities of SARS-CoV and SARS-CoV-2 Spike RBDs to Human ACE2. Zhang ZB, Xia YL, Shen JX, Du WW, Fu YX, Liu SQ. Cells 11 1274 (2022)
  241. Modeling coronavirus spike protein dynamics: implications for immunogenicity and immune escape. Kunkel G, Madani M, White SJ, Verardi PH, Tarakanova A. Biophys J 120 5592-5618 (2021)
  242. Molecular Docking and Dynamics Studies to Explore Effective Inhibitory Peptides Against the Spike Receptor Binding Domain of SARS-CoV-2. Biswas S, Mahmud S, Mita MA, Afrose S, Hasan MR, Sultana Shimu MS, Saleh MA, Mostafa-Hedeab G, Alqarni M, Obaidullah AJ, Batiha GE. Front Mol Biosci 8 791642 (2021)
  243. Molecular Dynamic Simulation Search for Possible Amphiphilic Drug Discovery for Covid-19. Daood U, Gopinath D, Pichika MR, Mak KK, Seow LL. Molecules 26 2214 (2021)
  244. Molecular modeling evaluation of the binding effect of five protease inhibitors to COVID-19 main protease. Liu J, Zhai Y, Liang L, Zhu D, Zhao Q, Qiu Y. Chem Phys 542 111080 (2021)
  245. Nanomechanical analysis of SARS-CoV-2 variants and predictions of infectiousness and lethality. Hu Y, Buehler MJ. Soft Matter 18 5833-5842 (2022)
  246. Natural flavonoid pectolinarin computationally targeted as a promising drug candidate against SARS-CoV-2. Rani M, Sharma AK, Chouhan RS, Sur S, Mansuri R, Singh RK. Curr Res Struct Biol 7 100120 (2024)
  247. Neurological Complications of COVID-19 and Possible Neuroinvasion Pathways: A Systematic Review. Orrù G, Conversano C, Malloggi E, Francesconi F, Ciacchini R, Gemignani A. Int J Environ Res Public Health 17 (2020)
  248. Oral Delivery of SARS-CoV-2 DNA Vaccines Using Attenuated Salmonella typhimurium as a Carrier in Rat. Zhu D, Mengyue M, Qimuge A, Bilige B, Baiyin T, Temuqile T, Chen S, Borjigen S, Baigude H, Yang D. Mol Gen Microbiol Virol 37 159-166 (2022)
  249. Oral SARS-CoV-2 Spike Protein Recombinant Yeast Candidate Prompts Specific Antibody and Gut Microbiota Reconstruction in Mice. Zhang L, Yao L, Guo Y, Li X, Ma L, Sun R, Han X, Liu J, Huang J. Front Microbiol 13 792532 (2022)
  250. Pandemic COVID-19: Current status and challenges of antiviral therapies. Chan W, He B, Wang X, He ML. Genes Dis 7 502-519 (2020)
  251. Precise location of two novel linear epitopes on the receptor-binding domain surface of MERS-CoV spike protein recognized by two different monoclonal antibodies. Wang P, Ding P, Wei Q, Liu H, Liu Y, Li Q, Xing Y, Li G, Zhou E, Zhang G. Int J Biol Macromol 195 609-619 (2022)
  252. Prefusion spike protein conformational changes are slower in SARS-CoV-2 than in SARS-CoV-1. Govind Kumar V, Ogden DS, Isu UH, Polasa A, Losey J, Moradi M. J Biol Chem 298 101814 (2022)
  253. Quantum biochemistry, molecular docking, and dynamics simulation revealed synthetic peptides induced conformational changes affecting the topology of the catalytic site of SARS-CoV-2 main protease. Amaral JL, Oliveira JTA, Lopes FES, Freitas CDT, Freire VN, Abreu LV, Souza PFN. J Biomol Struct Dyn 1-13 (2021)
  254. Rapid Generation of Coronaviral Immunity Using Recombinant Peptide Modified Nanodiamonds. Bilyy R, Pagneux Q, François N, Bila G, Grytsko R, Lebedin Y, Barras A, Dubuisson J, Belouzard S, Séron K, Boukherroub R, Szunerits S. Pathogens 10 861 (2021)
  255. Rapid identification of neutralizing antibodies against SARS-CoV-2 variants by mRNA display. Tanaka S, Olson CA, Barnes CO, Higashide W, Gonzalez M, Taft J, Richardson A, Martin-Fernandez M, Bogunovic D, Gnanapragasam PNP, Bjorkman PJ, Spilman P, Niazi K, Rabizadeh S, Soon-Shiong P. Cell Rep 38 110348 (2022)
  256. Role of Endolysosomes in Severe Acute Respiratory Syndrome Coronavirus-2 Infection and Coronavirus Disease 2019 Pathogenesis: Implications for Potential Treatments. Khan N, Chen X, Geiger JD. Front Pharmacol 11 595888 (2020)
  257. SARS-CoV-2 host cell entry: an in silico investigation of potential inhibitory roles of terpenoids. Gyebi GA, Ogunyemi OM, Ibrahim IM, Ogunro OB, Adegunloye AP, Afolabi SO. J Genet Eng Biotechnol 19 113 (2021)
  258. SARS-CoV-2 pan-variant inhibitory peptides deter S1-ACE2 interaction and neutralize delta and omicron pseudoviruses. Shah M, Ung Moon S, Hyun Kim J, Thanh Thao T, Goo Woo H. Comput Struct Biotechnol J 20 2042-2056 (2022)
  259. SARS-Cov2 acute and post-active infection in the context of autoimmune and chronic inflammatory diseases. Larionova R, Byvaltsev K, Kravtsova О, Takha E, Petrov S, Kazarian G, Valeeva A, Shuralev E, Mukminov M, Renaudineau Y, Arleevskaya M. J Transl Autoimmun 5 100154 (2022)
  260. Self-derived peptides from the SARS-CoV-2 spike glycoprotein disrupting shaping and stability of the homotrimer unit. Padariya M, Daniels A, Tait-Burkard C, Hupp T, Kalathiya U. Biomed Pharmacother 151 113190 (2022)
  261. Sequential Emergence and Wide Spread of Neutralization Escape Middle East Respiratory Syndrome Coronavirus Mutants, South Korea, 2015. Kim YS, Aigerim A, Park U, Kim Y, Rhee JY, Choi JP, Park WB, Park SW, Kim Y, Lim DG, Inn KS, Hwang ES, Choi MS, Shin HS, Cho NH. Emerging Infect. Dis. 25 1161-1168 (2019)
  262. Single Amino Acid Substitution in the Receptor Binding Domain of Spike Protein Is Sufficient To Convert the Neutralization Profile between Ethiopian and Middle Eastern Isolates of Middle East Respiratory Coronavirus. Sugimoto S, Kakizaki M, Kawase M, Kawachi K, Ujike M, Kamitani W, Sentsui H, Shirato K. Microbiol Spectr e0459022 (2023)
  263. Spike Protein Mutation-Induced Changes in the Kinetic and Thermodynamic Behavior of Its Receptor Binding Domains Explain Their Higher Propensity to Attain Open States in SARS-CoV-2 Variants of Concern. Singh J, Vashishtha S, Kundu B. ACS Cent Sci 9 1894-1904 (2023)
  264. Structural Definition of a Neutralization-Sensitive Epitope on the MERS-CoV S1-NTD. Wang N, Rosen O, Wang L, Turner HL, Stevens LJ, Corbett KS, Bowman CA, Pallesen J, Shi W, Zhang Y, Leung K, Kirchdoerfer RN, Becker MM, Denison MR, Chappell JD, Ward AB, Graham BS, McLellan JS. Cell Rep 28 3395-3405.e6 (2019)
  265. Structural basis for receptor binding and broader interspecies receptor recognition of currently circulating Omicron sub-variants. Zhao Z, Xie Y, Bai B, Luo C, Zhou J, Li W, Meng Y, Li L, Li D, Li X, Li X, Wang X, Sun J, Xu Z, Sun Y, Zhang W, Fan Z, Zhao X, Wu L, Ma J, Li OY, Shang G, Chai Y, Liu K, Wang P, Gao GF, Qi J. Nat Commun 14 4405 (2023)
  266. Structural definition of a neutralization epitope on the N-terminal domain of MERS-CoV spike glycoprotein. Zhou H, Chen Y, Zhang S, Niu P, Qin K, Jia W, Huang B, Zhang S, Lan J, Zhang L, Tan W, Wang X. Nat Commun 10 3068 (2019)
  267. Structural insights into the modulation of coronavirus spike tilting and infectivity by hinge glycans. Chmielewski D, Wilson EA, Pintilie G, Zhao P, Chen M, Schmid MF, Simmons G, Wells L, Jin J, Singharoy A, Chiu W. Nat Commun 14 7175 (2023)
  268. Structures of a deltacoronavirus spike protein bound to porcine and human receptors. Ji W, Peng Q, Fang X, Li Z, Li Y, Xu C, Zhao S, Li J, Chen R, Mo G, Wei Z, Xu Y, Li B, Zhang S. Nat Commun 13 1467 (2022)
  269. Subunit vaccines with a saponin-based adjuvant boost humoral and cellular immunity to MERS coronavirus. Chang CC, Algaissi A, Lai CC, Chang CK, Lin JS, Wang YS, Chang BH, Chang YC, Chen WT, Fan YQ, Peng BH, Chao CY, Tzeng SR, Liang PH, Sung WC, Hu AY, Chang SC, Chang MF. Vaccine 41 3337-3346 (2023)
  270. Superior immune responses induced by intranasal immunization with recombinant adenovirus-based vaccine expressing full-length Spike protein of Middle East respiratory syndrome coronavirus. Kim MH, Kim HJ, Chang J. PLoS ONE 14 e0220196 (2019)
  271. Supramolecular Organization of SARS-CoV and SARS-CoV-2 Virions Revealed by Coarse-Grained Models of Intact Virus Envelopes. Wang B, Zhong C, Tieleman DP. J Chem Inf Model 62 176-186 (2022)
  272. Synergism between x-ray crystallography and NMR residual dipolar couplings in characterizing protein dynamics. Shen Y, Bax A. Struct Dyn 10 040901 (2023)
  273. Systematic analysis and comparison of O-glycosylation of five recombinant spike proteins in β-coronaviruses. Dong X, Li X, Chen C, Zhang X, Liang X. Anal Chim Acta 1230 340394 (2022)
  274. The 3.1-Angstrom Cryo-electron Microscopy Structure of the Porcine Epidemic Diarrhea Virus Spike Protein in the Prefusion Conformation. Wrapp D, McLellan JS. J. Virol. 93 (2019)
  275. The adaptation of SARS-CoV-2 to humans. Tosta E. Mem Inst Oswaldo Cruz 116 e210127 (2022)
  276. The human coronavirus HCoV-229E S-protein structure and receptor binding. Li Z, Tomlinson AC, Wong AH, Zhou D, Desforges M, Talbot PJ, Benlekbir S, Rubinstein JL, Rini JM. Elife 8 (2019)
  277. The inherent flexibility of receptor binding domains in SARS-CoV-2 spike protein. Dokainish HM, Re S, Mori T, Kobayashi C, Jung J, Sugita Y. Elife 11 e75720 (2022)
  278. The neurological manifestations of COVID-19 - A case series. Karambelkar PV, Rojulpote CS, Saeed F, Pichiarello C, Patel N, Sharma A. J Clin Transl Res 6 187-189 (2020)
  279. Thermodynamic equilibrium dose-response models for MERS-CoV infection reveal a potential protective role of human lung mucus but not for SARS-CoV-2. Gale P. Microb Risk Anal 16 100140 (2020)
  280. Editorial Toward understanding the 2019 Coronavirus and its impact on the heart. Becker RC. J. Thromb. Thrombolysis 50 33-42 (2020)
  281. Two-Stage Recognition Mechanism of the SARS-CoV-2 Receptor-Binding Domain to Angiotensin-Converting Enzyme-2 (ACE2). Biskupek I, Gieldon A. Int J Mol Sci 25 679 (2024)
  282. Unraveling the molecular basis of host cell receptor usage in SARS-CoV-2 and other human pathogenic β-CoVs. Pontes C, Ruiz-Serra V, Lepore R, Valencia A. Comput Struct Biotechnol J 19 759-766 (2021)
  283. Variations in O-Glycosylation Patterns Influence Viral Pathogenicity, Infectivity, and Transmissibility in SARS-CoV-2 Variants. Onigbinde S, Reyes CDG, Fowowe M, Daramola O, Atashi M, Bennett AI, Mechref Y. Biomolecules 13 1467 (2023)
  284. Vulnerabilities in coronavirus glycan shields despite extensive glycosylation. Watanabe Y, Berndsen ZT, Raghwani J, Seabright GE, Allen JD, Pybus OG, McLellan JS, Wilson IA, Bowden TA, Ward AB, Crispin M. Nat Commun 11 2688 (2020)