5w6g Citations

Conserved epitope on influenza-virus hemagglutinin head defined by a vaccine-induced antibody.

Proc Natl Acad Sci U S A 115 168-173 (2018)
Cited: 77 times
EuropePMC logo PMID: 29255041

Abstract

Circulating influenza viruses evade neutralization in their human hosts by acquiring escape mutations at epitopes of prevalent antibodies. A goal for next-generation influenza vaccines is to reduce escape likelihood by selectively eliciting antibodies recognizing conserved surfaces on the viral hemagglutinin (HA). The receptor-binding site (RBS) on the HA "head" and a region near the fusion peptide on the HA "stem" are two such sites. We describe here a human antibody clonal lineage, designated CL6649, members of which bind a third conserved site ("lateral patch") on the side of the H1-subtype, HA head. A crystal structure of HA with bound Fab6649 shows the conserved antibody footprint. The site was invariant in isolates from 1977 (seasonal) to 2012 (pdm2009); antibodies in CL6649 recognize HAs from the entire period. In 2013, human H1 viruses acquired mutations in this epitope that were retained in subsequent seasons, prompting modification of the H1 vaccine component in 2017. The mutations inhibit Fab6649 binding. We infer from the rapid spread of these mutations in circulating H1 influenza viruses that the previously subdominant, conserved lateral patch had become immunodominant for individuals with B-cell memory imprinted by earlier H1 exposure. We suggest that introduction of the pdm2009 H1 virus, to which most of the broadly prevalent, neutralizing antibodies did not bind, conferred a selective advantage in the immune systems of infected hosts to recall of memory B cells that recognized the lateral patch, the principal exposed epitope that did not change when pdm2009 displaced previous seasonal H1 viruses.

Articles - 5w6g mentioned but not cited (6)

  1. Conserved epitope on influenza-virus hemagglutinin head defined by a vaccine-induced antibody. Raymond DD, Bajic G, Ferdman J, Suphaphiphat P, Settembre EC, Moody MA, Schmidt AG, Harrison SC. Proc Natl Acad Sci U S A 115 168-173 (2018)
  2. Polyreactive Broadly Neutralizing B cells Are Selected to Provide Defense against Pandemic Threat Influenza Viruses. Guthmiller JJ, Lan LY, Fernández-Quintero ML, Han J, Utset HA, Bitar DJ, Hamel NJ, Stovicek O, Li L, Tepora M, Henry C, Neu KE, Dugan HL, Borowska MT, Chen YQ, Liu STH, Stamper CT, Zheng NY, Huang M, Palm AE, García-Sastre A, Nachbagauer R, Palese P, Coughlan L, Krammer F, Ward AB, Liedl KR, Wilson PC. Immunity 53 1230-1244.e5 (2020)
  3. First exposure to the pandemic H1N1 virus induced broadly neutralizing antibodies targeting hemagglutinin head epitopes. Guthmiller JJ, Han J, Li L, Freyn AW, Liu STH, Stovicek O, Stamper CT, Dugan HL, Tepora ME, Utset HA, Bitar DJ, Hamel NJ, Changrob S, Zheng NY, Huang M, Krammer F, Nachbagauer R, Palese P, Ward AB, Wilson PC. Sci Transl Med 13 eabg4535 (2021)
  4. Identification of a cross-neutralizing antibody that targets the receptor binding site of H1N1 and H5N1 influenza viruses. Li T, Chen J, Zheng Q, Xue W, Zhang L, Rong R, Zhang S, Wang Q, Hong M, Zhang Y, Cui L, He M, Lu Z, Zhang Z, Chi X, Li J, Huang Y, Wang H, Tang J, Ying D, Zhou L, Wang Y, Yu H, Zhang J, Gu Y, Chen Y, Li S, Xia N. Nat Commun 13 5182 (2022)
  5. iBRAB: In silico based-designed broad-spectrum Fab against H1N1 influenza A virus. Do PC, Nguyen TH, Vo UHM, Le L. PLoS One 15 e0239112 (2020)
  6. Mapping antibody footprints using binding profiles. Azulay A, Cohen-Lavi L, Friedman LM, McGargill MA, Hertz T. Cell Rep Methods 3 100566 (2023)


Reviews citing this publication (29)

  1. A guide to vaccinology: from basic principles to new developments. Pollard AJ, Bijker EM. Nat Rev Immunol 21 83-100 (2021)
  2. Next-generation influenza vaccines: opportunities and challenges. Wei CJ, Crank MC, Shiver J, Graham BS, Mascola JR, Nabel GJ. Nat Rev Drug Discov 19 239-252 (2020)
  3. Extra-Neutralizing FcR-Mediated Antibody Functions for a Universal Influenza Vaccine. Boudreau CM, Alter G. Front Immunol 10 440 (2019)
  4. Influenza Hemagglutinin Structures and Antibody Recognition. Wu NC, Wilson IA. Cold Spring Harb Perspect Med 10 a038778 (2020)
  5. The Quest for a Truly Universal Influenza Vaccine. Jang YH, Seong BL. Front Cell Infect Microbiol 9 344 (2019)
  6. Innovations in structure-based antigen design and immune monitoring for next generation vaccines. Ward AB, Wilson IA. Curr Opin Immunol 65 50-56 (2020)
  7. GII.4 Human Norovirus: Surveying the Antigenic Landscape. Mallory ML, Lindesmith LC, Graham RL, Baric RS. Viruses 11 E177 (2019)
  8. Structural Biology of Influenza Hemagglutinin: An Amaranthine Adventure. Wu NC, Wilson IA. Viruses 12 E1053 (2020)
  9. B Cell Responses against Influenza Viruses: Short-Lived Humoral Immunity against a Life-Long Threat. Guthmiller JJ, Utset HA, Wilson PC. Viruses 13 965 (2021)
  10. Neutralizing Antibodies Targeting the Conserved Stem Region of Influenza Hemagglutinin. Nath Neerukonda S, Vassell R, Weiss CD. Vaccines (Basel) 8 E382 (2020)
  11. Targeting Hemagglutinin: Approaches for Broad Protection against the Influenza A Virus. Zhang Y, Xu C, Zhang H, Liu GD, Xue C, Cao Y. Viruses 11 E405 (2019)
  12. New Technologies for Influenza Vaccines. Rockman S, Laurie KL, Parkes S, Wheatley A, Barr IG. Microorganisms 8 E1745 (2020)
  13. Adenoviral Vectors as Vaccines for Emerging Avian Influenza Viruses. Kerstetter LJ, Buckley S, Bliss CM, Coughlan L. Front Immunol 11 607333 (2020)
  14. Protein engineering strategies for rational immunogen design. Caradonna TM, Schmidt AG. NPJ Vaccines 6 154 (2021)
  15. Recombinant Influenza Vaccines: Saviors to Overcome Immunodominance. Mathew NR, Angeletti D. Front Immunol 10 2997 (2019)
  16. The Hard Way towards an Antibody-Based HIV-1 Env Vaccine: Lessons from Other Viruses. Ringel O, Vieillard V, Debré P, Eichler J, Büning H, Dietrich U. Viruses 10 E197 (2018)
  17. Next-Generation Influenza HA Immunogens and Adjuvants in Pursuit of a Broadly Protective Vaccine. Nagashima KA, Mousa JJ. Viruses 13 546 (2021)
  18. Adjuvantation of Influenza Vaccines to Induce Cross-Protective Immunity. Li Z, Zhao Y, Li Y, Chen X. Vaccines (Basel) 9 75 (2021)
  19. Antibody Focusing to Conserved Sites of Vulnerability: The Immunological Pathways for 'Universal' Influenza Vaccines. Sangesland M, Lingwood D. Vaccines (Basel) 9 125 (2021)
  20. Broadly Neutralizing Antibodies for Influenza: Passive Immunotherapy and Intranasal Vaccination. Biswas M, Yamazaki T, Chiba J, Akashi-Takamura S. Vaccines (Basel) 8 E424 (2020)
  21. Next-Generation Influenza Vaccines. Kanekiyo M, Graham BS. Cold Spring Harb Perspect Med 11 a038448 (2021)
  22. Adenoviral vector-based platforms for developing effective vaccines to combat respiratory viral infections. Elkashif A, Alhashimi M, Sayedahmed EE, Sambhara S, Mittal SK. Clin Transl Immunology 10 e1345 (2021)
  23. Neutralizing Anti-Hemagglutinin Monoclonal Antibodies Induced by Gene-Based Transfer Have Prophylactic and Therapeutic Effects on Influenza Virus Infection. Yamazaki T, Chiba J, Akashi-Takamura S. Vaccines (Basel) 6 E35 (2018)
  24. Unique features of a recombinant haemagglutinin influenza vaccine that influence vaccine performance. Arunachalam AB, Post P, Rudin D. NPJ Vaccines 6 144 (2021)
  25. Hide and seek: interplay between influenza viruses and B cells. Kuraoka M, Adachi Y, Takahashi Y. Int Immunol 32 605-611 (2020)
  26. Structural Insights for Anti-Influenza Vaccine Design. Han L, Chen C, Han X, Lin S, Ao X, Han X, Wang J, Ye H. Comput Struct Biotechnol J 17 475-483 (2019)
  27. An Antigenic Thrift-Based Approach to Influenza Vaccine Design. Bolton JS, Klim H, Wellens J, Edmans M, Obolski U, Thompson CP. Vaccines (Basel) 9 657 (2021)
  28. Immune Control of Avian Influenza Virus Infection and Its Vaccine Development. Dey P, Ahuja A, Panwar J, Choudhary P, Rani S, Kaur M, Sharma A, Kaur J, Yadav AK, Sood V, Suresh Babu AR, Bhadada SK, Singh G, Barnwal RP. Vaccines (Basel) 11 593 (2023)
  29. Recent advances in "universal" influenza virus antibodies: the rise of a hidden trimeric interface in hemagglutinin globular head. Wang Y, Hu D, Wu Y, Ying T. Front Med 14 149-159 (2020)

Articles citing this publication (42)

  1. Mosaic nanoparticle display of diverse influenza virus hemagglutinins elicits broad B cell responses. Kanekiyo M, Joyce MG, Gillespie RA, Gallagher JR, Andrews SF, Yassine HM, Wheatley AK, Fisher BE, Ambrozak DR, Creanga A, Leung K, Yang ES, Boyoglu-Barnum S, Georgiev IS, Tsybovsky Y, Prabhakaran MS, Andersen H, Kong WP, Baxa U, Zephir KL, Ledgerwood JE, Koup RA, Kwong PD, Harris AK, McDermott AB, Mascola JR, Graham BS. Nat Immunol 20 362-372 (2019)
  2. Antibodies to a Conserved Influenza Head Interface Epitope Protect by an IgG Subtype-Dependent Mechanism. Watanabe A, McCarthy KR, Kuraoka M, Schmidt AG, Adachi Y, Onodera T, Tonouchi K, Caradonna TM, Bajic G, Song S, McGee CE, Sempowski GD, Feng F, Urick P, Kepler TB, Takahashi Y, Harrison SC, Kelsoe G. Cell 177 1124-1135.e16 (2019)
  3. Memory B Cell Activation, Broad Anti-influenza Antibodies, and Bystander Activation Revealed by Single-Cell Transcriptomics. Horns F, Dekker CL, Quake SR. Cell Rep 30 905-913.e6 (2020)
  4. Germline-Encoded Affinity for Cognate Antigen Enables Vaccine Amplification of a Human Broadly Neutralizing Response against Influenza Virus. Sangesland M, Ronsard L, Kazer SW, Bals J, Boyoglu-Barnum S, Yousif AS, Barnes R, Feldman J, Quirindongo-Crespo M, McTamney PM, Rohrer D, Lonberg N, Chackerian B, Graham BS, Kanekiyo M, Shalek AK, Lingwood D. Immunity 51 735-749.e8 (2019)
  5. Universal Influenza Virus Vaccines That Target the Conserved Hemagglutinin Stalk and Conserved Sites in the Head Domain. Krammer F, Palese P. J Infect Dis 219 S62-S67 (2019)
  6. Broadly neutralizing antibodies target a haemagglutinin anchor epitope. Guthmiller JJ, Han J, Utset HA, Li L, Lan LY, Henry C, Stamper CT, McMahon M, O'Dell G, Fernández-Quintero ML, Freyn AW, Amanat F, Stovicek O, Gentles L, Richey ST, de la Peña AT, Rosado V, Dugan HL, Zheng NY, Tepora ME, Bitar DJ, Changrob S, Strohmeier S, Huang M, García-Sastre A, Liedl KR, Bloom JD, Nachbagauer R, Palese P, Krammer F, Coughlan L, Ward AB, Wilson PC. Nature 602 314-320 (2022)
  7. Defining and Manipulating B Cell Immunodominance Hierarchies to Elicit Broadly Neutralizing Antibody Responses against Influenza Virus. Amitai A, Sangesland M, Barnes RM, Rohrer D, Lonberg N, Lingwood D, Chakraborty AK. Cell Syst 11 573-588.e9 (2020)
  8. Potent anti-influenza H7 human monoclonal antibody induces separation of hemagglutinin receptor-binding head domains. Turner HL, Pallesen J, Lang S, Bangaru S, Urata S, Li S, Cottrell CA, Bowman CA, Crowe JE, Wilson IA, Ward AB. PLoS Biol 17 e3000139 (2019)
  9. Timescales of influenza A/H3N2 antibody dynamics. Kucharski AJ, Lessler J, Cummings DAT, Riley S. PLoS Biol 16 e2004974 (2018)
  10. The evolutionary dynamics of endemic human coronaviruses. Jo WK, Drosten C, Drexler JF, Drexler JF. Virus Evol 7 veab020 (2021)
  11. Optimizing immunization protocols to elicit broadly neutralizing antibodies. Sprenger KG, Louveau JE, Murugan PM, Chakraborty AK. Proc Natl Acad Sci U S A 117 20077-20087 (2020)
  12. A naturally protective epitope of limited variability as an influenza vaccine target. Thompson CP, Lourenço J, Walters AA, Obolski U, Edmans M, Palmer DS, Kooblall K, Carnell GW, O'Connor D, Bowden TA, Pybus OG, Pollard AJ, Temperton NJ, Lambe T, Gilbert SC, Gupta S. Nat Commun 9 3859 (2018)
  13. Follicular Dendritic Cells Modulate Germinal Center B Cell Diversity through FcγRIIB. van der Poel CE, Bajic G, Macaulay CW, van den Broek T, Ellson CD, Bouma G, Victora GD, Degn SE, Carroll MC. Cell Rep 29 2745-2755.e4 (2019)
  14. Boosting subdominant neutralizing antibody responses with a computationally designed epitope-focused immunogen. Sesterhenn F, Galloux M, Vollers SS, Csepregi L, Yang C, Descamps D, Bonet J, Friedensohn S, Gainza P, Corthésy P, Chen M, Rosset S, Rameix-Welti MA, Éléouët JF, Reddy ST, Graham BS, Riffault S, Correia BE. PLoS Biol 17 e3000164 (2019)
  15. Sera from Individuals with Narrowly Focused Influenza Virus Antibodies Rapidly Select Viral Escape Mutations In Ovo. Davis AKF, McCormick K, Gumina ME, Petrie JG, Martin ET, Xue KS, Bloom JD, Monto AS, Bushman FD, Hensley SE. J Virol 92 e00859-18 (2018)
  16. Structure-Guided Molecular Grafting of a Complex Broadly Neutralizing Viral Epitope. Bajic G, Maron MJ, Caradonna TM, Tian M, Mermelstein A, Fera D, Kelsoe G, Kuraoka M, Schmidt AG. ACS Infect Dis 6 1182-1191 (2020)
  17. Dynamic Perspectives on the Search for a Universal Influenza Vaccine. Saad-Roy CM, McDermott AB, Grenfell BT. J Infect Dis 219 S46-S56 (2019)
  18. Recall of B cell memory depends on relative locations of prime and boost immunization. Kuraoka M, Yeh CH, Bajic G, Kotaki R, Song S, Windsor I, Harrison SC, Kelsoe G. Sci Immunol 7 eabn5311 (2022)
  19. A Prevalent Focused Human Antibody Response to the Influenza Virus Hemagglutinin Head Interface. McCarthy KR, Lee J, Watanabe A, Kuraoka M, Robinson-McCarthy LR, Georgiou G, Kelsoe G, Harrison SC. mBio 12 e0114421 (2021)
  20. Airway Delivery of Anti-influenza Monoclonal Antibodies Results in Enhanced Antiviral Activities and Enables Broad-Coverage Combination Therapies. Vigil A, Frias-Staheli N, Carabeo T, Wittekind M. J Virol 94 e00052-20 (2020)
  21. The Extended Impact of Human Immunodeficiency Virus/AIDS Research. Schwetz TA, Fauci AS. J Infect Dis 219 6-9 (2019)
  22. Passive immunization with influenza haemagglutinin specific monoclonal antibodies. Rudraraju R, Subbarao K. Hum Vaccin Immunother 14 2728-2736 (2018)
  23. Antibodies That Engage the Hemagglutinin Receptor-Binding Site of Influenza B Viruses. Bajic G, Harrison SC. ACS Infect Dis 7 1-5 (2021)
  24. Intra-seasonal antibody repertoire analysis of a subject immunized with an MF59®-adjuvanted pandemic 2009 H1N1 vaccine. Ferdman J, Palladino G, Liao HX, Moody MA, Kepler TB, Del Giudice G, Dormitzer PR, Harrison SC, Settembre EC, Suphaphiphat P. Vaccine 36 5325-5332 (2018)
  25. The Pre-Existing Human Antibody Repertoire to Computationally Optimized Influenza H1 Hemagglutinin Vaccines. Nagashima K, Dzimianski JV, Han J, Abbadi N, Gingerich AD, Royer F, O'Rourke S, Sautto GA, Ross TM, Ward AB, DuBois RM, Mousa JJ. J Immunol 209 5-15 (2022)
  26. A Coarse-Grained Model of Affinity Maturation Indicates the Importance of B-Cell Receptor Avidity in Epitope Subdominance. Ovchinnikov V, Karplus M. Front Immunol 13 816634 (2022)
  27. An epitope-enriched immunogen expands responses to a conserved viral site. Caradonna TM, Ronsard L, Yousif AS, Windsor IW, Hecht R, Bracamonte-Moreno T, Roffler AA, Maron MJ, Maurer DP, Feldman J, Marchiori E, Barnes RM, Rohrer D, Lonberg N, Oguin TH, Sempowski GD, Kepler TB, Kuraoka M, Lingwood D, Schmidt AG. Cell Rep 41 111628 (2022)
  28. Bioinformatics-based prediction of conformational epitopes for Enterovirus A71 and Coxsackievirus A16. Wang L, Zhu M, Fang Y, Rong H, Gao L, Liao Q, Zhang L, Dong C. Sci Rep 11 5701 (2021)
  29. Hierarchical sequence-affinity landscapes shape the evolution of breadth in an anti-influenza receptor binding site antibody. Phillips AM, Maurer DP, Brooks C, Dupic T, Schmidt AG, Desai MM. Elife 12 e83628 (2023)
  30. Infant Antibody Repertoires during the First Two Years of Influenza Vaccination. Kuraoka M, Curtis NC, Watanabe A, Tanno H, Shin S, Ye K, Macdonald E, Lavidor O, Kong S, Von Holle T, Windsor I, Ippolito GC, Georgiou G, Walter EB, Kelsoe G, Harrison SC, Moody MA, Bajic G, Lee J. mBio 13 e0254622 (2022)
  31. Structural and functional definition of a vulnerable site on the hemagglutinin of highly pathogenic avian influenza A virus H5N1. Wang P, Zuo Y, Sun J, Zuo T, Zhang S, Guo S, Shi X, Liang M, Zhou P, Zhang L, Wang X. J Biol Chem 294 4290-4303 (2019)
  32. Engineering recombinantly expressed lectin-based antiviral agents. Maier I. Front Cell Infect Microbiol 12 990875 (2022)
  33. Enhancing the protection of influenza virus vaccines with BECC TLR4 adjuvant in aged mice. Haupt R, Baracco L, Harberts EM, Loganathan M, Kerstetter LJ, Krammer F, Coughlan L, Ernst RK, Frieman MB. Sci Rep 13 715 (2023)
  34. Hemagglutinin stalk-based monoclonal antibody elicits broadly reactivity against group 1 influenza A virus. Huang J, Huang N, Fan M, Zhao L, Luo Y, Ding P, Tian M, Liu Q, Guo Y, Zhao J, Zheng Y, Zhang H, Ping J. Virol J 17 191 (2020)
  35. Shaping Polyclonal Responses via Antigen-Mediated Antibody Interference. Yan L, Wang S. iScience 23 101568 (2020)
  36. The PB1 gene from H9N2 avian influenza virus showed high compatibility and increased mutation rate after reassorting with a human H1N1 influenza virus. Cui H, Che G, de Jong MCM, Li X, Liu Q, Yang J, Teng Q, Li Z, Beerens N. Virol J 19 20 (2022)
  37. Adjuvant-Mediated Differences in Antibody Responses to Computationally Optimized Hemagglutinin and Neuraminidase Vaccines. Nagashima K, Abbadi N, Vyas V, Roegner A, Ross TM, Mousa JJ. Viruses 15 347 (2023)
  38. Assessment of Fcγ receptor-dependent binding of influenza hemagglutinin vaccine-induced antibodies in a non-human primate model. Masuta Y, Takahama S, Nogimori T, Moriyama S, Takahashi Y, Yamamoto T. iScience 25 105085 (2022)
  39. Characterization of non-neutralizing human monoclonal antibodies that target the M1 and NP of influenza A viruses. Rijnink WF, Stadlbauer D, Puente-Massaguer E, Okba NMA, Kirkpatrick Roubidoux E, Strohmeier S, Mudd PA, Schmitz A, Ellebedy A, McMahon M, Krammer F. J Virol 97 e0164622 (2023)
  40. Characterization of two linear epitopes SARS CoV-2 spike protein formulated in tandem repeat. Tarigan S, Dharmayanti NLPI, Sugiartanti D, Putri R, Andriani, Nuradji H, Robinson M, Wiendayanthi N, Djufri F. PLoS One 18 e0280627 (2023)
  41. Moving the needle: Employing deep reinforcement learning to push the boundaries of coarse-grained vaccine models. Faris JG, Orbidan D, Wells C, Petersen BK, Sprenger KG. Front Immunol 13 1029167 (2022)
  42. Sequential vaccinations with divergent H1N1 influenza virus strains induce multi-H1 clade neutralizing antibodies in swine. Van Reeth K, Parys A, Gracia JCM, Trus I, Chiers K, Meade P, Liu S, Palese P, Krammer F, Vandoorn E. Nat Commun 14 7745 (2023)