5rhb Citations

Crystallographic and electrophilic fragment screening of the SARS-CoV-2 main protease.

Abstract

COVID-19, caused by SARS-CoV-2, lacks effective therapeutics. Additionally, no antiviral drugs or vaccines were developed against the closely related coronavirus, SARS-CoV-1 or MERS-CoV, despite previous zoonotic outbreaks. To identify starting points for such therapeutics, we performed a large-scale screen of electrophile and non-covalent fragments through a combined mass spectrometry and X-ray approach against the SARS-CoV-2 main protease, one of two cysteine viral proteases essential for viral replication. Our crystallographic screen identified 71 hits that span the entire active site, as well as 3 hits at the dimer interface. These structures reveal routes to rapidly develop more potent inhibitors through merging of covalent and non-covalent fragment hits; one series of low-reactivity, tractable covalent fragments were progressed to discover improved binders. These combined hits offer unprecedented structural and reactivity information for on-going structure-based drug design against SARS-CoV-2 main protease.

Reviews - 5rhb mentioned but not cited (1)

  1. A Comprehensive Review about the Molecular Structure of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): Insights into Natural Products against COVID-19. Saied EM, El-Maradny YA, Osman AA, Darwish AMG, Abo Nahas HH, Niedbała G, Piekutowska M, Abdel-Rahman MA, Balbool BA, Abdel-Azeem AM. Pharmaceutics 13 1759 (2021)

Articles - 5rhb mentioned but not cited (3)

  1. Many small steps towards a COVID-19 drug. Erlanson DA. Nat Commun 11 5048 (2020)
  2. Computational Analysis Reveals Monomethylated Triazolopyrimidine as a Novel Inhibitor of SARS-CoV-2 RNA-Dependent RNA Polymerase (RdRp). Karthic A, Kesarwani V, Singh RK, Yadav PK, Chaturvedi N, Chauhan P, Yadav BS, Kushwaha SK. Molecules 27 801 (2022)
  3. The Nexus between Fire and Soil Bacterial Diversity in the African Miombo Woodlands of Niassa Special Reserve, Mozambique. Maquia ISA, Fareleira P, Videira E Castro I, Soares R, Brito DRA, Mbanze AA, Chaúque A, Máguas C, Ezeokoli OT, Ribeiro NS, Marques I, Ribeiro-Barros AI. Microorganisms 9 1562 (2021)


Reviews citing this publication (35)

  1. Structural Basis of Potential Inhibitors Targeting SARS-CoV-2 Main Protease. Mengist HM, Dilnessa T, Jin T. Front Chem 9 622898 (2021)
  2. Structural biology of SARS-CoV-2 and implications for therapeutic development. Yang H, Rao Z. Nat Rev Microbiol 19 685-700 (2021)
  3. The SARS-CoV-2 main protease as drug target. Ullrich S, Nitsche C. Bioorg Med Chem Lett 30 127377 (2020)
  4. Impact of structural biologists and the Protein Data Bank on small-molecule drug discovery and development. Burley SK. J Biol Chem 296 100559 (2021)
  5. Protease targeted COVID-19 drug discovery: What we have learned from the past SARS-CoV inhibitors? Amin SA, Banerjee S, Gayen S, Jha T. Eur J Med Chem 215 113294 (2021)
  6. Resources and computational strategies to advance small molecule SARS-CoV-2 discovery: Lessons from the pandemic and preparing for future health crises. Singh N, Villoutreix BO. Comput Struct Biotechnol J 19 2537-2548 (2021)
  7. Fragment-based drug discovery-the importance of high-quality molecule libraries. Bon M, Bilsland A, Bower J, McAulay K. Mol Oncol 16 3761-3777 (2022)
  8. The SARS-CoV-2 main protease (Mpro): Structure, function, and emerging therapies for COVID-19. Hu Q, Xiong Y, Zhu GH, Zhang YN, Zhang YW, Huang P, Ge GB. MedComm (2020) 3 e151 (2022)
  9. A Crystallographic Snapshot of SARS-CoV-2 Main Protease Maturation Process. Noske GD, Nakamura AM, Gawriljuk VO, Fernandes RS, Lima GMA, Rosa HVD, Pereira HD, Zeri ACM, Nascimento AFZ, Freire MCLC, Fearon D, Douangamath A, von Delft F, Oliva G, Godoy AS. J Mol Biol 433 167118 (2021)
  10. Structural biology in the time of COVID-19: perspectives on methods and milestones. Lynch ML, Snell EH, Bowman SEJ. IUCrJ 8 335-341 (2021)
  11. The main protease and RNA-dependent RNA polymerase are two prime targets for SARS-CoV-2. Jin Z, Wang H, Duan Y, Yang H. Biochem Biophys Res Commun 538 63-71 (2021)
  12. A pocket guide on how to structure SARS-CoV-2 drugs and therapies. Littler DR, MacLachlan BJ, Watson GM, Vivian JP, Gully BS. Biochem Soc Trans 48 2625-2641 (2020)
  13. Application of Artificial Intelligence in COVID-19 Diagnosis and Therapeutics. Asada K, Komatsu M, Shimoyama R, Takasawa K, Shinkai N, Sakai A, Bolatkan A, Yamada M, Takahashi S, Machino H, Kobayashi K, Kaneko S, Hamamoto R. J Pers Med 11 886 (2021)
  14. Fragment-based covalent ligand discovery. Lu W, Kostic M, Zhang T, Che J, Patricelli MP, Jones LH, Chouchani ET, Gray NS. RSC Chem Biol 2 354-367 (2021)
  15. Repurposing an Antiviral Drug against SARS-CoV-2 Main Protease. Sarkar A, Mandal K. Angew Chem Int Ed Engl 60 23492-23494 (2021)
  16. Covalent Warheads Targeting Cysteine Residue: The Promising Approach in Drug Development. Huang F, Han X, Xiao X, Zhou J. Molecules 27 7728 (2022)
  17. Allosteric Binding Sites of the SARS-CoV-2 Main Protease: Potential Targets for Broad-Spectrum Anti-Coronavirus Agents. Alzyoud L, Ghattas MA, Atatreh N. Drug Des Devel Ther 16 2463-2478 (2022)
  18. Folding@home: Achievements from over 20 years of citizen science herald the exascale era. Voelz VA, Pande VS, Bowman GR. Biophys J 122 2852-2863 (2023)
  19. Inhibition of the main protease of SARS-CoV-2 (Mpro) by repurposing/designing drug-like substances and utilizing nature's toolbox of bioactive compounds. Antonopoulou I, Sapountzaki E, Rova U, Christakopoulos P. Comput Struct Biotechnol J 20 1306-1344 (2022)
  20. The battle between host and SARS-CoV-2: Innate immunity and viral evasion strategies. Zhang S, Wang L, Cheng G. Mol Ther 30 1869-1884 (2022)
  21. The impact of high-resolution structural data on stemming the COVID-19 pandemic. Cox RM, Plemper RK. Curr Opin Virol 49 127-138 (2021)
  22. A structural view of the SARS-CoV-2 virus and its assembly. Hardenbrook NJ, Zhang P. Curr Opin Virol 52 123-134 (2022)
  23. Accelerating antiviral drug discovery: lessons from COVID-19. von Delft A, Hall MD, Kwong AD, Purcell LA, Saikatendu KS, Schmitz U, Tallarico JA, Lee AA. Nat Rev Drug Discov 22 585-603 (2023)
  24. Antitarget, Anti-SARS-CoV-2 Leads, Drugs, and the Drug Discovery-Genetics Alliance Perspective. Pozzi C, Vanet A, Francesconi V, Tagliazucchi L, Tassone G, Venturelli A, Spyrakis F, Mazzorana M, Costi MP, Tonelli M. J Med Chem 66 3664-3702 (2023)
  25. Computational anti-COVID-19 drug design: progress and challenges. Wang J, Zhang Y, Nie W, Luo Y, Deng L. Brief Bioinform 23 bbab484 (2022)
  26. Forces Driving a Magic Bullet to Its Target: Revisiting the Role of Thermodynamics in Drug Design, Development, and Optimization. Minetti CA, Remeta DP. Life (Basel) 12 1438 (2022)
  27. Fragment-to-Lead Medicinal Chemistry Publications in 2020. de Esch IJP, Erlanson DA, Jahnke W, Johnson CN, Walsh L. J Med Chem 65 84-99 (2022)
  28. High-Throughput Native Mass Spectrometry Screening in Drug Discovery. Gavriilidou AFM, Sokratous K, Yen HY, De Colibus L. Front Mol Biosci 9 837901 (2022)
  29. Lessons Learnt from COVID-19: Computational Strategies for Facing Present and Future Pandemics. Pavan M, Moro S. Int J Mol Sci 24 4401 (2023)
  30. Progress on COVID-19 Chemotherapeutics Discovery and Novel Technology. Zhou Y, Wang H, Yang L, Wang Q. Molecules 27 8257 (2022)
  31. Reactivity of Covalent Fragments and Their Role in Fragment Based Drug Discovery. McAulay K, Bilsland A, Bon M. Pharmaceuticals (Basel) 15 1366 (2022)
  32. Schistosomiasis Drug Discovery in the Era of Automation and Artificial Intelligence. Moreira-Filho JT, Silva AC, Dantas RF, Gomes BF, Souza Neto LR, Brandao-Neto J, Owens RJ, Furnham N, Neves BJ, Silva-Junior FP, Andrade CH. Front Immunol 12 642383 (2021)
  33. Science's Response to CoVID-19. Long MJC, Aye Y. ChemMedChem 16 2288-2314 (2021)
  34. Technologies for Direct Detection of Covalent Protein-Drug Adducts. Mons E, Kim RQ, Mulder MPC. Pharmaceuticals (Basel) 16 547 (2023)
  35. The rise of molecular simulations in fragment-based drug design (FBDD): an overview. Bissaro M, Sturlese M, Moro S. Drug Discov Today 25 1693-1701 (2020)

Articles citing this publication (179)

  1. Crystallographic structure of wild-type SARS-CoV-2 main protease acyl-enzyme intermediate with physiological C-terminal autoprocessing site. Lee J, Worrall LJ, Vuckovic M, Rosell FI, Gentile F, Ton AT, Caveney NA, Ban F, Cherkasov A, Paetzel M, Strynadka NCJ. Nat Commun 11 5877 (2020)
  2. Potent Noncovalent Inhibitors of the Main Protease of SARS-CoV-2 from Molecular Sculpting of the Drug Perampanel Guided by Free Energy Perturbation Calculations. Zhang CH, Stone EA, Deshmukh M, Ippolito JA, Ghahremanpour MM, Tirado-Rives J, Spasov KA, Zhang S, Takeo Y, Kudalkar SN, Liang Z, Isaacs F, Lindenbach B, Miller SJ, Anderson KS, Jorgensen WL. ACS Cent Sci 7 467-475 (2021)
  3. Targeting the coronavirus SARS-CoV-2: computational insights into the mechanism of action of the protease inhibitors lopinavir, ritonavir and nelfinavir. Bolcato G, Bissaro M, Pavan M, Sturlese M, Moro S. Sci Rep 10 20927 (2020)
  4. Fragment binding to the Nsp3 macrodomain of SARS-CoV-2 identified through crystallographic screening and computational docking. Schuller M, Correy GJ, Gahbauer S, Fearon D, Wu T, Díaz RE, Young ID, Carvalho Martins L, Smith DH, Schulze-Gahmen U, Owens TW, Deshpande I, Merz GE, Thwin AC, Biel JT, Peters JK, Moritz M, Herrera N, Kratochvil HT, QCRG Structural Biology Consortium, Aimon A, Bennett JM, Brandao Neto J, Cohen AE, Dias A, Douangamath A, Dunnett L, Fedorov O, Ferla MP, Fuchs MR, Gorrie-Stone TJ, Holton JM, Johnson MG, Krojer T, Meigs G, Powell AJ, Rack JGM, Rangel VL, Russi S, Skyner RE, Smith CA, Soares AS, Wierman JL, Zhu K, O'Brien P, Jura N, Ashworth A, Irwin JJ, Thompson MC, Gestwicki JE, von Delft F, Shoichet BK, Fraser JS, Ahel I. Sci Adv 7 eabf8711 (2021)
  5. Crystal Structure of SARS-CoV-2 Main Protease in Complex with the Non-Covalent Inhibitor ML188. Lockbaum GJ, Reyes AC, Lee JM, Tilvawala R, Nalivaika EA, Ali A, Kurt Yilmaz N, Thompson PR, Schiffer CA. Viruses 13 174 (2021)
  6. Drug repurposing studies targeting SARS-CoV-2: an ensemble docking approach on drug target 3C-like protease (3CLpro). Koulgi S, Jani V, Uppuladinne M, Sonavane U, Nath AK, Darbari H, Joshi R. J Biomol Struct Dyn 39 5735-5755 (2021)
  7. Inhibition mechanism of SARS-CoV-2 main protease by ebselen and its derivatives. Amporndanai K, Meng X, Shang W, Jin Z, Rogers M, Zhao Y, Rao Z, Liu ZJ, Yang H, Zhang L, O'Neill PM, Samar Hasnain S. Nat Commun 12 3061 (2021)
  8. Crystal structure of SARS-CoV-2 Orf9b in complex with human TOM70 suggests unusual virus-host interactions. Gao X, Zhu K, Qin B, Olieric V, Wang M, Cui S. Nat Commun 12 2843 (2021)
  9. Pre-clustering data sets using cluster4x improves the signal-to-noise ratio of high-throughput crystallography drug-screening analysis. Ginn HM. Acta Crystallogr D Struct Biol 76 1134-1144 (2020)
  10. Structure-Based Optimization of ML300-Derived, Noncovalent Inhibitors Targeting the Severe Acute Respiratory Syndrome Coronavirus 3CL Protease (SARS-CoV-2 3CLpro). Han SH, Goins CM, Arya T, Shin WJ, Maw J, Hooper A, Sonawane DP, Porter MR, Bannister BE, Crouch RD, Lindsey AA, Lakatos G, Martinez SR, Alvarado J, Akers WS, Wang NS, Jung JU, Macdonald JD, Stauffer SR. J Med Chem 65 2880-2904 (2022)
  11. Automated discovery of noncovalent inhibitors of SARS-CoV-2 main protease by consensus Deep Docking of 40 billion small molecules. Gentile F, Fernandez M, Ban F, Ton AT, Mslati H, Perez CF, Leblanc E, Yaacoub JC, Gleave J, Stern A, Wong B, Jean F, Strynadka N, Cherkasov A. Chem Sci 12 15960-15974 (2021)
  12. Direct Observation of Protonation State Modulation in SARS-CoV-2 Main Protease upon Inhibitor Binding with Neutron Crystallography. Kneller DW, Phillips G, Weiss KL, Zhang Q, Coates L, Kovalevsky A. J Med Chem 64 4991-5000 (2021)
  13. Mass spectrometry reveals potential of β-lactams as SARS-CoV-2 Mpro inhibitors. Malla TR, Tumber A, John T, Brewitz L, Strain-Damerell C, Owen CD, Lukacik P, Chan HTH, Maheswaran P, Salah E, Duarte F, Yang H, Rao Z, Walsh MA, Schofield CJ. Chem Commun (Camb) 57 1430-1433 (2021)
  14. The low-cost Shifter microscope stage transforms the speed and robustness of protein crystal harvesting. Wright ND, Collins P, Koekemoer L, Krojer T, Talon R, Nelson E, Ye M, Nowak R, Newman J, Ng JT, Mitrovich N, Wiggers H, von Delft F. Acta Crystallogr D Struct Biol 77 62-74 (2021)
  15. An automatic pipeline for the design of irreversible derivatives identifies a potent SARS-CoV-2 Mpro inhibitor. Zaidman D, Gehrtz P, Filep M, Fearon D, Gabizon R, Douangamath A, Prilusky J, Duberstein S, Cohen G, Owen CD, Resnick E, Strain-Damerell C, Lukacik P, Covid-Moonshot Consortium, Barr H, Walsh MA, von Delft F, London N. Cell Chem Biol 28 1795-1806.e5 (2021)
  16. X-ray crystallographic characterization of the SARS-CoV-2 main protease polyprotein cleavage sites essential for viral processing and maturation. Lee J, Kenward C, Worrall LJ, Vuckovic M, Gentile F, Ton AT, Ng M, Cherkasov A, Strynadka NCJ, Paetzel M. Nat Commun 13 5196 (2022)
  17. Discovery of chebulagic acid and punicalagin as novel allosteric inhibitors of SARS-CoV-2 3CLpro. Du R, Cooper L, Chen Z, Lee H, Rong L, Cui Q. Antiviral Res 190 105075 (2021)
  18. Discovery of SARS-CoV-2 Mpro peptide inhibitors from modelling substrate and ligand binding. Chan HTH, Moesser MA, Walters RK, Malla TR, Twidale RM, John T, Deeks HM, Johnston-Wood T, Mikhailov V, Sessions RB, Dawson W, Salah E, Lukacik P, Strain-Damerell C, Owen CD, Nakajima T, Świderek K, Lodola A, Moliner V, Glowacki DR, Spencer J, Walsh MA, Schofield CJ, Genovese L, Shoemark DK, Mulholland AJ, Duarte F, Morris GM. Chem Sci 12 13686-13703 (2021)
  19. Exploring the Druggability of Conserved RNA Regulatory Elements in the SARS-CoV-2 Genome. Sreeramulu S, Richter C, Berg H, Wirtz Martin MA, Ceylan B, Matzel T, Adam J, Altincekic N, Azzaoui K, Bains JK, Blommers MJJ, Ferner J, Fürtig B, Göbel M, Grün JT, Hengesbach M, Hohmann KF, Hymon D, Knezic B, Martins JN, Mertinkus KR, Niesteruk A, Peter SA, Pyper DJ, Qureshi NS, Scheffer U, Schlundt A, Schnieders R, Stirnal E, Sudakov A, Tröster A, Vögele J, Wacker A, Weigand JE, Wirmer-Bartoschek J, Wöhnert J, Schwalbe H. Angew Chem Int Ed Engl 60 19191-19200 (2021)
  20. Novel Small-Molecule Scaffolds as Candidates against the SARS Coronavirus 2 Main Protease: A Fragment-Guided in Silico Approach. Augustin TL, Hajbabaie R, Harper MT, Rahman T. Molecules 25 E5501 (2020)
  21. Unveiling the molecular mechanism of SARS-CoV-2 main protease inhibition from 137 crystal structures using algebraic topology and deep learning. Nguyen DD, Gao K, Chen J, Wang R, Wei GW. Chem Sci 11 12036-12046 (2020)
  22. Comprehensive virtual screening of 4.8 k flavonoids reveals novel insights into allosteric inhibition of SARS-CoV-2 MPRO. Jiménez-Avalos G, Vargas-Ruiz AP, Delgado-Pease NE, Olivos-Ramirez GE, Sheen P, Fernández-Díaz M, Quiliano M, Zimic M, COVID-19 Working Group in Perú. Sci Rep 11 15452 (2021)
  23. Dynamic Profiling of β-Coronavirus 3CL Mpro Protease Ligand-Binding Sites. Cho E, Rosa M, Anjum R, Mehmood S, Soban M, Mujtaba M, Bux K, Moin ST, Tanweer M, Dantu S, Pandini A, Yin J, Ma H, Ramanathan A, Islam B, Mey ASJS, Bhowmik D, Haider S. J Chem Inf Model 61 3058-3073 (2021)
  24. Identification of mutation resistance coldspots for targeting the SARS-CoV2 main protease. Krishnamoorthy N, Fakhro K. IUBMB Life 73 670-675 (2021)
  25. Key dimer interface residues impact the catalytic activity of 3CLpro, the main protease of SARS-CoV-2. Ferreira JC, Fadl S, Rabeh WM. J Biol Chem 298 102023 (2022)
  26. Oridonin Inhibits SARS-CoV-2 by Targeting Its 3C-Like Protease. Zhong B, Peng W, Du S, Chen B, Feng Y, Hu X, Lai Q, Liu S, Zhou ZW, Fang P, Wu Y, Gao F, Zhou H, Sun L. Small Sci 2 2100124 (2022)
  27. Structure-based drug design of an inhibitor of the SARS-CoV-2 (COVID-19) main protease using free software: A tutorial for students and scientists. Zhang S, Krumberger M, Morris MA, Parrocha CMT, Kreutzer AG, Nowick JS. Eur J Med Chem 218 113390 (2021)
  28. A white-knuckle ride of open COVID drug discovery. von Delft F, Calmiano M, Chodera J, Griffen E, Lee A, London N, Matviuk T, Perry B, Robinson M, von Delft A. Nature 594 330-332 (2021)
  29. DeepFrag: a deep convolutional neural network for fragment-based lead optimization. Green H, Koes DR, Durrant JD. Chem Sci 12 8036-8047 (2021)
  30. Exploring protein hotspots by optimized fragment pharmacophores. Bajusz D, Wade WS, Satała G, Bojarski AJ, Ilaš J, Ebner J, Grebien F, Papp H, Jakab F, Douangamath A, Fearon D, von Delft F, Schuller M, Ahel I, Wakefield A, Vajda S, Gerencsér J, Pallai P, Keserű GM. Nat Commun 12 3201 (2021)
  31. Interaction of 8-anilinonaphthalene-1-sulfonate with SARS-CoV-2 main protease and its application as a fluorescent probe for inhibitor identification. Deetanya P, Hengphasatporn K, Wilasluck P, Shigeta Y, Rungrotmongkol T, Wangkanont K. Comput Struct Biotechnol J 19 3364-3371 (2021)
  32. A COVID moonshot: assessment of ligand binding to the SARS-CoV-2 main protease by saturation transfer difference NMR spectroscopy. Kantsadi AL, Cattermole E, Matsoukas MT, Spyroulias GA, Vakonakis I. J Biomol NMR 75 167-178 (2021)
  33. A cyclic peptide inhibitor of the SARS-CoV-2 main protease. Kreutzer AG, Krumberger M, Diessner EM, Parrocha CMT, Morris MA, Guaglianone G, Butts CT, Nowick JS. Eur J Med Chem 221 113530 (2021)
  34. Bispecific repurposed medicines targeting the viral and immunological arms of COVID-19. Redhead MA, Owen CD, Brewitz L, Collette AH, Lukacik P, Strain-Damerell C, Robinson SW, Collins PM, Schäfer P, Swindells M, Radoux CJ, Hopkins IN, Fearon D, Douangamath A, von Delft F, Malla TR, Vangeel L, Vercruysse T, Thibaut J, Leyssen P, Nguyen TT, Hull M, Tumber A, Hallett DJ, Schofield CJ, Stuart DI, Hopkins AL, Walsh MA. Sci Rep 11 13208 (2021)
  35. Discovery of Di- and Trihaloacetamides as Covalent SARS-CoV-2 Main Protease Inhibitors with High Target Specificity. Ma C, Xia Z, Sacco MD, Hu Y, Townsend JA, Meng X, Choza J, Tan H, Jang J, Gongora MV, Zhang X, Zhang F, Xiang Y, Marty MT, Chen Y, Wang J. J Am Chem Soc 143 20697-20709 (2021)
  36. Disulfide Bonds Play a Critical Role in the Structure and Function of the Receptor-binding Domain of the SARS-CoV-2 Spike Antigen. Grishin AM, Dolgova NV, Landreth S, Fisette O, Pickering IJ, George GN, Falzarano D, Cygler M. J Mol Biol 434 167357 (2022)
  37. Near-physiological-temperature serial crystallography reveals conformations of SARS-CoV-2 main protease active site for improved drug repurposing. Durdagi S, Dağ Ç, Dogan B, Yigin M, Avsar T, Buyukdag C, Erol I, Ertem FB, Calis S, Yildirim G, Orhan MD, Guven O, Aksoydan B, Destan E, Sahin K, Besler SO, Oktay L, Shafiei A, Tolu I, Ayan E, Yuksel B, Peksen AB, Gocenler O, Yucel AD, Can O, Ozabrahamyan S, Olkan A, Erdemoglu E, Aksit F, Tanisali G, Yefanov OM, Barty A, Tolstikova A, Ketawala GK, Botha S, Dao EH, Hayes B, Liang M, Seaberg MH, Hunter MS, Batyuk A, Mariani V, Su Z, Poitevin F, Yoon CH, Kupitz C, Sierra RG, Snell EH, DeMirci H. Structure 29 1382-1396.e6 (2021)
  38. Repurposing of FDA-approved drugs against active site and potential allosteric drug-binding sites of COVID-19 main protease. Yuce M, Cicek E, Inan T, Dag AB, Kurkcuoglu O, Sungur FA. Proteins 89 1425-1441 (2021)
  39. Structural basis of nirmatrelvir and ensitrelvir activity against naturally occurring polymorphisms of the SARS-CoV-2 main protease. Noske GD, de Souza Silva E, de Godoy MO, Dolci I, Fernandes RS, Guido RVC, Sjö P, Oliva G, Godoy AS. J Biol Chem 299 103004 (2023)
  40. Structural determinants driving the binding process between PDZ domain of wild type human PALS1 protein and SLiM sequences of SARS-CoV E proteins. Lo Cascio E, Toto A, Babini G, De Maio F, Sanguinetti M, Mordente A, Della Longa S, Arcovito A. Comput Struct Biotechnol J 19 1838-1847 (2021)
  41. Structural, Electronic, and Electrostatic Determinants for Inhibitor Binding to Subsites S1 and S2 in SARS-CoV-2 Main Protease. Kneller DW, Li H, Galanie S, Phillips G, Labbé A, Weiss KL, Zhang Q, Arnould MA, Clyde A, Ma H, Ramanathan A, Jonsson CB, Head MS, Coates L, Louis JM, Bonnesen PV, Kovalevsky A. J Med Chem 64 17366-17383 (2021)
  42. A multi-pronged evaluation of aldehyde-based tripeptidyl main protease inhibitors as SARS-CoV-2 antivirals. Ma Y, Yang KS, Geng ZZ, Alugubelli YR, Shaabani N, Vatansever EC, Ma XR, Cho CC, Khatua K, Xiao J, Blankenship LR, Yu G, Sankaran B, Li P, Allen R, Ji H, Xu S, Liu WR. Eur J Med Chem 240 114570 (2022)
  43. DNA-encoded chemistry technology yields expedient access to SARS-CoV-2 Mpro inhibitors. Chamakuri S, Lu S, Ucisik MN, Bohren KM, Chen YC, Du HC, Faver JC, Jimmidi R, Li F, Li JY, Nyshadham P, Palmer SS, Pollet J, Qin X, Ronca SE, Sankaran B, Sharma KL, Tan Z, Versteeg L, Yu Z, Matzuk MM, Palzkill T, Young DW. Proc Natl Acad Sci U S A 118 e2111172118 (2021)
  44. Identification of LASSBio-1945 as an inhibitor of SARS-CoV-2 main protease (MPRO) through in silico screening supported by molecular docking and a fragment-based pharmacophore model. Franco LS, Maia RC, Barreiro EJ. RSC Med Chem 12 110-119 (2021)
  45. Large library docking for novel SARS-CoV-2 main protease non-covalent and covalent inhibitors. Fink EA, Bardine C, Gahbauer S, Singh I, Detomasi TC, White K, Gu S, Wan X, Chen J, Ary B, Glenn I, O'Connell J, O'Donnell H, Fajtová P, Lyu J, Vigneron S, Young NJ, Kondratov IS, Alisoltani A, Simons LM, Lorenzo-Redondo R, Ozer EA, Hultquist JF, O'Donoghue AJ, Moroz YS, Taunton J, Renslo AR, Irwin JJ, García-Sastre A, Shoichet BK, Craik CS. Protein Sci 32 e4712 (2023)
  46. Molecular dynamics and in silico mutagenesis on the reversible inhibitor-bound SARS-CoV-2 main protease complexes reveal the role of lateral pocket in enhancing the ligand affinity. Weng YL, Naik SR, Dingelstad N, Lugo MR, Kalyaanamoorthy S, Ganesan A. Sci Rep 11 7429 (2021)
  47. NMR Spectroscopy of the Main Protease of SARS-CoV-2 and Fragment-Based Screening Identify Three Protein Hotspots and an Antiviral Fragment. Cantrelle FX, Boll E, Brier L, Moschidi D, Belouzard S, Landry V, Leroux F, Dewitte F, Landrieu I, Dubuisson J, Deprez B, Charton J, Hanoulle X. Angew Chem Int Ed Engl 60 25428-25435 (2021)
  48. Natural Products-Based Drug Design against SARS-CoV-2 Mpro 3CLpro. Silva RC, Freitas HF, Campos JM, Kimani NM, Silva CHTP, Borges RS, Pita SSR, Santos CBR. Int J Mol Sci 22 11739 (2021)
  49. Novel dynamic residue network analysis approaches to study allosteric modulation: SARS-CoV-2 Mpro and its evolutionary mutations as a case study. Sheik Amamuddy O, Afriyie Boateng R, Barozi V, Wavinya Nyamai D, Tastan Bishop Ö. Comput Struct Biotechnol J 19 6431-6455 (2021)
  50. Repurposing approved drugs as potential inhibitors of 3CL-protease of SARS-CoV-2: Virtual screening and structure based drug design. Meyer-Almes FJ. Comput Biol Chem 88 107351 (2020)
  51. SARS-CoV-2 Main Protease Active Site Ligands in the Human Metabolome. Sardanelli AM, Isgrò C, Palese LL. Molecules 26 1409 (2021)
  52. Sub-Micromolar Inhibition of SARS-CoV-2 3CLpro by Natural Compounds. Rizzuti B, Ceballos-Laita L, Ortega-Alarcon D, Jimenez-Alesanco A, Vega S, Grande F, Conforti F, Abian O, Velazquez-Campoy A. Pharmaceuticals (Basel) 14 892 (2021)
  53. A Multistage In Silico Study of Natural Potential Inhibitors Targeting SARS-CoV-2 Main Protease. Elkaeed EB, Eissa IH, Elkady H, Abdelalim A, Alqaisi AM, Alsfouk AA, Elwan A, Metwaly AM. Int J Mol Sci 23 8407 (2022)
  54. A natural product compound inhibits coronaviral replication in vitro by binding to the conserved Nsp9 SARS-CoV-2 protein. Littler DR, Liu M, McAuley JL, Lowery SA, Illing PT, Gully BS, Purcell AW, Chandrashekaran IR, Perlman S, Purcell DFJ, Quinn RJ, Rossjohn J. J Biol Chem 297 101362 (2021)
  55. A transferable deep learning approach to fast screen potential antiviral drugs against SARS-CoV-2. Wang S, Sun Q, Xu Y, Pei J, Lai L. Brief Bioinform 22 bbab211 (2021)
  56. Biochemical and structural insights into SARS-CoV-2 polyprotein processing by Mpro. Yadav R, Courouble VV, Dey SK, Harrison JJEK, Timm J, Hopkins JB, Slack RL, Sarafianos SG, Ruiz FX, Griffin PR, Arnold E. Sci Adv 8 eadd2191 (2022)
  57. Combined computational and cellular screening identifies synergistic inhibition of SARS-CoV-2 by lenvatinib and remdesivir. Pohl MO, Busnadiego I, Marrafino F, Wiedmer L, Hunziker A, Fernbach S, Glas I, Moroz-Omori EV, Hale BG, Caflisch A, Stertz S. J Gen Virol 102 (2021)
  58. Combining High-Throughput Synthesis and High-Throughput Protein Crystallography for Accelerated Hit Identification. Sutanto F, Shaabani S, Oerlemans R, Eris D, Patil P, Hadian M, Wang M, Sharpe ME, Groves MR, Dömling A. Angew Chem Int Ed Engl 60 18231-18239 (2021)
  59. Crystallographic study, biological assessment and POM/Docking studies of pyrazoles-sulfonamide hybrids (PSH): Identification of a combined Antibacterial/Antiviral pharmacophore sites leading to in-silico screening the anti-Covid-19 activity. Chalkha M, Nakkabi A, Hadda TB, Berredjem M, Moussaoui AE, Bakhouch M, Saadi M, Ammari LE, Almalki FA, Laaroussi H, Jevtovic V, Yazidi ME. J Mol Struct 1267 133605 (2022)
  60. Current status of structure-based drug repurposing against COVID-19 by targeting SARS-CoV-2 proteins. Hijikata A, Shionyu C, Nakae S, Shionyu M, Ota M, Kanaya S, Shirai T. Biophys Physicobiol 18 226-240 (2021)
  61. In silico analysis of echinocandins binding to the main proteases of coronaviruses PEDV (3CLpro) and SARS-CoV-2 (Mpro). Vergoten G, Bailly C. In Silico Pharmacol 9 41 (2021)
  62. Inhibitor binding influences the protonation states of histidines in SARS-CoV-2 main protease. Pavlova A, Lynch DL, Daidone I, Zanetti-Polzi L, Smith MD, Chipot C, Kneller DW, Kovalevsky A, Coates L, Golosov AA, Dickson CJ, Velez-Vega C, Duca JS, Vermaas JV, Pang YT, Acharya A, Parks JM, Smith JC, Gumbart JC. Chem Sci 12 1513-1527 (2021)
  63. Inspecting the Mechanism of Fragment Hits Binding on SARS-CoV-2 Mpro by Using Supervised Molecular Dynamics (SuMD) Simulations. Bissaro M, Bolcato G, Pavan M, Bassani D, Sturlese M, Moro S. ChemMedChem 16 2075-2081 (2021)
  64. Potential SARS-CoV-2 3CLpro inhibitors from chromene, flavonoid and hydroxamic acid compound based on FRET assay, docking and pharmacophore studies. Hariono M, Hariyono P, Dwiastuti R, Setyani W, Yusuf M, Salin N, Wahab H. Results Chem 3 100195 (2021)
  65. Ultralarge Virtual Screening Identifies SARS-CoV-2 Main Protease Inhibitors with Broad-Spectrum Activity against Coronaviruses. Luttens A, Gullberg H, Abdurakhmanov E, Vo DD, Akaberi D, Talibov VO, Nekhotiaeva N, Vangeel L, De Jonghe S, Jochmans D, Krambrich J, Tas A, Lundgren B, Gravenfors Y, Craig AJ, Atilaw Y, Sandström A, Moodie LWK, Lundkvist Å, van Hemert MJ, Neyts J, Lennerstrand J, Kihlberg J, Sandberg K, Danielson UH, Carlsson J. J Am Chem Soc 144 2905-2920 (2022)
  66. 3DBionotes COVID-19 Edition. Macias JR, Sanchez-Garcia R, Conesa P, Ramirez-Aportela E, Martinez Gonzalez M, Wert-Carvajal C, Parra-Perez AM, Segura Mora J, Horrell S, Thorn A, Sorzano COS, Carazo JM. Bioinformatics btab397 (2021)
  67. A new inactive conformation of SARS-CoV-2 main protease. Fornasier E, Macchia ML, Giachin G, Sosic A, Pavan M, Sturlese M, Salata C, Moro S, Gatto B, Bellanda M, Battistutta R. Acta Crystallogr D Struct Biol 78 363-378 (2022)
  68. A systematic exploration of boceprevir-based main protease inhibitors as SARS-CoV-2 antivirals. Alugubelli YR, Geng ZZ, Yang KS, Shaabani N, Khatua K, Ma XR, Vatansever EC, Cho CC, Ma Y, Xiao J, Blankenship LR, Yu G, Sankaran B, Li P, Allen R, Ji H, Xu S, Liu WR. Eur J Med Chem 240 114596 (2022)
  69. Allosteric Hotspots in the Main Protease of SARS-CoV-2. Strömich L, Wu N, Barahona M, Yaliraki SN. J Mol Biol 434 167748 (2022)
  70. Bio-Guided Isolation of SARS-CoV-2 Main Protease Inhibitors from Medicinal Plants: In Vitro Assay and Molecular Dynamics. Abdallah HM, El-Halawany AM, Darwish KM, Algandaby MM, Mohamed GA, Ibrahim SRM, Koshak AE, Elhady SS, Fadil SA, Alqarni AA, Abdel-Naim AB, Elfaky MA. Plants (Basel) 11 1914 (2022)
  71. Concordance of X-ray and AlphaFold2 Models of SARS-CoV-2 Main Protease with Residual Dipolar Couplings Measured in Solution. Robertson AJ, Courtney JM, Shen Y, Ying J, Bax A. J Am Chem Soc 143 19306-19310 (2021)
  72. Crystal-structures-guided design of fragment-based drugs for inhibiting the main protease of SARS-CoV-2. Luan B, Huynh T. Proteins 90 1081-1089 (2022)
  73. Discovery of S-217622, a Noncovalent Oral SARS-CoV-2 3CL Protease Inhibitor Clinical Candidate for Treating COVID-19. Unoh Y, Uehara S, Nakahara K, Nobori H, Yamatsu Y, Yamamoto S, Maruyama Y, Taoda Y, Kasamatsu K, Suto T, Kouki K, Nakahashi A, Kawashima S, Sanaki T, Toba S, Uemura K, Mizutare T, Ando S, Sasaki M, Orba Y, Sawa H, Sato A, Sato T, Kato T, Tachibana Y. J Med Chem 65 6499-6512 (2022)
  74. Docking-based virtual screening studies aiming at the covalent inhibition of SARS-CoV-2 MPro by targeting the cysteine 145. Soulère L, Barbier T, Queneau Y. Comput Biol Chem 92 107463 (2021)
  75. Establishing an Analogue Based In Silico Pipeline in the Pursuit of Novel Inhibitory Scaffolds against the SARS Coronavirus 2 Papain-Like Protease. Hajbabaie R, Harper MT, Rahman T. Molecules 26 1134 (2021)
  76. Fragment-based in silico design of SARS-CoV-2 main protease inhibitors. Ahmad S, Usman Mirza M, Yean Kee L, Nazir M, Abdul Rahman N, Trant JF, Abdullah I. Chem Biol Drug Des 98 604-619 (2021)
  77. In silico screening of potent inhibitors against COVID-19 key targets from a library of FDA-approved drugs. Elmorsy MA, El-Baz AM, Mohamed NH, Almeer R, Abdel-Daim MM, Yahya G. Environ Sci Pollut Res Int 29 12336-12346 (2022)
  78. Inhibition of Cysteine Proteases by 6,6'-Dihydroxythiobinupharidine (DTBN) from Nuphar lutea. Waidha K, Zurgil U, Ben-Zeev E, Gopas J, Rajendran S, Golan-Goldhirsh A. Molecules 26 4743 (2021)
  79. Investigation of changes in protein stability and substrate affinity of 3CL-protease of SARS-CoV-2 caused by mutations. Akbulut E. Genet Mol Biol 45 e20210404 (2022)
  80. Machine learning enabled identification of potential SARS-CoV-2 3CLpro inhibitors based on fixed molecular fingerprints and Graph-CNN neural representations. Haneczok J, Delijewski M. J Biomed Inform 119 103821 (2021)
  81. NMR Observation of Sulfhydryl Signals in SARS-CoV-2 Main Protease Aids Structural Studies. Robertson AJ, Ying J, Bax A. Chembiochem 23 e202200471 (2022)
  82. New insights into the catalytic mechanism of the SARS-CoV-2 main protease: an ONIOM QM/MM approach. Fernandes HS, Sousa SF, Cerqueira NMFSA. Mol Divers 26 1373-1381 (2022)
  83. Non-covalent SARS-CoV-2 Mpro inhibitors developed from in silico screen hits. Rossetti GG, Ossorio MA, Rempel S, Kratzel A, Dionellis VS, Barriot S, Tropia L, Gorgulla C, Arthanari H, Thiel V, Mohr P, Gamboni R, Halazonetis TD. Sci Rep 12 2505 (2022)
  84. Primer for Designing Main Protease (Mpro) Inhibitors of SARS-CoV-2. Thakur A, Sharma G, Badavath VN, Jayaprakash V, Merz KM, Blum G, Acevedo O. J Phys Chem Lett 13 5776-5786 (2022)
  85. Quantitative in silico analysis of SARS-CoV-2 S-RBD omicron mutant transmissibility. Hanai T. Talanta 240 123206 (2022)
  86. Room-temperature crystallography reveals altered binding of small-molecule fragments to PTP1B. Skaist Mehlman T, Biel JT, Azeem SM, Nelson ER, Hossain S, Dunnett L, Paterson NG, Douangamath A, Talon R, Axford D, Orins H, von Delft F, Keedy DA. Elife 12 e84632 (2023)
  87. Small-Molecule Thioesters as SARS-CoV-2 Main Protease Inhibitors: Enzyme Inhibition, Structure-Activity Relationships, Antiviral Activity, and X-ray Structure Determination. Pillaiyar T, Flury P, Krüger N, Su H, Schäkel L, Barbosa Da Silva E, Eppler O, Kronenberger T, Nie T, Luedtke S, Rocha C, Sylvester K, Petry MRI, McKerrow JH, Poso A, Pöhlmann S, Gütschow M, O'Donoghue AJ, Xu Y, Müller CE, Laufer SA. J Med Chem 65 9376-9395 (2022)
  88. Tea Ingredients Have Anti-coronavirus Disease 2019 (COVID-19) Targets Based on Bioinformatics Analyses and Pharmacological Effects on LPS-Stimulated Macrophages. Wang L, Tao Q, Wang Z, Shi J, Yan W, Zhang L, Sun Y, Yao X. Front Nutr 9 875765 (2022)
  89. The tem-per-ature-dependent conformational ensemble of SARS-CoV-2 main protease (Mpro). Ebrahim A, Riley BT, Kumaran D, Andi B, Fuchs MR, McSweeney S, Keedy DA. IUCrJ 9 682-694 (2022)
  90. Virtual Alanine Scan of the Main Protease Active Site in Severe Acute Respiratory Syndrome Coronavirus 2. Nakayoshi T, Kato K, Kurimoto E, Oda A. Int J Mol Sci 22 9837 (2021)
  91. xia2.multiplex: a multi-crystal data-analysis pipeline. Gildea RJ, Beilsten-Edmands J, Axford D, Horrell S, Aller P, Sandy J, Sanchez-Weatherby J, Owen CD, Lukacik P, Strain-Damerell C, Owen RL, Walsh MA, Winter G. Acta Crystallogr D Struct Biol 78 752-769 (2022)
  92. Garcinia cambogia Phenolics as Potent Anti-COVID-19 Agents: Phytochemical Profiling, Biological Activities, and Molecular Docking. Aati HY, Ismail A, Rateb ME, AboulMagd AM, Hassan HM, Hetta MH. Plants (Basel) 11 2521 (2022)
  93. A Computer-Aided Approach for the Discovery of D-Peptides as Inhibitors of SARS-CoV-2 Main Protease. Hernández González JE, Eberle RJ, Willbold D, Coronado MA. Front Mol Biosci 8 816166 (2021)
  94. A Versatile Class of 1,4,4-Trisubstituted Piperidines Block Coronavirus Replication In Vitro. De Castro S, Stevaert A, Maldonado M, Delpal A, Vandeput J, Van Loy B, Eydoux C, Guillemot JC, Decroly E, Gago F, Canard B, Camarasa MJ, Velázquez S, Naesens L. Pharmaceuticals (Basel) 15 1021 (2022)
  95. A covalent inhibitor targeting the papain-like protease from SARS-CoV-2 inhibits viral replication. Han H, Gracia AV, Røise JJ, Boike L, Leon K, Schulze-Gahmen U, Stentzel MR, Bajaj T, Chen D, Li IC, He M, Behrouzi K, Khodabakhshi Z, Nomura DK, Mofrad MRK, Kumar GR, Ott M, Murthy N. RSC Adv 13 10636-10641 (2023)
  96. A highly sensitive cell-based luciferase assay for high-throughput automated screening of SARS-CoV-2 nsp5/3CLpro inhibitors. Chen KY, Krischuns T, Varga LO, Harigua-Souiai E, Paisant S, Zettor A, Chiaravalli J, Delpal A, Courtney D, O'Brien A, Baker SC, Decroly E, Isel C, Agou F, Jacob Y, Blondel A, Naffakh N. Antiviral Res 201 105272 (2022)
  97. A molecular evolution algorithm for ligand design in DOCK. Prentis LE, Singleton CD, Bickel JD, Allen WJ, Rizzo RC. J Comput Chem 43 1942-1963 (2022)
  98. A novel class of broad-spectrum active-site-directed 3C-like protease inhibitors with nanomolar antiviral activity against highly immune-evasive SARS-CoV-2 Omicron subvariants. Pérez-Vargas J, Worrall LJ, Olmstead AD, Ton AT, Lee J, Villanueva I, Thompson CAH, Dudek S, Ennis S, Smith JR, Shapira T, De Guzman J, Gang S, Ban F, Vuckovic M, Bielecki M, Kovacic S, Kenward C, Hong CY, Gordon DG, Levett PN, Krajden M, Leduc R, Boudreault PL, Niikura M, Paetzel M, Young RN, Cherkasov A, Strynadka NCJ, Jean F. Emerg Microbes Infect 12 2246594 (2023)
  99. A simple method for developing lysine targeted covalent protein reagents. Gabizon R, Tivon B, Reddi RN, van den Oetelaar MCM, Amartely H, Cossar PJ, Ottmann C, London N. Nat Commun 14 7933 (2023)
  100. AI-Driven Discovery of SARS-CoV-2 Main Protease Fragment-like Inhibitors with Antiviral Activity In Vitro. Saramago LC, Santana MV, Gomes BF, Dantas RF, Senger MR, Oliveira Borges PH, Ferreira VNDS, Dos Santos Rosa A, Tucci AR, Dias Miranda M, Lukacik P, Strain-Damerell C, Owen CD, Walsh MA, Ferreira SB, Silva-Junior FP. J Chem Inf Model 63 2866-2880 (2023)
  101. Accelerating drug target inhibitor discovery with a deep generative foundation model. Chenthamarakshan V, Hoffman SC, Owen CD, Lukacik P, Strain-Damerell C, Fearon D, Malla TR, Tumber A, Schofield CJ, Duyvesteyn HME, Dejnirattisai W, Carrique L, Walter TS, Screaton GR, Matviiuk T, Mojsilovic A, Crain J, Walsh MA, Stuart DI, Das P. Sci Adv 9 eadg7865 (2023)
  102. Acrylamide fragment inhibitors that induce unprecedented conformational distortions in enterovirus 71 3C and SARS-CoV-2 main protease. Qin B, Craven GB, Hou P, Chesti J, Lu X, Child ES, Morgan RML, Niu W, Zhao L, Armstrong A, Mann DJ, Cui S. Acta Pharm Sin B 12 3924-3933 (2022)
  103. Alkyne Derivatives of SARS-CoV-2 Main Protease Inhibitors Including Nirmatrelvir Inhibit by Reacting Covalently with the Nucleophilic Cysteine. Brewitz L, Dumjahn L, Zhao Y, Owen CD, Laidlaw SM, Malla TR, Nguyen D, Lukacik P, Salah E, Crawshaw AD, Warren AJ, Trincao J, Strain-Damerell C, Carroll MW, Walsh MA, Schofield CJ. J Med Chem 66 2663-2680 (2023)
  104. Allosteric regulation and crystallographic fragment screening of SARS-CoV-2 NSP15 endoribonuclease. Godoy AS, Nakamura AM, Douangamath A, Song Y, Noske GD, Gawriljuk VO, Fernandes RS, Pereira HDM, Oliveira KIZ, Fearon D, Dias A, Krojer T, Fairhead M, Powell A, Dunnet L, Brandao-Neto J, Skyner R, Chalk R, Bajusz D, Bege M, Borbás A, Keserű GM, von Delft F, Oliva G. Nucleic Acids Res 51 5255-5270 (2023)
  105. An in-solution snapshot of SARS-COV-2 main protease maturation process and inhibition. Noske GD, Song Y, Fernandes RS, Chalk R, Elmassoudi H, Koekemoer L, Owen CD, El-Baba TJ, Robinson CV, COVID Moonshot Consortium, Oliva G, Godoy AS. Nat Commun 14 1545 (2023)
  106. An interaction-based drug discovery screen explains known SARS-CoV-2 inhibitors and predicts new compound scaffolds. Schake P, Dishnica K, Kaiser F, Leberecht C, Haupt VJ, Schroeder M. Sci Rep 13 9204 (2023)
  107. Autochthonous Peruvian Natural Plants as Potential SARS-CoV-2 Mpro Main Protease Inhibitors. Peralta-Moreno MN, Anton-Muñoz V, Ortega-Alarcon D, Jimenez-Alesanco A, Vega S, Abian O, Velazquez-Campoy A, Thomson TM, Granadino-Roldán JM, Machicado C, Rubio-Martinez J. Pharmaceuticals (Basel) 16 585 (2023)
  108. Computational investigation on the antioxidant activities and on the Mpro SARS-CoV-2 non-covalent inhibition of isorhamnetin. Spiegel M, Ciardullo G, Marino T, Russo N. Front Chem 11 1122880 (2023)
  109. Computationally driven discovery of SARS-CoV-2 Mpro inhibitors: from design to experimental validation. El Khoury L, Jing Z, Cuzzolin A, Deplano A, Loco D, Sattarov B, Hédin F, Wendeborn S, Ho C, El Ahdab D, Jaffrelot Inizan T, Sturlese M, Sosic A, Volpiana M, Lugato A, Barone M, Gatto B, Macchia ML, Bellanda M, Battistutta R, Salata C, Kondratov I, Iminov R, Khairulin A, Mykhalonok Y, Pochepko A, Chashka-Ratushnyi V, Kos I, Moro S, Montes M, Ren P, Ponder JW, Lagardère L, Piquemal JP, Sabbadin D. Chem Sci 13 3674-3687 (2022)
  110. De novo Design of SARS-CoV-2 Main Protease Inhibitors. Fischer C, Vepřek NA, Peitsinis Z, Rühmann KP, Yang C, Spradlin JN, Dovala D, Nomura DK, Zhang Y, Trauner D. Synlett 33 458-463 (2021)
  111. Development of a Novel Pharmacophore Model Guided by the Ensemble of Waters and Small Molecule Fragments Bound to SARS-CoV-2 Main Protease. Kumar P, Mohanty D. Mol Inform 41 e2100178 (2022)
  112. Diamond Light Source: contributions to SARS-CoV-2 biology and therapeutics. Walsh MA, Grimes JM, Stuart DI. Biochem Biophys Res Commun 538 40-46 (2021)
  113. Discovery and Crystallographic Studies of Nonpeptidic Piperazine Derivatives as Covalent SARS-CoV-2 Main Protease Inhibitors. Gao S, Song L, Claff T, Woodson M, Sylvester K, Jing L, Weiße RH, Cheng Y, Sträter N, Schäkel L, Gütschow M, Ye B, Yang M, Zhang T, Kang D, Toth K, Tavis J, Tollefson AE, Müller CE, Zhan P, Liu X. J Med Chem 65 16902-16917 (2022)
  114. Discovery and structural characterization of chicoric acid as a SARS-CoV-2 nucleocapsid protein ligand and RNA binding disruptor. Mercaldi GF, Bezerra EHS, Batista FAH, Tonoli CCC, Soprano AS, Shimizu JF, Nagai A, da Silva JC, Filho HVR, do Nascimento Faria J, da Cunha MG, Zeri ACM, Nascimento AFZ, Proenca-Modena JL, Bajgelman MC, Rocco SA, Lopes-de-Oliveira PS, Cordeiro AT, Bruder M, Marques RE, Sforça ML, Franchini KG, Benedetti CE, Figueira ACM, Trivella DBB. Sci Rep 12 18500 (2022)
  115. Discovery of C-12 dithiocarbamate andrographolide analogues as inhibitors of SARS-CoV-2 main protease: In vitro and in silico studies. Nutho B, Wilasluck P, Deetanya P, Wangkanont K, Arsakhant P, Saeeng R, Rungrotmongkol T. Comput Struct Biotechnol J 20 2784-2797 (2022)
  116. Discovery of Chalcone-Based Hybrid Structures as High Affinity and Site-Specific Inhibitors against SARS-CoV-2: A Comprehensive Structural Analysis Based on Various Host-Based and Viral Targets. Valipour M, Di Giacomo S, Di Sotto A, Irannejad H. Int J Mol Sci 24 8789 (2023)
  117. Discovery of Potential Inhibitors of SARS-CoV-2 Main Protease by a Transfer Learning Method. Zhang H, Liang B, Sang X, An J, Huang Z. Viruses 15 891 (2023)
  118. Discovery of novel druggable pockets on polyomavirus VP1 through crystallographic fragment-based screening to develop capsid assembly inhibitors. Osipov EM, Munawar AH, Beelen S, Fearon D, Douangamath A, Wild C, Weeks SD, Van Aerschot A, von Delft F, Strelkov SV. RSC Chem Biol 3 1013-1027 (2022)
  119. Discovery of novel oxazole-based macrocycles as anti-coronaviral agents targeting SARS-CoV-2 main protease. Al-Wahaibi LH, Mostafa A, Mostafa YA, Abou-Ghadir OF, Abdelazeem AH, Gouda AM, Kutkat O, Abo Shama NM, Shehata M, Gomaa HAM, Abdelrahman MH, Mohamed FAM, Gu X, Ali MA, Trembleau L, Youssif BGM. Bioorg Chem 116 105363 (2021)
  120. Drug repurposing against main protease and RNA-dependent RNA polymerase of SARS-CoV-2 using molecular docking, MM-GBSA calculations and molecular dynamics. Mohammed AO, Abo-Idrees MI, Makki AA, Ibraheem W, Alzain AA. Struct Chem 33 1553-1567 (2022)
  121. Drug repurposing and computational modeling for discovery of inhibitors of the main protease (Mpro) of SARS-CoV-2. Silva JRA, Kruger HG, Molfetta FA. RSC Adv 11 23450-23458 (2021)
  122. Dual-Reporter System for Real-Time Monitoring of SARS-CoV-2 Main Protease Activity in Live Cells Enables Identification of an Allosteric Inhibition Path. Bram Y, Duan X, Nilsson-Payant BE, Chandar V, Wu H, Shore D, Fajardo A, Sinha S, Hassan N, Weinstein H, TenOever BR, Chen S, Schwartz RE. ACS Bio Med Chem Au 2 627-641 (2022)
  123. Dynamic allostery highlights the evolutionary differences between the CoV-1 and CoV-2 main proteases. Campitelli P, Lu J, Ozkan SB. Biophys J 121 1483-1492 (2022)
  124. Efficient Ligand Discovery Using Sulfur(VI) Fluoride Reactive Fragments. Aatkar A, Vuorinen A, Longfield OE, Gilbert K, Peltier-Heap R, Wagner CD, Zappacosta F, Rittinger K, Chung CW, House D, Tomkinson NCO, Bush JT. ACS Chem Biol 18 1926-1937 (2023)
  125. Electrophilic MiniFrags Revealed Unprecedented Binding Sites for Covalent HDAC8 Inhibitors. Keeley AB, Kopranovic A, Di Lorenzo V, Ábrányi-Balogh P, Jänsch N, Lai LN, Petri L, Orgován Z, Pölöske D, Orlova A, Németh AG, Desczyk C, Imre T, Bajusz D, Moriggl R, Meyer-Almes FJ, Keserü GM. J Med Chem 67 572-585 (2024)
  126. Elucidation of Binding Features and Dissociation Pathways of Inhibitors and Modulators in SARS-CoV-2 Main Protease by Multiple Molecular Dynamics Simulations. Xu L, Xie L, Zhang D, Xu X. Molecules 27 6823 (2022)
  127. Elucidation of protein function using computational docking and hotspot analysis by ClusPro and FTMap. Jones G, Jindal A, Ghani U, Kotelnikov S, Egbert M, Hashemi N, Vajda S, Padhorny D, Kozakov D. Acta Crystallogr D Struct Biol 78 690-697 (2022)
  128. Emerging approaches to CDK inhibitor development, a structural perspective. Hope I, Endicott JA, Watt JE. RSC Chem Biol 4 146-164 (2023)
  129. Experiences From Developing Software for Large X-Ray Crystallography-Driven Protein-Ligand Studies. Pearce NM, Skyner R, Krojer T. Front Mol Biosci 9 861491 (2022)
  130. Exploration of piperidine 3D fragment chemical space: synthesis and 3D shape analysis of fragments derived from 20 regio- and diastereoisomers of methyl substituted pipecolinates. Jones SP, Firth JD, Wheldon MC, Atobe M, Hubbard RE, Blakemore DC, De Fusco C, Lucas SCC, Roughley SD, Vidler LR, Whatton MA, Woolford AJ, Wrigley GL, O'Brien P. RSC Med Chem 13 1614-1620 (2022)
  131. Finding Druggable Sites in Proteins Using TACTICS. Evans DJ, Yovanno RA, Rahman S, Cao DW, Beckett MQ, Patel MH, Bandak AF, Lau AY. J Chem Inf Model 61 2897-2910 (2021)
  132. Four-dimensional NOE-NOE spectroscopy of SARS-CoV-2 Main Protease to facilitate resonance assignment and structural analysis. Robertson AJ, Ying J, Bax A. Magn Reson (Gott) 2 129-138 (2021)
  133. Galaxy workflows for fragment-based virtual screening: a case study on the SARS-CoV-2 main protease. Bray S, Dudgeon T, Skyner R, Backofen R, Grüning B, von Delft F. J Cheminform 14 22 (2022)
  134. Graphene oxide immobilized 2-morpholinoethanamine as a versatile acid-base catalyst for synthesis of some heterocyclic compounds and molecular docking study. Amiri-Zirtol L, Ahooie TS, Riazimontazer E, Amrollahi MA, Mirjalili BF. Sci Rep 13 17966 (2023)
  135. High-throughput screening of SARS-CoV-2 main and papain-like protease inhibitors. Zang Y, Su M, Wang Q, Cheng X, Zhang W, Zhao Y, Chen T, Jiang Y, Shen Q, Du J, Tan Q, Wang P, Gao L, Jin Z, Zhang M, Li C, Zhu Y, Feng B, Tang B, Xie H, Wang MW, Zheng M, Pan X, Yang H, Xu Y, Wu B, Zhang L, Rao Z, Yang X, Jiang H, Xiao G, Zhao Q, Li J. Protein Cell 14 17-27 (2023)
  136. Identification of natural compounds as potent inhibitors of SARS-CoV-2 main protease using combined docking and molecular dynamics simulations. Shamim Jairajpuri D, Hussain A, Nasreen K, Mohammad T, Anjum F, Rehman T, Mustafa Hasan G, Alajmi MF, Hassan I. Saudi J Biol Sci (2021)
  137. Identifying the Hot Spot Residues of the SARS-CoV-2 Main Protease Using MM-PBSA and Multiple Force Fields. Byun J, Lee J. Life (Basel) 12 54 (2021)
  138. In Silico Identification of Potential Inhibitors of the SARS-CoV-2 Main Protease among a PubChem Database of Avian Infectious Bronchitis Virus 3CLPro Inhibitors. Soulère L, Barbier T, Queneau Y. Biomolecules 13 956 (2023)
  139. In silico analysis of SARS-CoV-2 proteins as targets for clinically available drugs. Chan WKB, Olson KM, Wotring JW, Sexton JZ, Carlson HA, Traynor JR. Sci Rep 12 5320 (2022)
  140. In silico evidence of beauvericin antiviral activity against SARS-CoV-2. Al Khoury C, Bashir Z, Tokajian S, Nemer N, Merhi G, Nemer G. Comput Biol Med 141 105171 (2022)
  141. In silico, in vitro screening of plant extracts for anti-SARS-CoV-2 activity and evaluation of their acute and sub-acute toxicity. Latha D, Hrishikesh D, Shiban G, Chandrashekar C, Bharath BR. Phytomed Plus 2 100233 (2022)
  142. In vitro selection of macrocyclic peptide inhibitors containing cyclic γ2,4-amino acids targeting the SARS-CoV-2 main protease. Miura T, Malla TR, Owen CD, Tumber A, Brewitz L, McDonough MA, Salah E, Terasaka N, Katoh T, Lukacik P, Strain-Damerell C, Mikolajek H, Walsh MA, Kawamura A, Schofield CJ, Suga H. Nat Chem 15 998-1005 (2023)
  143. Inhibition of SARS-CoV-2 main protease: a repurposing study that targets the dimer interface of the protein. Pekel H, Ilter M, Sensoy O. J Biomol Struct Dyn 1-16 (2021)
  144. Insights into the Dynamics and Binding of Two Polyprotein Substrate Cleavage Points in the Context of the SARS-CoV-2 Main and Papain-like Proteases. Sanusi ZK, Lobb KA. Molecules 27 8251 (2022)
  145. Leveraging the antiviral type I interferon system as a first line of defense against SARS-CoV-2 pathogenicity. Hoagland DA, Møller R, Uhl SA, Oishi K, Frere J, Golynker I, Horiuchi S, Panis M, Blanco-Melo D, Sachs D, Arkun K, Lim JK, tenOever BR. Immunity (2021)
  146. Mapping Ligand Interactions of Bromodomains BRD4 and ATAD2 with FragLites and PepLites─Halogenated Probes of Druglike and Peptide-like Molecular Interactions. Davison G, Martin MP, Turberville S, Dormen S, Heath R, Heptinstall AB, Lawson M, Miller DC, Ng YM, Sanderson JN, Hope I, Wood DJ, Cano C, Endicott JA, Hardcastle IR, Noble MEM, Waring MJ. J Med Chem 65 15416-15432 (2022)
  147. Marine Alga Ulva fasciata-Derived Molecules for the Potential Treatment of SARS-CoV-2: An In Silico Approach. Kalasariya HS, Patel NB, Gacem A, Alsufyani T, Reece LM, Yadav VK, Awwad NS, Ibrahium HA, Ahn Y, Yadav KK, Jeon BH. Mar Drugs 20 586 (2022)
  148. Mass Spectrometric Assays Reveal Discrepancies in Inhibition Profiles for the SARS-CoV-2 Papain-Like Protease. Brewitz L, Kamps JJAG, Lukacik P, Strain-Damerell C, Zhao Y, Tumber A, Malla TR, Orville AM, Walsh MA, Schofield CJ. ChemMedChem 17 e202200016 (2022)
  149. Molecular Dynamics Simulations and Diversity Selection by Extended Continuous Similarity Indices. Rácz A, Mihalovits LM, Bajusz D, Héberger K, Miranda-Quintana RA. J Chem Inf Model 62 3415-3425 (2022)
  150. Multicomponent reaction-derived covalent inhibitor space. Sutanto F, Shaabani S, Neochoritis CG, Zarganes-Tzitzikas T, Patil P, Ghonchepour E, Dömling A. Sci Adv 7 (2021)
  151. Multiple redox switches of the SARS-CoV-2 main protease in vitro provide opportunities for drug design. Funk LM, Poschmann G, Rabe von Pappenheim F, Chari A, Stegmann KM, Dickmanns A, Wensien M, Eulig N, Paknia E, Heyne G, Penka E, Pearson AR, Berndt C, Fritz T, Bazzi S, Uranga J, Mata RA, Dobbelstein M, Hilgenfeld R, Curth U, Tittmann K. Nat Commun 15 411 (2024)
  152. Natural Apocarotenoids and Their Synthetic Glycopeptide Conjugates Inhibit SARS-CoV-2 Replication. Bereczki I, Papp H, Kuczmog A, Madai M, Nagy V, Agócs A, Batta G, Milánkovits M, Ostorházi E, Mitrović A, Kos J, Zsigmond Á, Hajdú I, Lőrincz Z, Bajusz D, Keserű GM, Hodek J, Weber J, Jakab F, Herczegh P, Borbás A. Pharmaceuticals (Basel) 14 1111 (2021)
  153. Natural Flavonoid Derivatives Have Pan-Coronavirus Antiviral Activity. Mori M, Quaglio D, Calcaterra A, Ghirga F, Sorrentino L, Cammarone S, Fracella M, D'Auria A, Frasca F, Criscuolo E, Clementi N, Mancini N, Botta B, Antonelli G, Pierangeli A, Scagnolari C. Microorganisms 11 314 (2023)
  154. Next-Generation Heterocyclic Electrophiles as Small-Molecule Covalent MurA Inhibitors. Ábrányi-Balogh P, Keeley A, Ferenczy GG, Petri L, Imre T, Grabrijan K, Hrast M, Knez D, Ilaš J, Gobec S, Keserű GM. Pharmaceuticals (Basel) 15 1484 (2022)
  155. Letter Of problems and opportunities-How to treat and how to not treat crystallographic fragment screening data. Weiss MS, Wollenhaupt J, Correy GJ, Fraser JS, Heine A, Klebe G, Krojer T, Thunissen M, Pearce NM. Protein Sci 31 e4391 (2022)
  156. Penicillin Derivatives Inhibit the SARS-CoV-2 Main Protease by Reaction with Its Nucleophilic Cysteine. Malla TR, Brewitz L, Muntean DG, Aslam H, Owen CD, Salah E, Tumber A, Lukacik P, Strain-Damerell C, Mikolajek H, Walsh MA, Schofield CJ. J Med Chem 65 7682-7696 (2022)
  157. Phenylpyrazolone-1,2,3-triazole Hybrids as Potent Antiviral Agents with Promising SARS-CoV-2 Main Protease Inhibition Potential. Musa A, Abulkhair HS, Aljuhani A, Rezki N, Abdelgawad MA, Shalaby K, El-Ghorab AH, Aouad MR. Pharmaceuticals (Basel) 16 463 (2023)
  158. Prospects of ZnS and ZnO as smart semiconductor materials in light-activated antimicrobial coatings for mitigation of severe acute respiratory syndrome coronavirus-2 infection. Benatto VG, de Jesus JPA, de Castro AA, Assis LC, Ramalho TC, La Porta FA. Mater Today Commun 34 105192 (2023)
  159. Rapid structure-based identification of potential SARS-CoV-2 main protease inhibitors. Sobhia ME, Kumar GS, Sivangula S, Ghosh K, Singh H, Haokip T, Gibson J. Future Med Chem 13 1435-1450 (2021)
  160. Rational Design of Highly Potent and Selective Covalent MAP2K7 Inhibitors. Kim DR, Orr MJ, Kwong AJ, Deibler KK, Munshi HH, Bridges CS, Chen TJ, Zhang X, Lacorazza HD, Scheidt KA. ACS Med Chem Lett 14 606-613 (2023)
  161. Repositioning of anti-dengue compounds against SARS-CoV-2 as viral polyprotein processing inhibitor. Bajrai LH, Faizo AA, Alkhaldy AA, Dwivedi VD, Azhar EI. PLoS One 17 e0277328 (2022)
  162. SARS-CoV2 billion-compound docking. Rogers DM, Agarwal R, Vermaas JV, Smith MD, Rajeshwar RT, Cooper C, Sedova A, Boehm S, Baker M, Glaser J, Smith JC. Sci Data 10 173 (2023)
  163. SILVR: Guided Diffusion for Molecule Generation. Runcie NT, Mey ASJS. J Chem Inf Model 63 5996-6005 (2023)
  164. Screening for Inhibitors of Main Protease in SARS-CoV-2: In Silico and In Vitro Approach Avoiding Peptidyl Secondary Amides. Yamamoto KZ, Yasuo N, Sekijima M. J Chem Inf Model 62 350-358 (2022)
  165. Senna makki and other active phytochemicals: Myths and realities behind covid19 therapeutic interventions. Zaman N, Parvaiz N, Farid R, Navid A, Abbas G, Azam SS. PLoS One 17 e0268454 (2022)
  166. Simplified quality assessment for small-molecule ligands in the Protein Data Bank. Shao C, Westbrook JD, Lu C, Bhikadiya C, Peisach E, Young JY, Duarte JM, Lowe R, Wang S, Rose Y, Feng Z, Burley SK. Structure 30 252-262.e4 (2022)
  167. Structural Analyses of Bacterial Effectors by X-Ray Crystallography. Dugelay C, Gueguen-Chaignon V, Terradot L. Methods Mol Biol 2715 485-502 (2024)
  168. Structure-Based Discovery of Inhibitors of the SARS-CoV-2 Nsp14 N7-Methyltransferase. Singh I, Li F, Fink EA, Chau I, Li A, Rodriguez-Hernández A, Glenn I, Zapatero-Belinchón FJ, Rodriguez ML, Devkota K, Deng Z, White K, Wan X, Tolmachova NA, Moroz YS, Kaniskan HÜ, Ott M, García-Sastre A, Jin J, Fujimori DG, Irwin JJ, Vedadi M, Shoichet BK. J Med Chem 66 7785-7803 (2023)
  169. Structure-Based Identification of Naphthoquinones and Derivatives as Novel Inhibitors of Main Protease Mpro and Papain-like Protease PLpro of SARS-CoV-2. Santos LH, Kronenberger T, Almeida RG, Silva EB, Rocha REO, Oliveira JC, Barreto LV, Skinner D, Fajtová P, Giardini MA, Woodworth B, Bardine C, Lourenço AL, Craik CS, Poso A, Podust LM, McKerrow JH, Siqueira-Neto JL, O'Donoghue AJ, da Silva Júnior EN, Ferreira RS. J Chem Inf Model 62 6553-6573 (2022)
  170. Structure-Based Screening to Discover New Inhibitors for Papain-like Proteinase of SARS-CoV-2: An In Silico Study. Jamalan M, Barzegari E, Gholami-Borujeni F. J Proteome Res 20 1015-1026 (2021)
  171. Synthesis, in silico study (DFT, ADMET) and crystal structure of novel sulfamoyloxy-oxazolidinones: Interaction with SARS-CoV-2. Bouzina A, Berredjem M, Bouacida S, Bachari K, Marminon C, Borgne ML, Bouaziz Z, Bouone YO. J Mol Struct 1257 132579 (2022)
  172. Editorial Target 2035 - update on the quest for a probe for every protein. Müller S, Ackloo S, Al Chawaf A, Al-Lazikani B, Antolin A, Baell JB, Beck H, Beedie S, Betz UAK, Bezerra GA, Brennan PE, Brown D, Brown PJ, Bullock AN, Carter AJ, Chaikuad A, Chaineau M, Ciulli A, Collins I, Dreher J, Drewry D, Edfeldt K, Edwards AM, Egner U, Frye SV, Fuchs SM, Hall MD, Hartung IV, Hillisch A, Hitchcock SH, Homan E, Kannan N, Kiefer JR, Knapp S, Kostic M, Kubicek S, Leach AR, Lindemann S, Marsden BD, Matsui H, Meier JL, Merk D, Michel M, Morgan MR, Mueller-Fahrnow A, Owen DR, Perry BG, Rosenberg SH, Saikatendu KS, Schapira M, Scholten C, Sharma S, Simeonov A, Sundström M, Superti-Furga G, Todd MH, Tredup C, Vedadi M, von Delft F, Willson TM, Winter GE, Workman P, Arrowsmith CH. RSC Med Chem 13 13-21 (2022)
  173. Targeting SARS-CoV-2 Main Protease: A Successful Story Guided by an In Silico Drug Repurposing Approach. Ambrosio FA, Costa G, Romeo I, Esposito F, Alkhatib M, Salpini R, Svicher V, Corona A, Malune P, Tramontano E, Ceccherini-Silberstein F, Alcaro S, Artese A. J Chem Inf Model 63 3601-3613 (2023)
  174. The Discovery of Small Allosteric and Active Site Inhibitors of the SARS-CoV-2 Main Protease via Structure-Based Virtual Screening and Biological Evaluation. Mahgoub RE, Mohamed FE, Alzyoud L, Ali BR, Ferreira J, Rabeh WM, AlNeyadi SS, Atatreh N, Ghattas MA. Molecules 27 6710 (2022)
  175. The impact of structural bioinformatics tools and resources on SARS-CoV-2 research and therapeutic strategies. Waman VP, Sen N, Varadi M, Daina A, Wodak SJ, Zoete V, Velankar S, Orengo C. Brief Bioinform (2020)
  176. Turning high-throughput structural biology into predictive inhibitor design. Saar KL, McCorkindale W, Fearon D, Boby M, Barr H, Ben-Shmuel A, COVID Moonshot Consortium, London N, von Delft F, Chodera JD, Lee AA. Proc Natl Acad Sci U S A 120 e2214168120 (2023)
  177. Two-Step Covalent Docking with Attracting Cavities. Goullieux M, Zoete V, Röhrig UF. J Chem Inf Model 63 7847-7859 (2023)
  178. Virus-CKB 2.0: Viral-Associated Disease-Specific Chemogenomics Knowledgebase. Hao Y, Chen M, Othman Y, Xie XQ, Feng Z. ACS Omega 7 37476-37484 (2022)
  179. β-Cyclodextrins as affordable antivirals to treat coronavirus infection. Raïch-Regué D, Tenorio R, Fernández de Castro I, Tarrés-Freixas F, Sachse M, Perez-Zsolt D, Muñoz-Basagoiti J, Fernández-Sánchez SY, Gallemí M, Ortega-González P, Fernández-Oliva A, Gabaldón JA, Nuñez-Delicado E, Casas J, Roca N, Cantero G, Pérez M, Usai C, Lorca-Oró C, Alert JV, Segalés J, Carrillo J, Blanco J, Clotet Sala B, Cerón-Carrasco JP, Izquierdo-Useros N, Risco C. Biomed Pharmacother 164 114997 (2023)