5ol2 Citations

The semiquinone swing in the bifurcating electron transferring flavoprotein/butyryl-CoA dehydrogenase complex from Clostridium difficile.

Nat Commun 8 1577 (2017)
Cited: 48 times
EuropePMC logo PMID: 29146947

Abstract

The electron transferring flavoprotein/butyryl-CoA dehydrogenase (EtfAB/Bcd) catalyzes the reduction of one crotonyl-CoA and two ferredoxins by two NADH within a flavin-based electron-bifurcating process. Here we report on the X-ray structure of the Clostridium difficile (EtfAB/Bcd)4 complex in the dehydrogenase-conducting D-state, α-FAD (bound to domain II of EtfA) and δ-FAD (bound to Bcd) being 8 Å apart. Superimposing Acidaminococcus fermentans EtfAB onto C. difficile EtfAB/Bcd reveals a rotation of domain II of nearly 80°. Further rotation by 10° brings EtfAB into the bifurcating B-state, α-FAD and β-FAD (bound to EtfB) being 14 Å apart. This dual binding mode of domain II, substantiated by mutational studies, resembles findings in non-bifurcating EtfAB/acyl-CoA dehydrogenase complexes. In our proposed mechanism, NADH reduces β-FAD, which bifurcates. One electron goes to ferredoxin and one to α-FAD, which swings over to reduce δ-FAD to the semiquinone. Repetition affords a second reduced ferredoxin and δ-FADH-, which reduces crotonyl-CoA.

Articles - 5ol2 mentioned but not cited (6)



Reviews citing this publication (10)

  1. Flavin-Based Electron Bifurcation, Ferredoxin, Flavodoxin, and Anaerobic Respiration With Protons (Ech) or NAD+ (Rnf) as Electron Acceptors: A Historical Review. Buckel W, Thauer RK. Front Microbiol 9 401 (2018)
  2. Electron Bifurcation: A Long-Hidden Energy-Coupling Mechanism. Müller V, Chowdhury NP, Basen M. Annu Rev Microbiol 72 331-353 (2018)
  3. Complex Multimeric [FeFe] Hydrogenases: Biochemistry, Physiology and New Opportunities for the Hydrogen Economy. Schuchmann K, Chowdhury NP, Müller V. Front Microbiol 9 2911 (2018)
  4. A new era for electron bifurcation. Peters JW, Beratan DN, Bothner B, Dyer RB, Harwood CS, Heiden ZM, Hille R, Jones AK, King PW, Lu Y, Lubner CE, Minteer SD, Mulder DW, Raugei S, Schut GJ, Seefeldt LC, Tokmina-Lukaszewska M, Zadvornyy OA, Zhang P, Adams MW. Curr Opin Chem Biol 47 32-38 (2018)
  5. On the Natural History of Flavin-Based Electron Bifurcation. Baymann F, Schoepp-Cothenet B, Duval S, Guiral M, Brugna M, Baffert C, Russell MJ, Nitschke W. Front Microbiol 9 1357 (2018)
  6. Distribution, Evolution, Catalytic Mechanism, and Physiological Functions of the Flavin-Based Electron-Bifurcating NADH-Dependent Reduced Ferredoxin: NADP+ Oxidoreductase. Liang J, Huang H, Wang S. Front Microbiol 10 373 (2019)
  7. Energy Conservation in Fermentations of Anaerobic Bacteria. Buckel W. Front Microbiol 12 703525 (2021)
  8. Transfer hydrogenation catalysis in cells. Banerjee S, Sadler PJ. RSC Chem Biol 2 12-29 (2021)
  9. The Role of Mass Spectrometry in Structural Studies of Flavin-Based Electron Bifurcating Enzymes. Tokmina-Lukaszewska M, Patterson A, Berry L, Scott L, Balasubramanian N, Bothner B. Front Microbiol 9 1397 (2018)
  10. Molecular mechanisms of electron transfer employed by native proteins and biological-inorganic hybrid systems. Lienemann M. Comput Struct Biotechnol J 19 206-213 (2021)

Articles citing this publication (32)

  1. Cell factories converting lactate and acetate to butyrate: Clostridium butyricum and microbial communities from dark fermentation bioreactors. Detman A, Mielecki D, Chojnacka A, Salamon A, Błaszczyk MK, Sikora A. Microb Cell Fact 18 36 (2019)
  2. Metatranscriptomic and Thermodynamic Insights into Medium-Chain Fatty Acid Production Using an Anaerobic Microbiome. Scarborough MJ, Lawson CE, Hamilton JJ, Donohue TJ, Noguera DR. mSystems 3 e00221-18 (2018)
  3. Iron Regulation in Clostridioides difficile. Berges M, Michel AM, Lassek C, Nuss AM, Beckstette M, Dersch P, Riedel K, Sievers S, Becher D, Otto A, Maaß S, Rohde M, Eckweiler D, Borrero-de Acuña JM, Jahn M, Neumann-Schaal M, Jahn D. Front Microbiol 9 3183 (2018)
  4. Diverse Energy-Conserving Pathways in Clostridium difficile: Growth in the Absence of Amino Acid Stickland Acceptors and the Role of the Wood-Ljungdahl Pathway. Gencic S, Grahame DA. J Bacteriol 202 e00233-20 (2020)
  5. Letter Molecular basis of the flavin-based electron-bifurcating caffeyl-CoA reductase reaction. Demmer JK, Bertsch J, Öppinger C, Wohlers H, Kayastha K, Demmer U, Ermler U, Müller V. FEBS Lett 592 332-342 (2018)
  6. Origin and Evolution of Flavin-Based Electron Bifurcating Enzymes. Poudel S, Dunham EC, Lindsay MR, Amenabar MJ, Fones EM, Colman DR, Boyd ES. Front Microbiol 9 1762 (2018)
  7. The catalytic mechanism of electron-bifurcating electron transfer flavoproteins (ETFs) involves an intermediary complex with NAD. Schut GJ, Mohamed-Raseek N, Tokmina-Lukaszewska M, Mulder DW, Nguyen DMN, Lipscomb GL, Hoben JP, Patterson A, Lubner CE, King PW, Peters JW, Bothner B, Miller AF, Adams MWW, Adams MWW. J Biol Chem 294 3271-3283 (2019)
  8. Comparative genomics of the genus Roseburia reveals divergent biosynthetic pathways that may influence colonic competition among species. Hillman ET, Kozik AJ, Hooker CA, Burnett JL, Heo Y, Kiesel VA, Nevins CJ, Oshiro JMKI, Robins MM, Thakkar RD, Wu ST, Lindemann SR. Microb Genom 6 (2020)
  9. Universal free-energy landscape produces efficient and reversible electron bifurcation. Yuly JL, Zhang P, Lubner CE, Peters JW, Beratan DN. Proc Natl Acad Sci U S A 117 21045-21051 (2020)
  10. Distinct properties underlie flavin-based electron bifurcation in a novel electron transfer flavoprotein FixAB from Rhodopseudomonas palustris. Duan HD, Lubner CE, Tokmina-Lukaszewska M, Gauss GH, Bothner B, King PW, Peters JW, Miller AF. J Biol Chem 293 4688-4701 (2018)
  11. Systems biology analysis of the Clostridioides difficile core-genome contextualizes microenvironmental evolutionary pressures leading to genotypic and phenotypic divergence. Norsigian CJ, Danhof HA, Brand CK, Oezguen N, Midani FS, Palsson BO, Savidge TC, Britton RA, Spinler JK, Monk JM. NPJ Syst Biol Appl 6 31 (2020)
  12. Cryoelectron microscopy structure and mechanism of the membrane-associated electron-bifurcating flavoprotein Fix/EtfABCX. Feng X, Schut GJ, Lipscomb GL, Li H, Adams MWW, Adams MWW. Proc Natl Acad Sci U S A 118 e2016978118 (2021)
  13. Structure and electron transfer pathways of an electron-bifurcating NiFe-hydrogenase. Feng X, Schut GJ, Haja DK, Adams MWW, Li H. Sci Adv 8 eabm7546 (2022)
  14. Dynamics and Complexity of Dark Fermentation Microbial Communities Producing Hydrogen From Sugar Beet Molasses in Continuously Operating Packed Bed Reactors. Detman A, Laubitz D, Chojnacka A, Wiktorowska-Sowa E, Piotrowski J, Salamon A, Kaźmierczak W, Błaszczyk MK, Barberan A, Chen Y, Łupikasza E, Yang F, Sikora A. Front Microbiol 11 612344 (2020)
  15. Purification and structural characterization of the Na+-translocating ferredoxin: NAD+ reductase (Rnf) complex of Clostridium tetanomorphum. Vitt S, Prinz S, Eisinger M, Ermler U, Buckel W. Nat Commun 13 6315 (2022)
  16. Rapid kinetics reveal surprising flavin chemistry in bifurcating electron transfer flavoprotein from Acidaminococcus fermentans. Sucharitakul J, Buckel W, Chaiyen P. J Biol Chem 296 100124 (2021)
  17. Contrasting roles for two conserved arginines: Stabilizing flavin semiquinone or quaternary structure, in bifurcating electron transfer flavoproteins. Mohamed-Raseek N, Miller AF. J Biol Chem 298 101733 (2022)
  18. Molecular Basis of the Electron Bifurcation Mechanism in the [FeFe]-Hydrogenase Complex HydABC. Katsyv A, Kumar A, Saura P, Pöverlein MC, Freibert SA, T Stripp S, Jain S, Gamiz-Hernandez AP, Kaila VRI, Müller V, Schuller JM. J Am Chem Soc 145 5696-5709 (2023)
  19. Molecular and Low-Resolution Structural Characterization of the Na+-Translocating Glutaconyl-CoA Decarboxylase From Clostridium symbiosum. Vitt S, Prinz S, Hellwig N, Morgner N, Ermler U, Buckel W. Front Microbiol 11 480 (2020)
  20. Limonene dehydrogenase hydroxylates the allylic methyl group of cyclic monoterpenes in the anaerobic terpene degradation by Castellaniella defragrans. Puentes-Cala E, Liebeke M, Markert S, Harder J. J Biol Chem 293 9520-9529 (2018)
  21. Spectroscopic evidence for direct flavin-flavin contact in a bifurcating electron transfer flavoprotein. Duan HD, Mohamed-Raseek N, Miller AF. J Biol Chem 295 12618-12634 (2020)
  22. An uncharacteristically low-potential flavin governs the energy landscape of electron bifurcation. Wise CE, Ledinina AE, Mulder DW, Chou KJ, Peters JW, King PW, Lubner CE. Proc Natl Acad Sci U S A 119 e2117882119 (2022)
  23. Closing the gap: yeast electron-transferring flavoprotein links the oxidation of d-lactate and d-α-hydroxyglutarate to energy production via the respiratory chain. Toplak M, Brunner J, Tabib CR, Macheroux P. FEBS J 286 3611-3628 (2019)
  24. Correlating Conformational Equilibria with Catalysis in the Electron Bifurcating EtfABCX of Thermotoga maritima. Murray DT, Ge X, Schut GJ, Rosenberg DJ, Hammel M, Bierma JC, Hille R, Adams MWW, Hura GL. Biochemistry 63 128-140 (2024)
  25. Grad-seq identifies KhpB as a global RNA-binding protein in Clostridioides difficile that regulates toxin production. Lamm-Schmidt V, Fuchs M, Sulzer J, Gerovac M, Hör J, Dersch P, Vogel J, Faber F. Microlife 2 uqab004 (2021)
  26. Optimization of n-butanol synthesis in Lactobacillus brevis via the functional expression of thl, hbd, crt and ter. Li Q, Wu M, Wen Z, Jiang Y, Wang X, Zhao Y, Liu J, Yang J, Jiang Y, Yang S. J Ind Microbiol Biotechnol 47 1099-1108 (2020)
  27. Replicated life-history patterns and subsurface origins of the bacterial sister phyla Nitrospirota and Nitrospinota. D'Angelo T, Goordial J, Lindsay MR, McGonigle J, Booker A, Moser D, Stepanauskus R, Orcutt BN. ISME J 17 891-902 (2023)
  28. A lonely electron blocks incoming pairs. Massari M, Nicoll CR, Mattevi A. J Biol Chem 296 100294 (2021)
  29. Noncovalent interactions that tune the reactivities of the flavins in bifurcating electron transferring flavoprotein. González-Viegas M, Kar RK, Miller AF, Mroginski MA. J Biol Chem 299 104762 (2023)
  30. Pangenome analysis provides insights into the genetic diversity, metabolic versatility, and evolution of the genus Flavobacterium. Kim M, Cha IT, Lee KE, Li M, Park SJ. Microbiol Spectr e0100323 (2023)
  31. Rapid-reaction kinetics of the bifurcating NAD+-dependent NADPH:ferredoxin oxidoreductase NfnI from Pyrococcus furiosus. Ortiz S, Niks D, Wiley S, Lubner CE, Hille R. J Biol Chem 299 105403 (2023)
  32. Unusual reactivity of a flavin in a bifurcating electron-transferring flavoprotein leads to flavin modification and a charge-transfer complex. Mohamed-Raseek N, van Galen C, Stanley R, Miller AF. J Biol Chem 298 102606 (2022)