5oc9 Citations

The structural basis of lipid scrambling and inactivation in the endoplasmic reticulum scramblase TMEM16K.

Abstract

Membranes in cells have defined distributions of lipids in each leaflet, controlled by lipid scramblases and flip/floppases. However, for some intracellular membranes such as the endoplasmic reticulum (ER) the scramblases have not been identified. Members of the TMEM16 family have either lipid scramblase or chloride channel activity. Although TMEM16K is widely distributed and associated with the neurological disorder autosomal recessive spinocerebellar ataxia type 10 (SCAR10), its location in cells, function and structure are largely uncharacterised. Here we show that TMEM16K is an ER-resident lipid scramblase with a requirement for short chain lipids and calcium for robust activity. Crystal structures of TMEM16K show a scramblase fold, with an open lipid transporting groove. Additional cryo-EM structures reveal extensive conformational changes from the cytoplasmic to the ER side of the membrane, giving a state with a closed lipid permeation pathway. Molecular dynamics simulations showed that the open-groove conformation is necessary for scramblase activity.

Articles - 5oc9 mentioned but not cited (7)

  1. The structural basis of lipid scrambling and inactivation in the endoplasmic reticulum scramblase TMEM16K. Bushell SR, Pike ACW, Falzone ME, Rorsman NJG, Ta CM, Corey RA, Newport TD, Christianson JC, Scofano LF, Shintre CA, Tessitore A, Chu A, Wang Q, Shrestha L, Mukhopadhyay SMM, Love JD, Burgess-Brown NA, Sitsapesan R, Stansfeld PJ, Huiskonen JT, Tammaro P, Accardi A, Carpenter EP. Nat Commun 10 3956 (2019)
  2. Structural basis of Ca2+-dependent activation and lipid transport by a TMEM16 scramblase. Falzone ME, Rheinberger J, Lee BC, Peyear T, Sasset L, Raczkowski AM, Eng ET, Di Lorenzo A, Andersen OS, Nimigean CM, Accardi A. Elife 8 e43229 (2019)
  3. Dysregulated calcium homeostasis prevents plasma membrane repair in Anoctamin 5/TMEM16E-deficient patient muscle cells. Chandra G, Defour A, Mamchoui K, Pandey K, Mishra S, Mouly V, Sreetama S, Mahad Ahmad M, Mahjneh I, Morizono H, Pattabiraman N, Menon AK, Jaiswal JK. Cell Death Discov 5 118 (2019)
  4. An outer-pore gate modulates the pharmacology of the TMEM16A channel. Dinsdale RL, Pipatpolkai T, Agostinelli E, Russell AJ, Stansfeld PJ, Tammaro P. Proc Natl Acad Sci U S A 118 e2023572118 (2021)
  5. Molecular mechanisms of ion conduction and ion selectivity in TMEM16 lipid scramblases. Kostritskii AY, Machtens JP. Nat Commun 12 2826 (2021)
  6. Design, synthesis and biological evaluations of niclosamide analogues against SARS-CoV-2. Juang YP, Chou YT, Lin RX, Ma HH, Chao TL, Jan JT, Chang SY, Liang PH. Eur J Med Chem 235 114295 (2022)
  7. The allosteric mechanism leading to an open-groove lipid conductive state of the TMEM16F scramblase. Khelashvili G, Kots E, Cheng X, Levine MV, Weinstein H. Commun Biol 5 990 (2022)


Reviews citing this publication (19)

  1. The diversity and breadth of cancer cell fatty acid metabolism. Nagarajan SR, Butler LM, Hoy AJ. Cancer Metab 9 2 (2021)
  2. The energetics of protein-lipid interactions as viewed by molecular simulations. Corey RA, Stansfeld PJ, Sansom MSP. Biochem Soc Trans 48 25-37 (2020)
  3. How low can we go? Structure determination of small biological complexes using single-particle cryo-EM. Wu M, Lander GC. Curr Opin Struct Biol 64 9-16 (2020)
  4. Interorganelle communication, aging, and neurodegeneration. Petkovic M, O'Brien CE, Jan YN. Genes Dev 35 449-469 (2021)
  5. Transport Pathways That Contribute to the Cellular Distribution of Phosphatidylserine. Lenoir G, D'Ambrosio JM, Dieudonné T, Čopič A. Front Cell Dev Biol 9 737907 (2021)
  6. Phospholipid Scrambling by G Protein-Coupled Receptors. Khelashvili G, Menon AK. Annu Rev Biophys 51 39-61 (2022)
  7. Recent progress in structural studies on TMEM16A channel. Shi S, Pang C, Guo S, Chen Y, Ma B, Qu C, Ji Q, An H. Comput Struct Biotechnol J 18 714-722 (2020)
  8. Regulation of phospholipid distribution in the lipid bilayer by flippases and scramblases. Sakuragi T, Nagata S. Nat Rev Mol Cell Biol 24 576-596 (2023)
  9. Molecular mechanisms of activation and regulation of ANO1-Encoded Ca2+-Activated Cl- channels. Hawn MB, Akin E, Hartzell HC, Greenwood IA, Leblanc N. Channels (Austin) 15 569-603 (2021)
  10. Small but mighty: Atg8s and Rabs in membrane dynamics during autophagy. Barz S, Kriegenburg F, Sánchez-Martín P, Kraft C. Biochim Biophys Acta Mol Cell Res 1868 119064 (2021)
  11. ER-PM Contact Sites - SNARING Actors in Emerging Functions. Hewlett B, Singh NP, Vannier C, Galli T. Front Cell Dev Biol 9 635518 (2021)
  12. Gating and Regulatory Mechanisms of TMEM16 Ion Channels and Scramblases. Le SC, Liang P, Lowry AJ, Yang H. Front Physiol 12 787773 (2021)
  13. Polymodal Control of TMEM16x Channels and Scramblases. Agostinelli E, Tammaro P. Int J Mol Sci 23 1580 (2022)
  14. ANO10 Function in Health and Disease. Chrysanthou A, Ververis A, Christodoulou K. Cerebellum 22 447-467 (2023)
  15. Transmembrane Membrane Readers form a Novel Class of Proteins That Include Peripheral Phosphoinositide Recognition Domains and Viral Spikes. Overduin M, Tran A, Eekels DM, Overduin F, Kervin TA. Membranes (Basel) 12 1161 (2022)
  16. Lipid Dyshomeostasis and Inherited Cerebellar Ataxia. Zhao J, Zhang H, Fan X, Yu X, Huai J. Mol Neurobiol 59 3800-3828 (2022)
  17. Membrane homeostasis beyond fluidity: control of membrane compressibility. Renne MF, Ernst R. Trends Biochem Sci 48 963-977 (2023)
  18. Structure and Function of Calcium-Activated Chloride Channels and Phospholipid Scramblases in the TMEM16 Family. Nguyen DM, Chen TY. Handb Exp Pharmacol 283 153-180 (2024)
  19. Subcellular distribution of membrane lipids revealed by freeze-fracture electron microscopy. Tsuji T. Anat Sci Int (2023)

Articles citing this publication (37)

  1. TMEM41B and VMP1 are scramblases and regulate the distribution of cholesterol and phosphatidylserine. Li YE, Wang Y, Du X, Zhang T, Mak HY, Hancock SE, McEwen H, Pandzic E, Whan RM, Aw YC, Lukmantara IE, Yuan Y, Dong X, Don A, Turner N, Qi S, Yang H. J Cell Biol 220 e202103105 (2021)
  2. Predominant localization of phosphatidylserine at the cytoplasmic leaflet of the ER, and its TMEM16K-dependent redistribution. Tsuji T, Cheng J, Tatematsu T, Ebata A, Kamikawa H, Fujita A, Gyobu S, Segawa K, Arai H, Taguchi T, Nagata S, Fujimoto T. Proc Natl Acad Sci U S A 116 13368-13373 (2019)
  3. TMEM16K is an interorganelle regulator of endosomal sorting. Petkovic M, Oses-Prieto J, Burlingame A, Jan LY, Jan YN. Nat Commun 11 3298 (2020)
  4. Dynamic modulation of the lipid translocation groove generates a conductive ion channel in Ca2+-bound nhTMEM16. Khelashvili G, Falzone ME, Cheng X, Lee BC, Accardi A, Weinstein H. Nat Commun 10 4972 (2019)
  5. An Additional Ca2+ Binding Site Allosterically Controls TMEM16A Activation. Le SC, Yang H. Cell Rep 33 108570 (2020)
  6. Cryo-EM structures of the caspase-activated protein XKR9 involved in apoptotic lipid scrambling. Straub MS, Alvadia C, Sawicka M, Dutzler R. Elife 10 e69800 (2021)
  7. Dynamic change of electrostatic field in TMEM16F permeation pathway shifts its ion selectivity. Ye W, Han TW, He M, Jan YN, Jan LY. Elife 8 e45187 (2019)
  8. The tertiary structure of the human Xkr8-Basigin complex that scrambles phospholipids at plasma membranes. Sakuragi T, Kanai R, Tsutsumi A, Narita H, Onishi E, Nishino K, Miyazaki T, Baba T, Kosako H, Nakagawa A, Kikkawa M, Toyoshima C, Nagata S. Nat Struct Mol Biol 28 825-834 (2021)
  9. TMEM16 scramblases thin the membrane to enable lipid scrambling. Falzone ME, Feng Z, Alvarenga OE, Pan Y, Lee B, Cheng X, Fortea E, Scheuring S, Accardi A. Nat Commun 13 2604 (2022)
  10. The NUCKS1-SKP2-p21/p27 axis controls S phase entry. Hume S, Grou CP, Lascaux P, D'Angiolella V, Legrand AJ, Ramadan K, Dianov GL. Nat Commun 12 6959 (2021)
  11. Molecular underpinning of intracellular pH regulation on TMEM16F. Liang P, Yang H. J Gen Physiol 153 e202012704 (2021)
  12. Membrane lipids are both the substrates and a mechanistically responsive environment of TMEM16 scramblase proteins. Khelashvili G, Cheng X, Falzone ME, Doktorova M, Accardi A, Weinstein H. J Comput Chem 41 538-551 (2020)
  13. --Atg9 interactions via its transmembrane domains are required for phagophore expansion during autophagy. Chumpen Ramirez S, Gómez-Sánchez R, Verlhac P, Hardenberg R, Margheritis E, Cosentino K, Reggiori F, Ungermann C. Autophagy 19 1459-1478 (2023)
  14. Theaflavin binds to a druggable pocket of TMEM16A channel and inhibits lung adenocarcinoma cell viability. Shi S, Ma B, Sun F, Qu C, An H. J Biol Chem 297 101016 (2021)
  15. "VTT"-domain proteins VMP1 and TMEM41B function in lipid homeostasis globally and locally as ER scramblases. Reinisch KM, Chen XW, Melia TJ. Contact (Thousand Oaks) 4 (2021)
  16. Genome-wide CRISPR screen reveals CLPTM1L as a lipid scramblase required for efficient glycosylphosphatidylinositol biosynthesis. Wang Y, Menon AK, Maki Y, Liu YS, Iwasaki Y, Fujita M, Guerrero PA, Silva DV, Seeberger PH, Murakami Y, Kinoshita T. Proc Natl Acad Sci U S A 119 e2115083119 (2022)
  17. Whole-exome sequencing reveals ANO8 as a genetic risk factor for intrahepatic cholestasis of pregnancy. Liu X, Lai H, Zeng X, Xin S, Nie L, Liang Z, Wu M, Chen Y, Zheng J, Zou Y. BMC Pregnancy Childbirth 20 544 (2020)
  18. Structural basis for the activation of the lipid scramblase TMEM16F. Arndt M, Alvadia C, Straub MS, Clerico Mosina V, Paulino C, Dutzler R. Nat Commun 13 6692 (2022)
  19. Reconstitution of Proteoliposomes for Phospholipid Scrambling and Nonselective Channel Assays. Falzone ME, Accardi A. Methods Mol Biol 2127 207-225 (2020)
  20. Inhibition mechanism of the chloride channel TMEM16A by the pore blocker 1PBC. Lam AKM, Rutz S, Dutzler R. Nat Commun 13 2798 (2022)
  21. A mechanical-coupling mechanism in OSCA/TMEM63 channel mechanosensitivity. Zhang M, Shan Y, Cox CD, Pei D. Nat Commun 14 3943 (2023)
  22. Structure-Function of TMEM16 Ion Channels and Lipid Scramblases. Le SC, Yang H. Adv Exp Med Biol 1349 87-109 (2021)
  23. A Fluorescence-based Assay for Measuring Phospholipid Scramblase Activity in Giant Unilamellar Vesicles. Mathiassen PPM, Pomorski TG. Bio Protoc 12 e4366 (2022)
  24. Autosomal Recessive Spinocerebellar Ataxia Type 10: A Report of a New Case in Japan. Aida I, Ozawa T, Ohta K, Fujinaka H, Goto K, Nakajima T. Intern Med 61 2517-2521 (2022)
  25. IM Ca2+-Activated Chloride Channels and Phospholipid Scramblases. Pifferi S, Boccaccio A. Int J Mol Sci 23 2158 (2022)
  26. Expanding the Allelic Heterogeneity of ANO10-Associated Autosomal Recessive Cerebellar Ataxia. Massey S, Guo Y, Riley LG, Van Bergen NJ, Sandaradura SA, McCusker E, Tchan M, Thauvin-Robinet C, Thomas Q, Moreau T, Davis M, Smits D, Mancini GMS, Hakonarson H, Cooper S, Christodoulou J. Neurol Genet 9 e200051 (2023)
  27. Mechanistic basis of ligand efficacy in the calcium-activated chloride channel TMEM16A. Lam AK, Dutzler R. EMBO J 42 e115030 (2023)
  28. The permeation of potassium ions through the lipid scrambling path of the membrane protein nhTMEM16. Cheng X, Khelashvili G, Weinstein H. Front Mol Biosci 9 903972 (2022)
  29. ANO10 is a potential prognostic biomarker and correlates with immune infiltration in breast cancer. Ning R, Pan S, Xiao D, Zheng Y, Zhang J. Am J Cancer Res 13 1845-1862 (2023)
  30. Activation of TMEM16F by inner gate charged mutations and possible lipid/ion permeation mechanisms. Jia Z, Huang J, Chen J. Biophys J 121 3445-3457 (2022)
  31. Deciphering the Interactions of SARS-CoV-2 Proteins with Human Ion Channels Using Machine-Learning-Based Methods. Munjal NS, Sapra D, Parthasarathi KTS, Goyal A, Pandey A, Banerjee M, Sharma J. Pathogens 11 259 (2022)
  32. Extracellular calcium functions as a molecular glue for transmembrane helices to activate the scramblase Xkr4. Zhang P, Maruoka M, Suzuki R, Katani H, Dou Y, Packwood DM, Kosako H, Tanaka M, Suzuki J. Nat Commun 14 5592 (2023)
  33. Identification of a drug binding pocket in TMEM16F calcium-activated ion channel and lipid scramblase. Feng S, Puchades C, Ko J, Wu H, Chen Y, Figueroa EE, Gu S, Han TW, Ho B, Cheng T, Li J, Shoichet B, Jan YN, Cheng Y, Jan LY. Nat Commun 14 4874 (2023)
  34. Investigation of Phosphatidylserine-Transporting Activity of Human TMEM16C Isoforms. Kim H, Kim E, Lee BC. Membranes (Basel) 12 1005 (2022)
  35. Phospholipid scrambling by a TMEM16 homolog of Arabidopsis thaliana. Boccaccio A, Picco C, Di Zanni E, Scholz-Starke J. FEBS J 289 2578-2592 (2022)
  36. Reduced Expression of TMEM16A Impairs Nitric Oxide-Dependent Cl- Transport in Retinal Amacrine Cells. Rodriguez TC, Zhong L, Simpson H, Gleason E. Front Cell Neurosci 16 937060 (2022)
  37. Structural heterogeneity of the ion and lipid channel TMEM16F. Ye Z, Galvanetto N, Puppulin L, Pifferi S, Flechsig H, Arndt M, Triviño CAS, Di Palma M, Guo S, Vogel H, Menini A, Franz CM, Torre V, Marchesi A. Nat Commun 15 110 (2024)