5m93 Citations

Phosphoribosylation of Ubiquitin Promotes Serine Ubiquitination and Impairs Conventional Ubiquitination.

Cell 167 1636-1649.e13 (2016)
Cited: 148 times
EuropePMC logo PMID: 27912065

Abstract

Conventional ubiquitination involves the ATP-dependent formation of amide bonds between the ubiquitin C terminus and primary amines in substrate proteins. Recently, SdeA, an effector protein of pathogenic Legionella pneumophila, was shown to mediate NAD-dependent and ATP-independent ubiquitin transfer to host proteins. Here, we identify a phosphodiesterase domain in SdeA that efficiently catalyzes phosphoribosylation of ubiquitin on a specific arginine via an ADP-ribose-ubiquitin intermediate. SdeA also catalyzes a chemically and structurally distinct type of substrate ubiquitination by conjugating phosphoribosylated ubiquitin to serine residues of protein substrates via a phosphodiester bond. Furthermore, phosphoribosylation of ubiquitin prevents activation of E1 and E2 enzymes of the conventional ubiquitination cascade, thereby impairing numerous cellular processes including mitophagy, TNF signaling, and proteasomal degradation. We propose that phosphoribosylation of ubiquitin potently modulates ubiquitin functions in mammalian cells.

Reviews citing this publication (73)

  1. Ubiquitin Ligases: Structure, Function, and Regulation. Zheng N, Shabek N. Annu Rev Biochem 86 129-157 (2017)
  2. Ubiquitylation at the crossroads of development and disease. Rape M. Nat Rev Mol Cell Biol 19 59-70 (2018)
  3. Ubiquitin signaling and autophagy. Grumati P, Dikic I. J Biol Chem 293 5404-5413 (2018)
  4. Legionella and Coxiella effectors: strength in diversity and activity. Qiu J, Luo ZQ. Nat Rev Microbiol 15 591-605 (2017)
  5. Principles of Ubiquitin-Dependent Signaling. Oh E, Akopian D, Rape M. Annu Rev Cell Dev Biol 34 137-162 (2018)
  6. Rab family of small GTPases: an updated view on their regulation and functions. Homma Y, Hiragi S, Fukuda M. FEBS J 288 36-55 (2021)
  7. Post-translational regulation of ubiquitin signaling. Song L, Luo ZQ. J Cell Biol 218 1776-1786 (2019)
  8. ADP-ribosylation: new facets of an ancient modification. Palazzo L, Mikoč A, Ahel I. FEBS J 284 2932-2946 (2017)
  9. (ADP-ribosyl)hydrolases: structure, function, and biology. Rack JGM, Palazzo L, Ahel I. Genes Dev 34 263-284 (2020)
  10. Ubiquitin enzymes in the regulation of immune responses. Ebner P, Versteeg GA, Ikeda F. Crit Rev Biochem Mol Biol 52 425-460 (2017)
  11. Formation of the Legionella-containing vacuole: phosphoinositide conversion, GTPase modulation and ER dynamics. Steiner B, Weber S, Hilbi H. Int J Med Microbiol 308 49-57 (2018)
  12. Resolving the Complexity of Ubiquitin Networks. Kliza K, Husnjak K. Front Mol Biosci 7 21 (2020)
  13. Exploitation of the host cell ubiquitin machinery by microbial effector proteins. Lin YH, Machner MP. J Cell Sci 130 1985-1996 (2017)
  14. Hijacking of the Host Ubiquitin Network by Legionella pneumophila. Qiu J, Luo ZQ. Front Cell Infect Microbiol 7 487 (2017)
  15. ADP-ribosylation signalling and human disease. Palazzo L, Mikolčević P, Mikoč A, Ahel I. Open Biol 9 190041 (2019)
  16. How to rewire the host cell: A home improvement guide for intracellular bacteria. Cornejo E, Schlaermann P, Mukherjee S. J Cell Biol 216 3931-3948 (2017)
  17. PARPs in genome stability and signal transduction: implications for cancer therapy. Palazzo L, Ahel I. Biochem Soc Trans 46 1681-1695 (2018)
  18. Ubiquitin, SUMO, and NEDD8: Key Targets of Bacterial Pathogens. Ribet D, Cossart P. Trends Cell Biol 28 926-940 (2018)
  19. Linear Ubiquitin Code: Its Writer, Erasers, Decoders, Inhibitors, and Implications in Disorders. Oikawa D, Sato Y, Ito H, Tokunaga F. Int J Mol Sci 21 E3381 (2020)
  20. The Toolbox for Uncovering the Functions of Legionella Dot/Icm Type IVb Secretion System Effectors: Current State and Future Directions. Schroeder GN. Front Cell Infect Microbiol 7 528 (2017)
  21. Small molecules that target the ubiquitin system. Wu HQ, Baker D, Ovaa H. Biochem Soc Trans 48 479-497 (2020)
  22. Ubiquitin-specific protease 8 (USP8/UBPy): a prototypic multidomain deubiquitinating enzyme with pleiotropic functions. Dufner A, Knobeloch KP. Biochem Soc Trans 47 1867-1879 (2019)
  23. Deubiquitinating enzymes (DUBs): decipher underlying basis of neurodegenerative diseases. Liu B, Ruan J, Chen M, Li Z, Manjengwa G, Schlüter D, Song W, Wang X. Mol Psychiatry 27 259-268 (2022)
  24. Divergence of Legionella Effectors Reversing Conventional and Unconventional Ubiquitination. Kitao T, Nagai H, Kubori T. Front Cell Infect Microbiol 10 448 (2020)
  25. Genetic control of autophagy underlies pathogenesis of inflammatory bowel disease. Lassen KG, Xavier RJ. Mucosal Immunol 10 589-597 (2017)
  26. Molecular Mimicry: a Paradigm of Host-Microbe Coevolution Illustrated by Legionella. Mondino S, Schmidt S, Buchrieser C. mBio 11 e01201-20 (2020)
  27. ADP-ribosylation systems in bacteria and viruses. Mikolčević P, Hloušek-Kasun A, Ahel I, Mikoč A. Comput Struct Biotechnol J 19 2366-2383 (2021)
  28. An expanded lexicon for the ubiquitin code. Dikic I, Schulman BA. Nat Rev Mol Cell Biol 24 273-287 (2023)
  29. Autophagy-A Story of Bacteria Interfering with the Host Cell Degradation Machinery. Riebisch AK, Mühlen S, Beer YY, Schmitz I. Pathogens 10 110 (2021)
  30. From Gene to Protein-How Bacterial Virulence Factors Manipulate Host Gene Expression During Infection. Denzer L, Schroten H, Schwerk C. Int J Mol Sci 21 E3730 (2020)
  31. Interfering with Autophagy: The Opposing Strategies Deployed by Legionella pneumophila and Coxiella burnetii Effector Proteins. Thomas DR, Newton P, Lau N, Newton HJ. Front Cell Infect Microbiol 10 599762 (2020)
  32. Uncovering the Structural Basis of a New Twist in Protein Ubiquitination. Puvar K, Luo ZQ, Das C. Trends Biochem Sci 44 467-477 (2019)
  33. A new dawn beyond lysine ubiquitination. Squair DR, Virdee S. Nat Chem Biol 18 802-811 (2022)
  34. ER remodeling via ER-phagy. Gubas A, Dikic I. Mol Cell 82 1492-1500 (2022)
  35. Poly(ADP-ribose)-dependent ubiquitination and its clinical implications. Vivelo CA, Ayyappan V, Leung AKL. Biochem Pharmacol 167 3-12 (2019)
  36. Revisiting Bacterial Ubiquitin Ligase Effectors: Weapons for Host Exploitation. Pisano A, Albano F, Vecchio E, Renna M, Scala G, Quinto I, Fiume G. Int J Mol Sci 19 E3576 (2018)
  37. The Ubiquitination System within Bacterial Host-Pathogen Interactions. Vozandychova V, Stojkova P, Hercik K, Rehulka P, Stulik J. Microorganisms 9 638 (2021)
  38. Tiny architects: biogenesis of intracellular replicative niches by bacterial pathogens. Martinez E, Siadous FA, Bonazzi M. FEMS Microbiol Rev 42 425-447 (2018)
  39. Acetylation, Phosphorylation, Ubiquitination (Oh My!): Following Post-Translational Modifications on the Ubiquitin Road. Lacoursiere RE, Hadi D, Shaw GS. Biomolecules 12 467 (2022)
  40. Bacterial virulence mediated by orthogonal post-translational modification. Chambers KA, Scheck RA. Nat Chem Biol 16 1043-1051 (2020)
  41. The Biology of SUMO-Targeted Ubiquitin Ligases in Drosophila Development, Immunity, and Cancer. Abed M, Bitman-Lotan E, Orian A. J Dev Biol 6 E2 (2018)
  42. Ubiquitination in T-Cell Activation and Checkpoint Inhibition: New Avenues for Targeted Cancer Immunotherapy. Gavali S, Liu J, Li X, Paolino M. Int J Mol Sci 22 10800 (2021)
  43. Evolution and Adaptation of Legionella pneumophila to Manipulate the Ubiquitination Machinery of Its Amoebae and Mammalian Hosts. Price CTD, Abu Kwaik Y. Biomolecules 11 112 (2021)
  44. Non-lysine ubiquitylation: Doing things differently. Kelsall IR. Front Mol Biosci 9 1008175 (2022)
  45. Non-proteolytic ubiquitylation in cellular signaling and human disease. Liao Y, Sumara I, Pangou E. Commun Biol 5 114 (2022)
  46. The Role of Ubiquitination in Regulating Embryonic Stem Cell Maintenance and Cancer Development. Wang D, Bu F, Zhang W. Int J Mol Sci 20 E2667 (2019)
  47. Common Mechanism for Target Specificity of Protein- and DNA-Targeting ADP-Ribosyltransferases. Yoshida T, Tsuge H. Toxins (Basel) 13 40 (2021)
  48. Interesting Biochemistries in the Structure and Function of Bacterial Effectors. Mak H, Thurston TLM. Front Cell Infect Microbiol 11 608860 (2021)
  49. Modification of the host ubiquitome by bacterial enzymes. Berglund J, Gjondrekaj R, Verney E, Maupin-Furlow JA, Edelmann MJ. Microbiol Res 235 126429 (2020)
  50. Exploitation of the Host Ubiquitin System: Means by Legionella pneumophila. Luo J, Wang L, Song L, Luo ZQ. Front Microbiol 12 790442 (2021)
  51. How Is the Fidelity of Proteins Ensured in Terms of Both Quality and Quantity at the Endoplasmic Reticulum? Mechanistic Insights into E3 Ubiquitin Ligases. Kang JA, Jeon YJ. Int J Mol Sci 22 2078 (2021)
  52. Ubiquitination-Mediated Inflammasome Activation during Bacterial Infection. Xu T, Guo Y, Qi X. Int J Mol Sci 20 E2110 (2019)
  53. "Make way": Pathogen exploitation of membrane traffic. Noack J, Mukherjee S. Curr Opin Cell Biol 65 78-85 (2020)
  54. Degradation for better survival? Role of ubiquitination in epithelial morphogenesis. Cheng X, Zheng J, Li G, Göbel V, Zhang H. Biol Rev Camb Philos Soc 93 1438-1460 (2018)
  55. The unity of opposites: Strategic interplay between bacterial effectors to regulate cellular homeostasis. Iyer S, Das C. J Biol Chem 297 101340 (2021)
  56. Polyglutamylation: biology and analysis. Ruse CI, Chin HG, Pradhan S. Amino Acids 54 529-542 (2022)
  57. Posttranslational Modifications of Smurfs: Emerging Regulation in Cancer. Yang L, Zhou W, Lin H. Front Oncol 10 610663 (2020)
  58. Redefining pseudokinases: A look at the untapped enzymatic potential of pseudokinases. Pon A, Osinski A, Sreelatha A. IUBMB Life 75 370-376 (2023)
  59. The ubiquitin proteoform problem. Deol KK, Strieter ER. Curr Opin Chem Biol 63 95-104 (2021)
  60. Proteomic approaches to study ubiquitinomics. Sahu I, Zhu H, Buhrlage SJ, Marto JA. Biochim Biophys Acta Gene Regul Mech 1866 194940 (2023)
  61. The Role of E3s in Regulating Pluripotency of Embryonic Stem Cells and Induced Pluripotent Stem Cells. Wu Y, Zhang W. Int J Mol Sci 22 1168 (2021)
  62. Ubiquitin-regulating effector proteins from Legionella. Jeong M, Jeon H, Shin D. BMB Rep 55 316-322 (2022)
  63. Ubiquitin-targeted bacterial effectors: rule breakers of the ubiquitin system. Roberts CG, Franklin TG, Pruneda JN. EMBO J 42 e114318 (2023)
  64. ADP-ribosylation from molecular mechanisms to therapeutic implications. Suskiewicz MJ, Prokhorova E, Rack JGM, Ahel I. Cell 186 4475-4495 (2023)
  65. Diverse ubiquitin codes in the regulation of inflammatory signaling. Ikeda F. Proc Jpn Acad Ser B Phys Biol Sci 96 431-439 (2020)
  66. How to Target Viral and Bacterial Effector Proteins Interfering with Ubiquitin Signaling. van der Heden van Noort GJ, Ovaa H. Curr Top Microbiol Immunol 420 111-130 (2019)
  67. It's a TRIM-endous view from the top: the varied roles of TRIpartite Motif proteins in brain development and disease. Dudley-Fraser J, Rittinger K. Front Mol Neurosci 16 1287257 (2023)
  68. Legionella pneumophila-mediated host posttranslational modifications. Yang Y, Mei L, Chen J, Chen X, Wang Z, Liu L, Yang A. J Mol Cell Biol 15 mjad032 (2023)
  69. Mechanism and Modulation of SidE Family Proteins in the Pathogenesis of Legionella pneumophila. Xie Y, Zhang Y, Wang Y, Feng Y. Pathogens 12 629 (2023)
  70. Targeting small GTPases: emerging grasps on previously untamable targets, pioneered by KRAS. Yin G, Huang J, Petela J, Jiang H, Zhang Y, Gong S, Wu J, Liu B, Shi J, Gao Y. Signal Transduct Target Ther 8 212 (2023)
  71. Targeting the Ubiquitin-Proteasome System and Recent Advances in Cancer Therapy. Spano D, Catara G. Cells 13 29 (2023)
  72. The Post-Translational Modification Networking in WNK-Centric Hypertension Regulation and Electrolyte Homeostasis. Lin SC, Ma C, Chang KJ, Cheong HP, Lee MC, Lan YT, Wang CY, Chiou SH, Huo TI, Hsu TK, Tsai PH, Yang YP. Biomedicines 10 2169 (2022)
  73. Ubiquitin-Dependent and Independent Proteasomal Degradation in Host-Pathogen Interactions. Bialek W, Collawn JF, Bartoszewski R. Molecules 28 6740 (2023)

Articles citing this publication (75)

  1. Full length RTN3 regulates turnover of tubular endoplasmic reticulum via selective autophagy. Grumati P, Morozzi G, Hölper S, Mari M, Harwardt MI, Yan R, Müller S, Reggiori F, Heilemann M, Dikic I. Elife 6 e25555 (2017)
  2. A Single Legionella Effector Catalyzes a Multistep Ubiquitination Pathway to Rearrange Tubular Endoplasmic Reticulum for Replication. Kotewicz KM, Ramabhadran V, Sjoblom N, Vogel JP, Haenssler E, Zhang M, Behringer J, Scheck RA, Isberg RR. Cell Host Microbe 21 169-181 (2017)
  3. Bacterial pseudokinase catalyzes protein polyglutamylation to inhibit the SidE-family ubiquitin ligases. Black MH, Osinski A, Gradowski M, Servage KA, Pawłowski K, Tomchick DR, Tagliabracci VS. Science 364 787-792 (2019)
  4. Inhibition of bacterial ubiquitin ligases by SidJ-calmodulin catalysed glutamylation. Bhogaraju S, Bonn F, Mukherjee R, Adams M, Pfleiderer MM, Galej WP, Matkovic V, Lopez-Mosqueda J, Kalayil S, Shin D, Dikic I. Nature 572 382-386 (2019)
  5. Insights into catalysis and function of phosphoribosyl-linked serine ubiquitination. Kalayil S, Bhogaraju S, Bonn F, Shin D, Liu Y, Gan N, Basquin J, Grumati P, Luo ZQ, Dikic I. Nature 557 734-738 (2018)
  6. Regulation of Phosphoribosyl-Linked Serine Ubiquitination by Deubiquitinases DupA and DupB. Shin D, Mukherjee R, Liu Y, Gonzalez A, Bonn F, Liu Y, Rogov VV, Heinz M, Stolz A, Hummer G, Dötsch V, Luo ZQ, Bhogaraju S, Dikic I. Mol Cell 77 164-179.e6 (2020)
  7. Regulation of phosphoribosyl ubiquitination by a calmodulin-dependent glutamylase. Gan N, Zhen X, Liu Y, Xu X, He C, Qiu J, Liu Y, Fujimoto GM, Nakayasu ES, Zhou B, Zhao L, Puvar K, Das C, Ouyang S, Luo ZQ. Nature 572 387-391 (2019)
  8. A unique deubiquitinase that deconjugates phosphoribosyl-linked protein ubiquitination. Qiu J, Yu K, Fei X, Liu Y, Nakayasu ES, Piehowski PD, Shaw JB, Puvar K, Das C, Liu X, Luo ZQ. Cell Res 27 865-881 (2017)
  9. Ubiquitination of Rheb governs growth factor-induced mTORC1 activation. Deng L, Chen L, Zhao L, Xu Y, Peng X, Wang X, Ding L, Jin J, Teng H, Wang Y, Pan W, Yu F, Liao L, Li L, Ge X, Wang P. Cell Res 29 136-150 (2019)
  10. Mechanism of phosphoribosyl-ubiquitination mediated by a single Legionella effector. Akturk A, Wasilko DJ, Wu X, Liu Y, Zhang Y, Qiu J, Luo ZQ, Reiter KH, Brzovic PS, Klevit RE, Mao Y. Nature 557 729-733 (2018)
  11. Deubiquitination of phosphoribosyl-ubiquitin conjugates by phosphodiesterase-domain-containing Legionella effectors. Wan M, Sulpizio AG, Akturk A, Beck WHJ, Lanz M, Faça VM, Smolka MB, Vogel JP, Mao Y. Proc Natl Acad Sci U S A 116 23518-23526 (2019)
  12. Systematic Identification of Host Cell Regulators of Legionella pneumophila Pathogenesis Using a Genome-wide CRISPR Screen. Jeng EE, Bhadkamkar V, Ibe NU, Gause H, Jiang L, Chan J, Jian R, Jimenez-Morales D, Stevenson E, Krogan NJ, Swaney DL, Snyder MP, Mukherjee S, Bassik MC. Cell Host Microbe 26 551-563.e6 (2019)
  13. Structural basis of ubiquitin modification by the Legionella effector SdeA. Dong Y, Mu Y, Xie Y, Zhang Y, Han Y, Zhou Y, Wang W, Liu Z, Wu M, Wang H, Pan M, Xu N, Xu CQ, Yang M, Fan S, Deng H, Tan T, Liu X, Liu L, Li J, Wang J, Fang X, Feng Y. Nature 557 674-678 (2018)
  14. Protein polyglutamylation catalyzed by the bacterial calmodulin-dependent pseudokinase SidJ. Sulpizio A, Minelli ME, Wan M, Burrowes PD, Wu X, Sanford EJ, Shin JH, Williams BC, Goldberg ML, Smolka MB, Mao Y. Elife 8 e51162 (2019)
  15. Positive and Negative Regulation of the Master Metabolic Regulator mTORC1 by Two Families of Legionella pneumophila Effectors. De Leon JA, Qiu J, Nicolai CJ, Counihan JL, Barry KC, Xu L, Lawrence RE, Castellano BM, Zoncu R, Nomura DK, Luo ZQ, Vance RE. Cell Rep 21 2031-2038 (2017)
  16. Legionella pneumophila inhibits immune signalling via MavC-mediated transglutaminase-induced ubiquitination of UBE2N. Gan N, Nakayasu ES, Hollenbeck PJ, Luo ZQ. Nat Microbiol 4 134-143 (2019)
  17. Structural insights into ADP-ribosylation of ubiquitin by Deltex family E3 ubiquitin ligases. Chatrin C, Gabrielsen M, Buetow L, Nakasone MA, Ahmed SF, Sumpton D, Sibbet GJ, Smith BO, Huang DT. Sci Adv 6 eabc0418 (2020)
  18. Legionella pneumophila regulates the activity of UBE2N by deamidase-mediated deubiquitination. Gan N, Guan H, Huang Y, Yu T, Fu J, Nakayasu ES, Puvar K, Das C, Wang D, Ouyang S, Luo ZQ. EMBO J 39 e102806 (2020)
  19. The bacterial deubiquitinase Ceg23 regulates the association of Lys-63-linked polyubiquitin molecules on the Legionella phagosome. Ma K, Zhen X, Zhou B, Gan N, Cao Y, Fan C, Ouyang S, Luo ZQ, Qiu J. J Biol Chem 295 1646-1657 (2020)
  20. The linear ubiquitin chain assembly complex (LUBAC) generates heterotypic ubiquitin chains. Rodriguez Carvajal A, Grishkovskaya I, Gomez Diaz C, Vogel A, Sonn-Segev A, Kushwah MS, Schodl K, Deszcz L, Orban-Nemeth Z, Sakamoto S, Mechtler K, Kukura P, Clausen T, Haselbach D, Ikeda F. Elife 10 e60660 (2021)
  21. The Legionella Effector SdjA Is a Bifunctional Enzyme That Distinctly Regulates Phosphoribosyl Ubiquitination. Song L, Xie Y, Li C, Wang L, He C, Zhang Y, Yuan J, Luo J, Liu X, Xiu Y, Li H, Gritsenko M, Nakayasu ES, Feng Y, Luo ZQ. mBio 12 e0231621 (2021)
  22. RavN is a member of a previously unrecognized group of Legionella pneumophila E3 ubiquitin ligases. Lin YH, Lucas M, Evans TR, Abascal-Palacios G, Doms AG, Beauchene NA, Rojas AL, Hierro A, Machner MP. PLoS Pathog 14 e1006897 (2018)
  23. Interplay between bacterial deubiquitinase and ubiquitin E3 ligase regulates ubiquitin dynamics on Legionella phagosomes. Liu S, Luo J, Zhen X, Qiu J, Ouyang S, Luo ZQ. Elife 9 e58114 (2020)
  24. Legionella pneumophila Excludes Autophagy Adaptors from the Ubiquitin-Labeled Vacuole in Which It Resides. Omotade TO, Roy CR. Infect Immun 88 e00793-19 (2020)
  25. Site-specific monoubiquitination downregulates Rab5 by disrupting effector binding and guanine nucleotide conversion. Shin D, Na W, Lee JH, Kim G, Baek J, Park SH, Choi CY, Lee S. Elife 6 e29154 (2017)
  26. Structural and mechanistic basis for protein glutamylation by the kinase fold. Osinski A, Black MH, Pawłowski K, Chen Z, Li Y, Tagliabracci VS. Mol Cell 81 4527-4539.e8 (2021)
  27. Legionella effector MavC targets the Ube2N~Ub conjugate for noncanonical ubiquitination. Puvar K, Iyer S, Fu J, Kenny S, Negrón Terón KI, Luo ZQ, Brzovic PS, Klevit RE, Das C. Nat Commun 11 2365 (2020)
  28. Legionella hijacks the host Golgi-to-ER retrograde pathway for the association of Legionella-containing vacuole with the ER. Kawabata M, Matsuo H, Koito T, Murata M, Kubori T, Nagai H, Tagaya M, Arasaki K. PLoS Pathog 17 e1009437 (2021)
  29. Modulation of phagosome phosphoinositide dynamics by a Legionella phosphoinositide 3-kinase. Li G, Liu H, Luo ZQ, Qiu J. EMBO Rep 22 e51163 (2021)
  30. Bacterial OTU deubiquitinases regulate substrate ubiquitination upon Legionella infection. Shin D, Bhattacharya A, Cheng YL, Alonso MC, Mehdipour AR, van der Heden van Noort GJ, Ovaa H, Hummer G, Dikic I. Elife 9 e58277 (2020)
  31. Glucosylation by the Legionella Effector SetA Promotes the Nuclear Localization of the Transcription Factor TFEB. Beck WHJ, Kim D, Das J, Yu H, Smolka MB, Mao Y. iScience 23 101300 (2020)
  32. Members of the Legionella pneumophila Sde family target tyrosine residues for phosphoribosyl-linked ubiquitination. Zhang M, McEwen JM, Sjoblom NM, Kotewicz KM, Isberg RR, Scheck RA. RSC Chem Biol 2 1509-1519 (2021)
  33. Serine-ubiquitination regulates Golgi morphology and the secretory pathway upon Legionella infection. Liu Y, Mukherjee R, Bonn F, Colby T, Matic I, Glogger M, Heilemann M, Dikic I. Cell Death Differ 28 2957-2969 (2021)
  34. Structural analyses of NudT16-ADP-ribose complexes direct rational design of mutants with improved processing of poly(ADP-ribosyl)ated proteins. Thirawatananond P, McPherson RL, Malhi J, Nathan S, Lambrecht MJ, Brichacek M, Hergenrother PJ, Leung AKL, Gabelli SB. Sci Rep 9 5940 (2019)
  35. Ubiquitin Chains Modified by the Bacterial Ligase SdeA Are Protected from Deubiquitinase Hydrolysis. Puvar K, Zhou Y, Qiu J, Luo ZQ, Wirth MJ, Das C. Biochemistry 56 4762-4766 (2017)
  36. A General Approach Towards Triazole-Linked Adenosine Diphosphate Ribosylated Peptides and Proteins. Liu Q, Kistemaker HAV, Bhogaraju S, Dikic I, Overkleeft HS, van der Marel GA, Ovaa H, van der Heden van Noort GJ, Filippov DV. Angew Chem Int Ed Engl 57 1659-1662 (2018)
  37. Deubiquitinating enzymes and the proteasome regulate preferential sets of ubiquitin substrates. Trulsson F, Akimov V, Robu M, van Overbeek N, Berrocal DAP, Shah RG, Cox J, Shah GM, Blagoev B, Vertegaal ACO. Nat Commun 13 2736 (2022)
  38. Glutamylation of Bacterial Ubiquitin Ligases by a Legionella Pseudokinase. Sulpizio AG, Minelli ME, Mao Y. Trends Microbiol 27 967-969 (2019)
  39. Structural insights into the mechanism and inhibition of transglutaminase-induced ubiquitination by the Legionella effector MavC. Mu Y, Wang Y, Huang Y, Li D, Han Y, Chang M, Fu J, Xie Y, Ren J, Wang H, Zhang Y, Luo ZQ, Feng Y. Nat Commun 11 1774 (2020)
  40. The deubiquitinase TRABID stabilizes the K29/K48-specific E3 ubiquitin ligase HECTD1. Harris LD, Le Pen J, Scholz N, Mieszczanek J, Vaughan N, Davis S, Berridge G, Kessler BM, Bienz M, Licchesi JDF. J Biol Chem 296 100246 (2021)
  41. Legionella pneumophila modulates host energy metabolism by ADP-ribosylation of ADP/ATP translocases. Fu J, Zhou M, Gritsenko MA, Nakayasu ES, Song L, Luo ZQ. Elife 11 e73611 (2022)
  42. Molecular Basis of Ubiquitination Catalyzed by the Bacterial Transglutaminase MavC. Guan H, Fu J, Yu T, Wang ZX, Gan N, Huang Y, Perčulija V, Li Y, Luo ZQ, Ouyang S. Adv Sci (Weinh) 7 2000871 (2020)
  43. Beyond protein modification: the rise of non-canonical ADP-ribosylation. Schuller M, Ahel I. Biochem J 479 463-477 (2022)
  44. A novel predicted ADP-ribosyltransferase-like family conserved in eukaryotic evolution. Wyżewski Z, Gradowski M, Krysińska M, Dudkiewicz M, Pawłowski K. PeerJ 9 e11051 (2021)
  45. MiR-337-3p confers protective effect on facet joint osteoarthritis by targeting SKP2 to inhibit DUSP1 ubiquitination and inactivate MAPK pathway. Jian S, Luo D, Wang Y, Xu W, Zhang H, Zhang L, Zhou X. Cell Biol Toxicol 39 1099-1118 (2023)
  46. A Legionella effector ADP-ribosyltransferase inactivates glutamate dehydrogenase. Black MH, Osinski A, Park GJ, Gradowski M, Servage KA, Pawłowski K, Tagliabracci VS. J Biol Chem 296 100301 (2021)
  47. Structural basis for protein glutamylation by the Legionella pseudokinase SidJ. Adams M, Sharma R, Colby T, Weis F, Matic I, Bhogaraju S. Nat Commun 12 6174 (2021)
  48. Arginine ADP-Ribosylation: Chemical Synthesis of Post-Translationally Modified Ubiquitin Proteins. Voorneveld J, Kloet MS, Wijngaarden S, Kim RQ, Moutsiopoulou A, Verdegaal M, Misra M, Đikić I, van der Marel GA, Overkleeft HS, Filippov DV, van der Heden van Noort GJ. J Am Chem Soc 144 20582-20589 (2022)
  49. Development of ADPribosyl Ubiquitin Analogues to Study Enzymes Involved in Legionella Infection. Kim RQ, Misra M, Gonzalez A, Tomašković I, Shin D, Schindelin H, Filippov DV, Ovaa H, Đikić I, van der Heden van Noort GJ. Chemistry 27 2506-2512 (2021)
  50. E3 ubiquitin ligase, RNF139, inhibits the progression of tongue cancer. Wang L, Yin W, Shi C. BMC Cancer 17 452 (2017)
  51. Strange New World: Bacteria Catalyze Ubiquitylation via ADP Ribosylation. Komander D, Randow F. Cell Host Microbe 21 127-129 (2017)
  52. E2/E3-independent ubiquitin-like protein conjugation by Urm1 is directly coupled to cysteine persulfidation. Ravichandran KE, Kaduhr L, Skupien-Rabian B, Shvetsova E, Sokołowski M, Krutyhołowa RC, Kwasna D, Brachmann C, Lin S, Guzman Perez S, Wilk P, Kösters M, Grudnik P, Jankowska U, Leidel SA, Schaffrath R, Glatt S. EMBO J 41 e111318 (2022)
  53. Fluorescent Probes for Monitoring Serine Ubiquitination. Puvar K, Saleh AM, Curtis RW, Zhou Y, R Nyalapatla P, Fu J, Rovira AR, Tor Y, Luo ZQ, Ghosh AK, Wirth MJ, Chmielewski J, Kinzer-Ursem TL, Das C. Biochemistry 59 1309-1313 (2020)
  54. Insights into Ubiquitin Product Release in Hydrolysis Catalyzed by the Bacterial Deubiquitinase SdeA. Sheedlo MJ, Kenny S, Podkorytov IS, Brown K, Ma J, Iyer S, Hewitt CS, Arbough T, Mikhailovskii O, Flaherty DP, Wilson MA, Skrynnikov NR, Das C. Biochemistry 60 584-596 (2021)
  55. Structural insights into ubiquitin chain cleavage by Legionella ovarian tumor deubiquitinases. Kang S, Kim G, Choi M, Jeong M, van der Heden van Noort GJ, Roh SH, Shin D. Life Sci Alliance 6 e202201876 (2023)
  56. Synthesis of Stable NAD+ Mimics as Inhibitors for the Legionella pneumophila Phosphoribosyl Ubiquitylating Enzyme SdeC. Madern JM, Kim RQ, Misra M, Dikic I, Zhang Y, Ovaa H, Codée JDC, Filippov DV, van der Heden van Noort GJ. Chembiochem 21 2903-2907 (2020)
  57. The DUB blade goes snicker-snack: Novel ubiquitin cleavage by a Legionella effector protein. Ronau JA, Hochstrasser M. Cell Res 27 845-846 (2017)
  58. A versatile new tool derived from a bacterial deubiquitylase to detect and purify ubiquitylated substrates and their interacting proteins. Zhang M, Berk JM, Mehrtash AB, Kanyo J, Hochstrasser M. PLoS Biol 20 e3001501 (2022)
  59. The Sde phosphoribosyl-linked ubiquitin transferases protect the Legionella pneumophila vacuole from degradation by the host. Kim S, Isberg RR. Proc Natl Acad Sci U S A 120 e2303942120 (2023)
  60. IM 2016: Signaling Breakthroughs of the Year. Adler EM. Sci Signal 10 eaam5681 (2017)
  61. Atypical Legionella GTPase effector hijacks host vesicular transport factor p115 to regulate host lipid droplet. Chen TT, Lin Y, Zhang S, Liu S, Song L, Zhong W, Luo ZQ, Han A. Sci Adv 8 eadd7945 (2022)
  62. Cleavage of the Babuvirus Movement Protein B4 into Functional Peptides Capable of Host Factor Conjugation is Required for Virulence. Zhuang J, Lin W, Coates CJ, Shang P, Wei T, Wu Z, Xie L. Virol Sin 34 295-305 (2019)
  63. Deciphering the catalytic mechanism of bacterial ubiquitination. Wong K, Gehring K. Nature 557 644-645 (2018)
  64. Investigating Common Pathogenic Mechanisms between Homo sapiens and Different Strains of Candida albicans for Drug Design: Systems Biology Approach via Two-Sided NGS Data Identification. Yeh SJ, Yeh CC, Lan CY, Chen BS. Toxins (Basel) 11 E119 (2019)
  65. Legionella longbeachae effector protein RavZ inhibits autophagy and regulates phagosome ubiquitination during infection. Shi Y, Liu H, Ma K, Luo ZQ, Qiu J. PLoS One 18 e0281587 (2023)
  66. Reversible modification of mitochondrial ADP/ATP translocases by paired Legionella effector proteins. Kubori T, Lee J, Kim H, Yamazaki K, Nishikawa M, Kitao T, Oh BH, Nagai H. Proc Natl Acad Sci U S A 119 e2122872119 (2022)
  67. Topology and enzymatic properties of a canonical Polycomb repressive complex 1 isoform. Colombo M, Pessey O, Marcia M. FEBS Lett 593 1837-1848 (2019)
  68. Ubiquitin and its relatives as wizards of the endolysosomal system. Berlin I, Sapmaz A, Stévenin V, Neefjes J. J Cell Sci 136 jcs260101 (2023)
  69. Virulence effector SidJ evolution in Legionella pneumophila is driven by positive selection and intragenic recombination. Zhan XY, Yang JL, Zhou X, Qian YC, Huang K, Sun H, Wang H, Leng Y, Huang B, He Y. PeerJ 9 e12000 (2021)
  70. In vitro Glutamylation Inhibition of Ubiquitin Modification and Phosphoribosyl-Ubiquitin Ligation Mediated by Legionella pneumophila Effectors. Sulpizio AG, Minelli ME, Mao Y. Bio Protoc 10 e3811 (2020)
  71. DUB esterase activity further decodes ubiquitin's enigma. Kessler BM. Proc Natl Acad Sci U S A 118 e2026389118 (2021)
  72. Molecular basis of threonine ADP-ribosylation of ubiquitin by bacterial ARTs. Tan J, Xu Y, Wang X, Yan F, Xian W, Liu X, Chen Y, Zhu Y, Zhou Y. Nat Chem Biol (2023)
  73. New biochemistry in the Rhodanese-phosphatase superfamily: emerging roles in diverse metabolic processes, nucleic acid modifications, and biological conflicts. Burroughs AM, Aravind L. NAR Genom Bioinform 5 lqad029 (2023)
  74. Radioactive Assay of in vitro Glutamylation Activity of the Legionella pneumophila Effector Protein SidJ. Sulpizio AG, Shin JH, Minelli ME, Mao Y. Bio Protoc 10 e3770 (2020)
  75. Ubiquitination of Sec22b by a novel Legionella pneumophila ubiquitin E3 ligase. Ma K, Shu R, Liu H, Fu J, Luo Z-Q, Qiu J. mBio e0238223 (2023)