5m31 Citations

The Toxin-Antitoxin System DarTG Catalyzes Reversible ADP-Ribosylation of DNA.

Mol Cell 64 1109-1116 (2016)
Related entries: 5m3e, 5m3i

Cited: 88 times
EuropePMC logo PMID: 27939941

Abstract

The discovery and study of toxin-antitoxin (TA) systems helps us advance our understanding of the strategies prokaryotes employ to regulate cellular processes related to the general stress response, such as defense against phages, growth control, biofilm formation, persistence, and programmed cell death. Here we identify and characterize a TA system found in various bacteria, including the global pathogen Mycobacterium tuberculosis. The toxin of the system (DarT) is a domain of unknown function (DUF) 4433, and the antitoxin (DarG) a macrodomain protein. We demonstrate that DarT is an enzyme that specifically modifies thymidines on single-stranded DNA in a sequence-specific manner by a nucleotide-type modification called ADP-ribosylation. We also show that this modification can be removed by DarG. Our results provide an example of reversible DNA ADP-ribosylation, and we anticipate potential therapeutic benefits by targeting this enzyme-enzyme TA system in bacterial pathogens such as M. tuberculosis.

Reviews - 5m31 mentioned but not cited (1)

  1. ADP-ribosylation systems in bacteria and viruses. Mikolčević P, Hloušek-Kasun A, Ahel I, Mikoč A. Comput Struct Biotechnol J 19 2366-2383 (2021)


Reviews citing this publication (37)

  1. PARPs and ADP-ribosylation: recent advances linking molecular functions to biological outcomes. Gupte R, Liu Z, Kraus WL. Genes Dev 31 101-126 (2017)
  2. The comings and goings of PARP-1 in response to DNA damage. Pascal JM. DNA Repair (Amst) 71 177-182 (2018)
  3. Insights into the biogenesis, function, and regulation of ADP-ribosylation. Cohen MS, Chang P. Nat Chem Biol 14 236-243 (2018)
  4. ADP-ribosylation: new facets of an ancient modification. Palazzo L, Mikoč A, Ahel I. FEBS J 284 2932-2946 (2017)
  5. (ADP-ribosyl)hydrolases: structure, function, and biology. Rack JGM, Palazzo L, Ahel I. Genes Dev 34 263-284 (2020)
  6. PARPs and ADP-ribosylation in RNA biology: from RNA expression and processing to protein translation and proteostasis. Kim DS, Challa S, Jones A, Kraus WL. Genes Dev 34 302-320 (2020)
  7. Specificity of reversible ADP-ribosylation and regulation of cellular processes. Crawford K, Bonfiglio JJ, Mikoč A, Matic I, Ahel I. Crit Rev Biochem Mol Biol 53 64-82 (2018)
  8. Biology and evolution of bacterial toxin-antitoxin systems. Jurėnas D, Fraikin N, Goormaghtigh F, Van Melderen L. Nat Rev Microbiol 20 335-350 (2022)
  9. ADP-ribosylation signalling and human disease. Palazzo L, Mikolčević P, Mikoč A, Ahel I. Open Biol 9 190041 (2019)
  10. Location, Location, Location: Compartmentalization of NAD+ Synthesis and Functions in Mammalian Cells. Cambronne XA, Kraus WL. Trends Biochem Sci 45 858-873 (2020)
  11. ADP-ribosylation of DNA and RNA. Groslambert J, Prokhorova E, Ahel I. DNA Repair (Amst) 105 103144 (2021)
  12. PARPs in genome stability and signal transduction: implications for cancer therapy. Palazzo L, Ahel I. Biochem Soc Trans 46 1681-1695 (2018)
  13. ADP-ribosylation of RNA and DNA: from in vitro characterization to in vivo function. Weixler L, Schäringer K, Momoh J, Lüscher B, Feijs KLH, Žaja R. Nucleic Acids Res 49 3634-3650 (2021)
  14. Poly(ADP-Ribose) Polymerases in Host-Pathogen Interactions, Inflammation, and Immunity. Brady PN, Goel A, Johnson MA. Microbiol Mol Biol Rev 83 e00038-18 (2019)
  15. Uncovering the Invisible: Mono-ADP-ribosylation Moved into the Spotlight. Hopp AK, Hottiger MO. Cells 10 680 (2021)
  16. The Variety in the Common Theme of Translation Inhibition by Type II Toxin-Antitoxin Systems. Jurėnas D, Van Melderen L. Front Genet 11 262 (2020)
  17. Translational regulation in mycobacteria and its implications for pathogenicity. Sawyer EB, Grabowska AD, Cortes T. Nucleic Acids Res 46 6950-6961 (2018)
  18. Bacterial Type I Toxins: Folding and Membrane Interactions. Nonin-Lecomte S, Fermon L, Felden B, Pinel-Marie ML. Toxins (Basel) 13 490 (2021)
  19. Chemical Tools to Study Protein ADP-Ribosylation. van der Heden van Noort GJ. ACS Omega 5 1743-1751 (2020)
  20. Kunkel Lecture: Fundamental immunodeficiency and its correction. Nathan C. J Exp Med 214 2175-2191 (2017)
  21. Novel imaging and clinical phenotypes of CONDSIAS disorder caused by a homozygous frameshift variant of ADPRHL2: a case report. Aryan H, Razmara E, Farhud D, Zarif-Yeganeh M, Zokaei S, Hassani SA, Ashrafi MR, Garshasbi M, Tavasoli AR. BMC Neurol 20 291 (2020)
  22. Persister cells: formation, resuscitation and combative therapies. Wainwright J, Hobbs G, Nakouti I. Arch Microbiol 203 5899-5906 (2021)
  23. Targeting ADP-ribosylation as an antimicrobial strategy. Catara G, Corteggio A, Valente C, Grimaldi G, Palazzo L. Biochem Pharmacol 167 13-26 (2019)
  24. Common Mechanism for Target Specificity of Protein- and DNA-Targeting ADP-Ribosyltransferases. Yoshida T, Tsuge H. Toxins (Basel) 13 40 (2021)
  25. Intracellular mono-ADP-ribosyltransferases at the host-virus interphase. Lüscher B, Verheirstraeten M, Krieg S, Korn P. Cell Mol Life Sci 79 288 (2022)
  26. Bacterial type II toxin-antitoxin systems acting through post-translational modifications. Zhang SP, Feng HZ, Wang Q, Kempher ML, Quan SW, Tao X, Niu S, Wang Y, Feng HY, He YX. Comput Struct Biotechnol J 19 86-93 (2021)
  27. ADP-Ribosylation Post-Translational Modification: An Overview with a Focus on RNA Biology and New Pharmacological Perspectives. Manco G, Lacerra G, Porzio E, Catara G. Biomolecules 12 443 (2022)
  28. Unraveling the Diverse Roles of Neglected Genes Containing Domains of Unknown Function (DUFs): Progress and Perspective. Lv P, Wan J, Zhang C, Hina A, Al Amin GM, Begum N, Zhao T. Int J Mol Sci 24 4187 (2023)
  29. Advanced Situation with Recombinant Toxins: Diversity, Production and Application Purposes. Efremenko E, Aslanli A, Lyagin I. Int J Mol Sci 24 4630 (2023)
  30. Noncanonical Functions of Enzyme Cofactors as Building Blocks in Natural Product Biosynthesis. Barra L, Awakawa T, Abe I. JACS Au 2 1950-1963 (2022)
  31. The Prospective Synergy of Antitubercular Drugs With NAD Biosynthesis Inhibitors. Rohde KH, Sorci L. Front Microbiol 11 634640 (2020)
  32. ADP-Ribosylation in Antiviral Innate Immune Response. Du Q, Miao Y, He W, Zheng H. Pathogens 12 303 (2023)
  33. Bacterial Toxin-Antitoxin Systems' Cross-Interactions-Implications for Practical Use in Medicine and Biotechnology. Boss L, Kędzierska B. Toxins (Basel) 15 380 (2023)
  34. Type II Toxin-Antitoxin Systems in Pseudomonas aeruginosa. Li M, Guo N, Song G, Huang Y, Wang L, Zhang Y, Wang T. Toxins (Basel) 15 164 (2023)
  35. ADP-ribosylation from molecular mechanisms to therapeutic implications. Suskiewicz MJ, Prokhorova E, Rack JGM, Ahel I. Cell 186 4475-4495 (2023)
  36. ADP-ribosylhydrolases: from DNA damage repair to COVID-19. Yu L, Liu X, Yu X. J Zhejiang Univ Sci B 22 21-30 (2021)
  37. Toxin-antitoxin systems in bacterial pathogenesis. Sonika S, Singh S, Mishra S, Verma S. Heliyon 9 e14220 (2023)

Articles citing this publication (50)

  1. Serine is the major residue for ADP-ribosylation upon DNA damage. Palazzo L, Leidecker O, Prokhorova E, Dauben H, Matic I, Ahel I. Elife 7 e34334 (2018)
  2. Serine ADP-ribosylation reversal by the hydrolase ARH3. Fontana P, Bonfiglio JJ, Palazzo L, Bartlett E, Matic I, Ahel I. Elife 6 e28533 (2017)
  3. Reversible mono-ADP-ribosylation of DNA breaks. Munnur D, Ahel I. FEBS J 284 4002-4016 (2017)
  4. Reversible ADP-ribosylation of RNA. Munnur D, Bartlett E, Mikolčević P, Kirby IT, Rack JGM, Mikoč A, Cohen MS, Ahel I. Nucleic Acids Res 47 5658-5669 (2019)
  5. Characterization of DNA ADP-ribosyltransferase activities of PARP2 and PARP3: new insights into DNA ADP-ribosylation. Zarkovic G, Belousova EA, Talhaoui I, Saint-Pierre C, Kutuzov MM, Matkarimov BT, Biard D, Gasparutto D, Lavrik OI, Ishchenko AA. Nucleic Acids Res 46 2417-2431 (2018)
  6. Bifunctional Immunity Proteins Protect Bacteria against FtsZ-Targeting ADP-Ribosylating Toxins. Ting SY, Bosch DE, Mangiameli SM, Radey MC, Huang S, Park YJ, Kelly KA, Filip SK, Goo YA, Eng JK, Allaire M, Veesler D, Wiggins PA, Peterson SB, Mougous JD. Cell 175 1380-1392.e14 (2018)
  7. Macrodomain ADP-ribosylhydrolase and the pathogenesis of infectious diseases. Leung AKL, McPherson RL, Griffin DE. PLoS Pathog 14 e1006864 (2018)
  8. An NAD+ Phosphorylase Toxin Triggers Mycobacterium tuberculosis Cell Death. Freire DM, Gutierrez C, Garza-Garcia A, Grabowska AD, Sala AJ, Ariyachaokun K, Panikova T, Beckham KSH, Colom A, Pogenberg V, Cianci M, Tuukkanen A, Boudehen YM, Peixoto A, Botella L, Svergun DI, Schnappinger D, Schneider TR, Genevaux P, de Carvalho LPS, Wilmanns M, Parret AHA, Neyrolles O. Mol Cell 73 1282-1291.e8 (2019)
  9. Dna is a New Target of Parp3. Belousova EA, Ishchenko АA, Lavrik OI. Sci Rep 8 4176 (2018)
  10. Engineering Af1521 improves ADP-ribose binding and identification of ADP-ribosylated proteins. Nowak K, Rosenthal F, Karlberg T, Bütepage M, Thorsell AG, Dreier B, Grossmann J, Sobek J, Imhof R, Lüscher B, Schüler H, Plückthun A, Leslie Pedrioli DM, Hottiger MO. Nat Commun 11 5199 (2020)
  11. MacroD1 Is a Promiscuous ADP-Ribosyl Hydrolase Localized to Mitochondria. Agnew T, Munnur D, Crawford K, Palazzo L, Mikoč A, Ahel I. Front Microbiol 9 20 (2018)
  12. NAD+-dependent synthesis of a 5'-phospho-ADP-ribosylated RNA/DNA cap by RNA 2'-phosphotransferase Tpt1. Munir A, Banerjee A, Shuman S. Nucleic Acids Res 46 9617-9624 (2018)
  13. DNA ADP-Ribosylation Stalls Replication and Is Reversed by RecF-Mediated Homologous Recombination and Nucleotide Excision Repair. Lawarée E, Jankevicius G, Cooper C, Ahel I, Uphoff S, Tang CM. Cell Rep 30 1373-1384.e4 (2020)
  14. The DarTG toxin-antitoxin system provides phage defence by ADP-ribosylating viral DNA. LeRoux M, Srikant S, Teodoro GIC, Zhang T, Littlehale ML, Doron S, Badiee M, Leung AKL, Sorek R, Laub MT. Nat Microbiol 7 1028-1040 (2022)
  15. Why structure and chain length matter: on the biological significance underlying the structural heterogeneity of poly(ADP-ribose). Reber JM, Mangerich A. Nucleic Acids Res 49 8432-8448 (2021)
  16. A nucleotidyltransferase toxin inhibits growth of Mycobacterium tuberculosis through inactivation of tRNA acceptor stems. Cai Y, Usher B, Gutierrez C, Tolcan A, Mansour M, Fineran PC, Condon C, Neyrolles O, Genevaux P, Blower TR. Sci Adv 6 eabb6651 (2020)
  17. ParST is a widespread toxin-antitoxin module that targets nucleotide metabolism. Piscotta FJ, Jeffrey PD, Link AJ. Proc Natl Acad Sci U S A 116 826-834 (2019)
  18. A hyperpromiscuous antitoxin protein domain for the neutralization of diverse toxin domains. Kurata T, Saha CK, Buttress JA, Mets T, Brodiazhenko T, Turnbull KJ, Awoyomi OF, Oliveira SRA, Jimmy S, Ernits K, Delannoy M, Persson K, Tenson T, Strahl H, Hauryliuk V, Atkinson GC. Proc Natl Acad Sci U S A 119 e2102212119 (2022)
  19. Depletion of the DarG antitoxin in Mycobacterium tuberculosis triggers the DNA-damage response and leads to cell death. Zaveri A, Wang R, Botella L, Sharma R, Zhu L, Wallach JB, Song N, Jansen RS, Rhee KY, Ehrt S, Schnappinger D. Mol Microbiol 114 641-652 (2020)
  20. ADP-ribosylation of DNA moving into focus. Dölle C, Ziegler M. FEBS J 284 3999-4001 (2017)
  21. ADP-ribosylation of RNA in mammalian cells is mediated by TRPT1 and multiple PARPs. Weixler L, Feijs KLH, Zaja R. Nucleic Acids Res 50 9426-9441 (2022)
  22. The antitoxin MqsA homologue in Pseudomonas fluorescens 2P24 has a rewired regulatory circuit through evolution. Wang Y, Zhang SP, Zhang MY, Kempher ML, Guo DD, Han JT, Tao X, Wu Y, Zhang LQ, He YX. Environ Microbiol 21 1740-1756 (2019)
  23. A gene encoding a DUF523 domain protein is involved in the conversion of 2-thiouracil into uracil. Aučynaitė A, Rutkienė R, Gasparavičiūtė R, Meškys R, Urbonavičius J. Environ Microbiol Rep 10 49-56 (2018)
  24. Beyond protein modification: the rise of non-canonical ADP-ribosylation. Schuller M, Ahel I. Biochem J 479 463-477 (2022)
  25. Substrate N2 atom recognition mechanism in pierisin family DNA-targeting, guanine-specific ADP-ribosyltransferase ScARP. Yoshida T, Tsuge H. J Biol Chem 293 13768-13774 (2018)
  26. TARG1 protects against toxic DNA ADP-ribosylation. Tromans-Coia C, Sanchi A, Moeller GK, Timinszky G, Lopes M, Ahel I. Nucleic Acids Res 49 10477-10492 (2021)
  27. A novel predicted ADP-ribosyltransferase-like family conserved in eukaryotic evolution. Wyżewski Z, Gradowski M, Krysińska M, Dudkiewicz M, Pawłowski K. PeerJ 9 e11051 (2021)
  28. Dynamics of Scabin toxin. A proposal for the binding mode of the DNA substrate. Lugo MR, Lyons B, Lento C, Wilson DJ, Merrill AR. PLoS One 13 e0194425 (2018)
  29. Behavioural Characterisation of Macrod1 and Macrod2 Knockout Mice. Crawford K, Oliver PL, Agnew T, Hunn BHM, Ahel I. Cells 10 368 (2021)
  30. Structural basis of ALC1/CHD1L autoinhibition and the mechanism of activation by the nucleosome. Wang L, Chen K, Chen Z. Nat Commun 12 4057 (2021)
  31. The novel type II toxin-antitoxin PacTA modulates Pseudomonas aeruginosa iron homeostasis by obstructing the DNA-binding activity of Fur. Song Y, Zhang S, Ye Z, Song Y, Chen L, Tong A, He Y, Bao R. Nucleic Acids Res 50 10586-10600 (2022)
  32. A novel conserved family of Macro-like domains-putative new players in ADP-ribosylation signaling. Dudkiewicz M, Pawłowski K. PeerJ 7 e6863 (2019)
  33. Functional genomics reveals the toxin-antitoxin repertoire and AbiE activity in Serratia. Hampton HG, Smith LM, Ferguson S, Meaden S, Jackson SA, Fineran PC. Microb Genom 6 (2020)
  34. Mammalian N1-adenosine PARylation is a reversible DNA modification. Musheev MU, Schomacher L, Basu A, Han D, Krebs L, Scholz C, Niehrs C. Nat Commun 13 6138 (2022)
  35. An uncharacterized FMAG_01619 protein from Fusobacterium mortiferum ATCC 9817 demonstrates that some bacterial macrodomains can also act as poly-ADP-ribosylhydrolases. García-Saura AG, Zapata-Pérez R, Hidalgo JF, Cabanes J, Gil-Ortiz F, Sánchez-Ferrer Á. Sci Rep 9 3230 (2019)
  36. Comparative inhibitory profile and distribution of bacterial PARPs, using Clostridioides difficile CD160 PARP as a model. García-Saura AG, Zapata-Pérez R, Hidalgo JF, Sánchez-Ferrer Á. Sci Rep 8 8056 (2018)
  37. Several New Putative Bacterial ADP-Ribosyltransferase Toxins Are Revealed from In Silico Data Mining, Including the Novel Toxin Vorin, Encoded by the Fire Blight Pathogen Erwinia amylovora. Tremblay O, Thow Z, Merrill AR. Toxins (Basel) 12 E792 (2020)
  38. Back to the Roots: Deep View into the Evolutionary History of ADP-Ribosylation Opened by the DNA-Targeting Toxin-Antitoxin Module DarTG. Harms A, Gerdes K. Mol Cell 64 1020-1021 (2016)
  39. Characterization of Two Toxin-Antitoxin Systems in Deep-Sea Streptomyces sp. SCSIO 02999. Zhan W, Yao J, Tang K, Li Y, Guo Y, Wang X. Mar Drugs 17 E211 (2019)
  40. Crystallization and X-ray analysis of all of the players in the autoregulation of the ataRT toxin-antitoxin system. Jurėnas D, Van Melderen L, Garcia-Pino A. Acta Crystallogr F Struct Biol Commun 74 391-401 (2018)
  41. DarT-mediated mtDNA damage induces dynamic reorganization and selective segregation of mitochondria. Dua N, Seshadri A, Badrinarayanan A. J Cell Biol 221 e202205104 (2022)
  42. Genome Mining Shows Ubiquitous Presence and Extensive Diversity of Toxin-Antitoxin Systems in Pseudomonas syringae. Kandel PP, Naumova M, Fautt C, Patel RR, Triplett LR, Hockett KL. Front Microbiol 12 815911 (2021)
  43. Mapping the DNA-Binding Motif of Scabin Toxin, a Guanine Modifying Enzyme from Streptomyces scabies. Vatta M, Lyons B, Heney KA, Lidster T, Merrill AR. Toxins (Basel) 13 55 (2021)
  44. Streptomyces coelicolor macrodomain hydrolase SCO6735 cleaves thymidine-linked ADP-ribosylation of DNA. Hloušek-Kasun A, Mikolčević P, Rack JGM, Tromans-Coia C, Schuller M, Jankevicius G, Matković M, Bertoša B, Ahel I, Mikoč A. Comput Struct Biotechnol J 20 4337-4350 (2022)
  45. PARP14 is a PARP with both ADP-ribosyl transferase and hydrolase activities. Đukić N, Strømland Ø, Elsborg JD, Munnur D, Zhu K, Schuller M, Chatrin C, Kar P, Duma L, Suyari O, Rack JGM, Baretić D, Crudgington DRK, Groslambert J, Fowler G, Wijngaarden S, Prokhorova E, Rehwinkel J, Schüler H, Filippov DV, Sanyal S, Ahel D, Nielsen ML, Smith R, Ahel I. Sci Adv 9 eadi2687 (2023)
  46. Structural and functional analysis of the Klebsiella pneumoniae MazEF toxin-antitoxin system. Jin C, Kang SM, Kim DH, Lee BJ. IUCrJ 8 362-371 (2021)
  47. The DarT/DarG Toxin-Antitoxin ADP-Ribosylation System as a Novel Target for a Rational Design of Innovative Antimicrobial Strategies. Catara G, Caggiano R, Palazzo L. Pathogens 12 240 (2023)
  48. A DNA-ribosylating toxin and its antidote. Mushegian AA. Sci Signal 10 eaam6835 (2017)
  49. GNAT toxins evolve toward narrow tRNA target specificities. Bikmetov D, Hall AMJ, Livenskyi A, Gollan B, Ovchinnikov S, Gilep K, Kim JY, Larrouy-Maumus G, Zgoda V, Borukhov S, Severinov K, Helaine S, Dubiley S. Nucleic Acids Res 50 5807-5817 (2022)
  50. The structural basis of hyperpromiscuity in a core combinatorial network of type II toxin-antitoxin and related phage defense systems. Ernits K, Saha CK, Brodiazhenko T, Chouhan B, Shenoy A, Buttress JA, Duque-Pedraza JJ, Bojar V, Nakamoto JA, Kurata T, Egorov AA, Shyrokova L, Johansson MJO, Mets T, Rustamova A, Džigurski J, Tenson T, Garcia-Pino A, Strahl H, Elofsson A, Hauryliuk V, Atkinson GC. Proc Natl Acad Sci U S A 120 e2305393120 (2023)